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Abstract—In this paper, we analyze the convergence of the
finite difference method with the implicit forward time cen-
tral space (FTCS) scheme for the two-dimensional advection-
diffusion-reaction equation (ADRE). It is discovered that the
method is unconditionally convergent. The validation of the
scheme is verified with a 1-D ADRE. We apply the scheme
to a pollutant dispersion with removal mechanism model in
a reservoir. The number of entrance gates, the decreasing
rate of water pollutant and the dispersion coefficient are
varied in our problem to obtain numerical solutions. Graphical
representations of the obtained solutions are demonstrated. As a
numerical result, we find that the water pollutant concentration
of the problem depends upon the number of entrance gates, the
decreasing rate of water pollutant and the dispersion coefficient.

Index Terms—Water pollutant concentration, Finite differ-
ence method, Convergence, Advection-diffusion-reaction equa-
tion, Implicit FTCS scheme

I. INTRODUCTION

THE advection-diffusion-reaction equation (ADRE) has
been widely used as a mathematical model in many

different areas of the sciences and engineering. Accurate
numerical solutions of the ADRE play an important role in
simulations for a large class of physical systems. There are
now many different numerical methods that have been de-
veloped to solve linear and nonlinear ADREs. For example,
finite difference methods (FDM) (see, e.g., [1]–[11], finite
element methods (FEM) [12], finite volume methods (FVM)
(see, e.g., [13]–[17]) and meshless methods (see, e.g., [18]–
[22]).

In particular, many researchers have used the schemes
involving with the finite difference method to numerically
solve equations associated with the ADRE as follows. For
example, in 2009, Feng [1] proposed an integral form of
convection-diffusion equation and constructed a class of al-
ternating group explicit finite difference method (AGE) based
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on several asymmetric schemes. The method is uncondition-
ally stable. In 2010, Siddique [23] employed Padé schemes
to obtain the numerical solutions of two-dimensional (both
homogeneous and inhomogeneous) diffusion equations sub-
ject to nonlocal boundary conditions. The obtained numerical
results demonstrated the accuracy of these schemes. In 2011,
Prieto et al. [2] applied a generalized explicit finite difference
method to solve advection-diffusion equations and studied
the convergence of the method. In 2013, Chen-Charpentier
and Kojouharov [3] proposed the unconditionally positive
finite-difference (UPFD) method to solve parabolic equations
with advection, diffusion, and reaction terms for positive
solutions. The method is independent of the time step and
mesh size. Appadu [4] compared the numerical solutions of
the 1-D advection-diffusion equation with constant coeffi-
cients obtained using the three numerical methods includ-
ing the Lax-Wendroff, the Crank-Nicolson and nonstandard
finite difference schemes. In 2014, Kaya [5] proposed a
finite difference scheme for multidimensional convection-
diffusion-reaction equations. Particularly, the scheme was
designed to treat the most interesting case of small diffu-
sion. Zhang et al. [6] proposed an exact finite difference
scheme using the solitary wave solutions to solve Burgers
and Burgers-Fisher equations. In 2015, Kaya [7] studied the
numerical solution of multidimensional unsteady convection-
diffusion-reaction equations using finite difference method
on a special grid. The method gives good performance
for the numerical tests. Kaya and Sendur [8] proposed a
finite difference method on a special grid for solving the
convection-diffusion-reaction (CDR) problems with small
diffusion and compared the performance of the proposed
method with the Streamline-upwind Petrov-Galerkin (SUPG)
and the Residual-Free Bubbles (RFB) methods on several
benchmark problems. In 2017, Sanjaya and Mungkasi [9]
investigated the performance of an explicit finite difference
method for solving one dimension the advection-diffusion
equation. Kewalee and Nopparat [10] studied the air quality
model in areas under a Bangkok sky train platform via
a three-dimensional advection-diffusion equation with time
dependence. The model was solved for numerical solutions
using the explicit forward difference in time and central
difference in space (FTCS). They also investigated the wind
inflow for two cases: only in x-direction and in x- and y-
directions. Moreover, some obstacles were included into the
tunnel to study their effects on the numerical simulations. In
2018, Company et al. [11] utilized the positivity-preserving
finite difference scheme to obtain solutions of multidimen-
sional advection-diffusion-reaction problems. Qian and Cai
[24] proposed the implicit-explicit time stepping stream-
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line diffusion method for numerically solving the fluid-
fluid interaction problems modelled using the convection-
dominated convection-diffusion-reaction equations with an
interface condition. They analyzed the stability and error
estimates of scheme as well.

In this article, we consider the advection-diffusion-reaction
equation of the following form:

∂ϕ

∂t
+∇ · (vϕ− ε∇ϕ) + κϕ = q, (1)

where ϕ is a scalar quantity, v = v(x) is a given advection
velocity vector, ε ≥ 0 is a diffusion coefficient, κ is a reaction
coefficient, q = q(x, t) is a prescribed source term, x is a
position vector and time t ∈ [0, T ], where T > 0. The present
paper is organized as follows. The convergence theory is
briefly provided in section II. The convergence and validation
of the method are given in section III and IV, respectively.
Using the method, numerical results and their graphs for the
water pollution problem in reservoir written in terms of the
ADRE in Eq. (1) are shown in section V. The conclusion of
our work is presented in section VI.

II. CONVERGENCE THEORY

Let L : Ω → H be a linear differential operator acting
from a space of continuous functions Ω to a continuous
function space H . Next, we consider the initial time-space
boundary value problem (IBVP) consisting of the partial
differential equation, when D is an interior set of the spatial
domain and T > 0,

Lϕ(x, t) = q(x, t), (x, t) ∈ D × (0, T ], (2)

and the following initial time condition

ϕ(x, 0) = ψ(x) for x ∈ D, (3)

and the boundary space condition

ϕ(x, t) = ξ(x, t) for (x, t) ∈ ∂D × [0, T ], (4)

where ∂D is the boundary of the spatial domain.
Then, we consider a rectangular region which has a width

of L1 and a length of L2 and time t ∈ [0, T ]. Let Dh and
∂Dh be the discretized versions of D and ∂D, respectively.
We define the spatial grid D̃h = Dh ∪ ∂Dh ⊂ D ∪ ∂D as

D̃h = {(xi, yj) ∈ D ∪ ∂D | (i, j) ∈ J}, (5)

where J = {(i, j) | i = 0, 1, 2, ..., N1, j = 0, 1, 2, ..., N2},
N1 = L1

∆x , N2 = L2

∆y , and ∆x, ∆y are the spatial step sizes
in the direction of x and y, respectively. For the sake of
convenience, ∆x = ∆y = h. Similarly, the interval [0, T ] is
discretized as [0, T ]k in which tn, n ∈ K = {0, 1, 2, ..., N}
are the temporal grid points with the step size ∆t = T/N for
some positive integer number N . We define the linear space
of discrete functions Ωh for space step sizes h and time step
size k on the grid D̃h × [0, T ]k ⊂ D ∪ ∂D× [0, T ] and then
consider a finite difference scheme (FDS) corresponding to
the above initial-boundary value problem (2) as follows

Lhϕ
h = qh, (x, t) ∈ Dh × (0, T ]k, (6)

where Lh : Ωh → Hh is a difference operator acting from a
discrete function space Ωh to a discrete function space Hh

subject to the initial condition

ϕh(x, 0) = ψh(x) , x ∈ Dh (7)

and the boundary condition

ϕh(x, t) = ξh(x, t) for (x, t) ∈ ∂Dh × [0, T ]k, (8)

We define the function fh as

fh = fni,j =

{
qni,j , (i, j) ∈ J, n ∈ K − {0},
ψ0
i,j , (i, j) ∈ J,

(9)

where ϕni,j = ϕ(xi, yj , tn), qni,j = q(xi, yj , tn) and ψ0
i,j =

ψ(xi, yj , 0).
Introducing the norms in the sense of discrete functions

as

∥ϕh∥Ωh
= max

i, j ∈ J
n ∈ K

|ϕni,j |,

∥fh∥Hh
= max

i, j ∈ J
|ψ0

i,j | + max
i, j ∈ J

n ∈ K − {0}

|qni,j |,
(10)

and defining Ph : Ω → Ωh as a projection operator, we
have the definition of convergence for numerical methods as
follows.

Definition 2.1: Convergence
A solution ϕh of FDS in Eq. (6)-(8) converges to the solution
ϕ of IBVP in Eq. (2)-(4)) if

∥Ph(ϕ)− ϕh∥Ωh
→ 0 as h→ 0. (11)

Definition 2.2: Convergence with order m
The FDS in Eq. (6) converges with order m if

∥Ph(ϕ)− ϕh∥Ωh
≤ Chm (12)

where the positive constant C does not depend on h.
Given a properly posed boundary value problem and

a finite difference approximation to it, the necessary and
sufficient conditions for convergence of the finite difference
method, i.e. Lax’s equivalence theorem [25], are consistency
and stability.

1) Consistency : A finite difference representation of a
PDE is said to be consistent [25] if the difference between
the PDE and its difference representation vanishes as the
mesh is refined, i.e., the truncation error (T.E.) goes to zero
as the mesh size goes to zero. This should always be the
case if the order of the T.E. vanishes under grid refinement.

The FDS (6) approximates BVP (2) with order m if

∥T.E.∥Hh
≤ Chm

where the positive constant C does not depend on h.
2) Stability : The finite difference scheme defined by (6)

with linear operator Lh will be called stable, if there exists
h0 > 0 such that for arbitrary h < h0 and for any discrete
function fh ∈ Hh, the solution ϕh of FDS (6) exists and is
unique and also satisfies the inequality

∥ϕh∥Ωh
≤ C ∥ fh ∥Hh

, (13)

where the positive constant C does not depend on h. In
other words, the scheme (6) is called stable for (x, t) ∈
D̃h × [0, T ]k, if there exists a positive constant C which
is independent of h such that

max
i, j, n

|ϕni,j | ≤ C(max
i, j

|ψ0
i,j | + max

i, j, n
|qni,j |), (14)

where (i, j) ∈ J, n ∈ K. The inequality (14) has to be true
for any functions ψ0

i,j and qni,j . In particular, if qni,j = 0, then
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the condition (14) becomes only the necessary condition for
stability of (6).

For the special case of Fourier or Von Neumann Analy-
sis [25], a solution of the FDS (6) for qni,j = 0 can be written
in the form

ϕni,j = λn(α, β)eI(αi+βj) , (i, j) ∈ J, n ∈ K, I =
√
−1
(15)

where α and β are wave numbers and eI(αi+βj) are eigen-
vectors corresponding to eigenvalues λ(α, β) of Lh. The
necessary condition for stability of FDS (6) for qni,j = 0
will then hold for all α, β ∈ R if the following inequality
holds:

|λ(α, β)| ≤ 1. (16)

III. CONSISTENCY AND STABILITY ANALYSIS

Consider the following initial-boundary value problem

∂ϕ

∂t
+ ū

∂ϕ

∂x
+ v̄

∂ϕ

∂y
− ε

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
+ κϕ = q(x, y, t),

(x, y) ∈ (0, L1)× (0, L2), t ∈ (0, T ],

subject to
ϕ(x, y, 0) = ψ(x, y), (17)
ϕ(0, y, t) = α1, ϕ(L1, y, t) = α2,

ϕ(x, 0, t) = β1, ϕ(x, L2, t) = β2,

in which the above partial differential equation is the scalar
form of (1). Here ϕ = ϕ(x, y, t) and v = (ū, v̄) is the
advection velocity where ū andv̄ are the average velocity in
x-direction and y-direction, respectively. In this section, we
will analyze the convergence of the finite difference method
with the implicit FTCS scheme applied to (17). Discretizing
domain of the problem: (xi, yj , tn) ∈ D̃h × [0, T ]k, where
the spatial grid D̃h is defined in (5) and the time grid [0, T ]k
has points tn with n ∈ K = {0, 1, 2, ..., N}.

According to Lax’s equivalence theorem, we first show
the consistency of the method. The implicit FTCS scheme
of Eq. (17) is as follows

Lhϕ
h ≡

ϕn+1
i,j − ϕn

i,j

∆t
+ ū

ϕn+1
i+1,j − ϕn+1

i−1,j

2∆x
+ v̄

ϕn+1
i,j+1 − ϕn+1

i,j−1

2∆y

−ε

[
ϕn+1
i+1,j − 2ϕn+1

i,j + ϕn+1
i−1,j

(∆x)2
+

ϕn+1
i,j+1 − 2ϕn+1

i,j + ϕn+1
i,j−1

(∆y)2

]

+κϕn+1
i,j = qni,j .

(18)
The truncation error for (17) obtained using the method is

T.E. =

(
−∆t

2!

∂2ϕ

∂t2
− (∆t)2

3!

∂3ϕ

∂t3
− (∆t)3

4!

∂4ϕ

∂t4
− . . .

)
+ū

(
− (∆x)2

3!

∂3ϕ

∂x3
− (∆x)4

5!

∂5ϕ

∂x5
− (∆x)6

7!

∂7ϕ

∂x7
− . . .

)
+v̄

(
− (∆y)2

3!

∂3ϕ

∂y3
− (∆y)4

5!

∂5ϕ

∂y5
− (∆y)6

7!

∂7ϕ

∂y7
− . . .

)
+ε

[(
2(∆x)2

4!

∂4ϕ

∂x4
+

2(∆x)4

6!

∂6ϕ

∂x6
+

2(∆x)6

8!

∂8ϕ

∂x8
+ . . .

)
+

(
2(∆y)2

4!

∂4ϕ

∂y4
+

2(∆y)4

6!

∂6ϕ

∂y6
+

2(∆y)6

8!

∂8ϕ

∂y8
+ . . .

)]
. (19)

In other words, from (19), we have

T.E. = O
(
(∆t), (∆x)2, (∆y)2

)
.

Taking (∆t,∆x,∆y) → 0, then we have

lim
(∆t,∆x,∆y)→0

∥T.E.∥

= lim
(∆t,∆x,∆y)→0

∥O
(
(∆t), (∆x)2, (∆y)2

)
∥

= 0

Secondly, we will demonstrate the stability of the finite
difference method with the implicit FTCS scheme used to
numerically solve (17). In consequence, the convergence of
the proposed method will be obtained. In order to illustrate
stability of the method, we initially show that condition
(16) holds for the homogeneous equation of (17) and then
condition (14) is satisfied for the nonhomogeneous equation
(17). For convenience, we set τ = ∆t, h = ∆x = ∆y.

Case I: Homogeneous equation
Setting qni,j = 0 in equation (18), scheme (18) becomes
the discretized homogeneous version of (17). Assuming a
discretized solution of the resulting equation as ϕni,j =

λneI(αi+βj), I =
√
−1, then the resulting homogeneous

equation turns out to be

λn+1eI(αi+βj) − λneI(αi+βj)

τ

+ ū
λn+1eI(α(i+1)+βj) − λn+1eI(α(i−1)+βj)

2h

+ v̄
λn+1eI(αi+β(j+1)) − λn+1eI(αi+β(j−1))

2h

− ε

[
λn+1eI(α(i+1)+βj) − 2λn+1eI(αi+βj)

h2

+
λn+1eI(α(i−1)+βj) + λn+1eI(αi+β(j+1))

h2

+
−2λn+1eI(αi+βj) + λn+1eI(αi+β(j−1))

h2

]
+ κλn+1eI(αi+βj) = 0.

Algebraically manipulating the above equation, we have

λneI(αi+βj)

[
λ− 1

τ

]
− λn+1eI(αi+βj)

[
−ū e

Iα − e−Iα

2h

− v̄
eIβ − e−Iβ

2h
+ ε

eIα−2 + e−Iα

h2

+ ε
eIβ − 2 + e−Iβ

h2
− κ

]
= 0,[

λ− 1

τ

]
− λ

h

[
−ūI sinα− v̄I sinβ − 4ε

h
sin2

α

2

−4ε

h
sin2

β

2
− κh

]
= 0,

[λ− 1] +
λτ

h

[
ūI sinα+ v̄I sinβ +

4ε

h
sin2

α

2

+
4ε

h
sin2

β

2
+ κh

]
= 0,

λ

(
1 +

τ

h

[
ūI sinα+ v̄I sinβ +

4ε

h
sin2

α

2

+
4ε

h
sin2

β

2
+ κh

])
− 1 = 0,

λ=
1

1+ τ
h

[
4ε
h

(
sin2 α

2 +sin2 β
2

)
+I (ū sinα+v̄ sinβ)+κh

],
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Letting γ = 4ετ
h2 and η = τ

h , we then obtain,

λ =
1

1+γ
(
sin2 α

2 + sin2 β
2

)
+ηI (ū sinα+ v̄ sinβ)+κτ

.

Consequently, the magnitude of λ is

|λ| = 1√[
1+γ

(
sin2 α

2
+ sin2 β

2

)
+κτ

]2
+[η (ū sinα+ v̄ sinβ)]2

,

≤ 1.

Therefore, the Von Neumann stability for the scheme, which
is here independent of τ and h is obtained.

Case II: Nonhomogeneous equation
To show the sufficient condition for stability of the scheme.
For sufficient condition q(x, y, t) ̸= 0 we have to solve linear
system of equation to find ϕn+1

i,j by known ϕni,j

Lhϕ
h=

ϕn+1
i,j − ϕni,j

τ
+ū

ϕn+1
i+1,j − ϕn+1

i−1,j

2h
+v̄

ϕn+1
i,j+1 − ϕn+1

i,j−1

2h

−ε

[
ϕn+1
i+1,j − 2ϕn+1

i,j + ϕn+1
i−1,j

h2
+
ϕn+1
i,j+1 − 2ϕn+1

i,j + ϕn+1
i,j−1

h2

]

+ κϕn+1
i,j = qni,j (20)

boundary conditions: ϕn0,j = α1, ϕ
n
N1,j = α2

; j = 0, 1, ..., N2

ϕni,0 = β1, ϕ
n
i,N2

= β2

; i = 0, 1, ..., N1. (21)

Rearrange, we get

aϕn+1
i−1,j+bϕ

n+1
i,j−1+cϕ

n+1
i,j +dϕn+1

i+1,j+eϕ
n+1
i,j+1 = φn

i,j , (22)

where

a=
( ūτ
2h

+
ετ

h2

)
, b=

( v̄τ
2h

+
ετ

h2

)
, c=

(
−1− 4ετ

h2
−κτ

)
,

d=
(
− ūτ
2h

+
ετ

h2

)
, e=

(
− v̄τ
2h

+
ετ

h2

)
, φn

i,j=−ϕni,j−τqni,j .

The coefficients a, b, c, d, e satisfy the condition

a > 0, b > 0, d > 0, e > 0,

|c| > a+ b+ d+ e+ δ, δ > 0. (23)

Lemma 3.1: If the coefficients of eq.(22) satisfy condition
eq.(23) then solution of eq.(22) exist and unique and satisfy
the inequality

|ϕn+1
i,j | ≤ max

{
|α1|, |α2|, |β1|, |β2|,

1

δ
max
r,s

|φn
r,s|
}

(24)

Proof: First, we proof inequality (24). Assume that |ϕn+1
r,s | =

max{|ϕn+1
i,j |, i = 0, 1, ..., N1, j = 0, 1, ..., N2}.

Let 0 < r < N1, 0 < s < N2, then

|c||ϕn+1
r,s | = | − aϕn+1

r−1,s − bϕn+1
r,s−1 − dϕn+1

r+1,s

−eϕn+1
r,s+1 + φn

r,s|
≤ |aϕn+1

r−1,s|+ |bϕn+1
r,s−1|+ |dϕn+1

r+1,s|
+|eϕn+1

r,s+1|+ |φn
r,s|

= |a||ϕn+1
r−1,s|+ |b||ϕn+1

r,s−1|+ |d||ϕn+1
r+1,s|

+|e||ϕn+1
r,s+1|+ |φn

r,s|
≤ (|a|+ |b|+ |d|+ |e|)|ϕn+1

r,s |+ |φn
r,s|

|ϕn+1
r,s | ≤

|φn
r,s|

|c| − |a| − |b| − |d| − |e|

≤
|φn

r,s|
δ

This complete the proof. �
Now we will prove the stability of the implicit FTCS

scheme by showing that inequality (13) is satisfied. Let
i∗ and j∗ be the smallest non-negative integers such that
(i∗, j∗) ∈ J and

|ϕn+1
i∗,j∗ | = max

(i, j) ∈ J
|ϕn+1

i,j |, (25)

where J = {(i, j) | i = 0, 1, 2, ..., N1, j = 0, 1, 2, ..., N2}.
Denote Ī = {(i, j) ∈ J | i = 0, N1} ∪ {(i, j) ∈ J | i ̸=
0, N1 and j = 0, N2}, i.e., Ī is the discretized boundary
set of J . It is obvious that if (i∗, j∗) ∈ Ī, then we have

max
(i, j) ∈ J

|ϕn+1
i,j | ≤ max{|α1|, |α2|, |β1|, |β2|}. (26)

If (i∗, j∗) ∈ I = J − Ī, then replacing (i, j) in (20) with
(i∗, j∗) we obtain( ūτ

2h
+
ετ

h2

)
ϕn+1
i∗−1,j∗ +

( v̄τ
2h

+
ετ

h2

)
ϕn+1
i∗,j∗−1

−
(
1 +

4ετ

h2
+ κτ

)
ϕn+1
i∗,j∗ −

( ūτ
2h

− ετ

h2

)
ϕn+1
i∗+1,j∗

−
( v̄τ
2h

− ετ

h2

)
ϕn+1
i∗,j∗+1 = −ϕni∗,j∗ − τqni∗,j∗ .

(27)

Next we announce the following hypothesis:

(H1) :
ū
[
ϕn+1
i∗−1,j∗ − ϕn+1

i∗+1,j∗

]
≤ 0,

v̄
[
ϕn+1
i∗,j∗−1 − ϕn+1

i∗,j∗+1

]
≤ 0.

(28)

Without loss of generality we assume that ϕn+1
i∗,j∗ > 0

and further assume that the hypothesis (H1) holds. We can
estimate the left side of (27) as
ετ

h2
[
ϕn+1
i∗−1,j∗ − ϕn+1

i∗,j∗

]
+
ετ

h2
[
ϕn+1
i∗,j∗−1 − ϕn+1

i∗,j∗

]
+
ετ

h2
[
ϕn+1
i∗+1,j∗ − ϕn+1

i∗,j∗

]
+
ετ

h2
[
ϕn+1
i∗,j∗+1 − ϕn+1

i∗,j∗

]
+
τ ū

2h

[
ϕn+1
i∗−1,j∗ − ϕn+1

i∗+1,j∗

]
+
τ v̄

2h

[
ϕn+1
i∗,j∗−1 − ϕn+1

i∗,j∗+1

]
− ϕn+1

i∗,j∗ − κτϕn+1
i∗,j∗

≤ −ϕn+1
i∗,j∗ . (29)

We then obtain

ϕn+1
i∗,j∗ ≤ ϕni∗,j∗ + τqni∗,j∗ , (30)

and we consequently have,

max
(i, j) ∈ J

|ϕn+1
i,j | ≤ max

(i, j) ∈ J
|ϕni,j + τqni,j |

≤ max
(i, j) ∈ J

|ϕni,j |+ τ max
(i, j) ∈ J
n ∈ K

|qni,j |, (31)
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where K = {0, 1, 2, ..., N}. We now establish the following
inequality representing the maximum principle as

max
(i, j) ∈ J

|ϕn+1
i,j | ≤max

{
|α1|, |α2|, |β1|, |β2|, max

(i, j) ∈ J
|ϕni,j |

+ τ max
(i, j) ∈ J
n ∈ K

|qni,j |

}
. (32)

Separating the discretized solution ϕh of (18) into

ϕh = vh + wh, (33)

where vh and wh satisfy the equations

Lhv
h =



0
ψ0(xi, yj)

α1

α2

β1
β2

, Lhw
h =



q(xi, yj , tn)
0
0
0
0
0

, (34)

we use (32) to find a bound of each problem in (34) as
follows. Firstly applying (32) to the first problem of (34),
we have

max
(i, j) ∈ J

|vn+1
i,j | ≤ max

{
|α1|, |α2|, |β1|, |β2|, max

(i, j) ∈ J
|vni,j |

}
(35)

for n = 0, 1, 2, ..., N − 1. Relabelling the superscript indices
of vh in (35), we have the following inequalities:

max
(i, j) ∈ J

|vni,j | ≤max

{
|α1|, |α2|, |β1|, |β2|, max

(i, j) ∈ J
|vn−1

i,j |
}

max
(i, j) ∈ J

|vn−1
i,j | ≤max

{
|α1|, |α2|, |β1|, |β2|, max

(i, j) ∈ J
|vn−2

i,j |
}

...

max
(i, j) ∈ J

|v1i,j | ≤max

{
|α1|, |α2|, |β1|, |β2|, max

(i, j) ∈ J
|ψ0

i,j |
}
.

Therefore, we obtain

max
(i, j) ∈ J

|vn+1
i,j | ≤ max

{
|α1|, |α2|, |β1|, |β2|, max

(i, j) ∈ J
|ψ0

i,j |
}
.

(36)
Secondly applying (32) n times to the last problem of (34),
we obtain

max
(i, j) ∈ J

|wn+1
i,j | ≤ max

(i, j) ∈ J
|wn

i,j |+ τ max
(i, j) ∈ J
n ∈ K

|qni,j |

≤ max
(i, j) ∈ J

|wn−1
i,j |+ 2τ max

(i, j) ∈ J
n ∈ K

|qni,j |

...
≤ max

(i, j) ∈ J
|w0

i,j |+ (n+ 1)τ max
(i, j) ∈ J
n ∈ K

|qni,j |

≤ (N + 1)τ max
(i, j) ∈ J
n ∈ K

|qni,j |

≤ 2T max
(i, j) ∈ J
n ∈ K

|qni,j |.

Thus, we have that

max
(i, j) ∈ J

|wn+1
i,j | ≤ 2T max

(i, j) ∈ J
n ∈ K

|qni,j |. (37)

Using both inequalities (36) and (37), we finally obtain

max
(i, j) ∈ J

|ϕn+1
i,j | = max

(i, j) ∈ J
|vn+1

i,j + wn+1
i,j |

≤ max
(i, j) ∈ J

|vn+1
i,j |+ max

(i, j) ∈ J
|wn+1

i,j |

≤max

{
|α1|, |α2|, |β1|, |β2|, max

(i, j) ∈ J
|ψ0

i,j |
}

+ 2T max
(i, j) ∈ J
n ∈ K

|qni,j |.

≤ ∥fh∥Hh
+ 2T∥fh∥Hh

= C∥fh∥Hh
, (38)

where C = (1 + 2T ). The above inequality is true for any
n, we hence have that

∥ϕh∥Ωh
≤ C∥fh∥Hh

, (39)

where

∥ϕh∥Ωh
= max

i, j ∈ J
n ∈ K

|ϕni,j |

∥fh∥Hh
= max

|α1|, |α2|, |β1|, |β2|, max
(i, j) ∈ J
n ∈ K

|qni,j |

 .

(40)

IV. VALIDATION

To validate the present numerical scheme, the one-
dimensional advection-diffusion equation [26]–[28]

∂C

∂t
+ ū

∂C

∂x
−Df

∂2C

∂x2
= 0, 0 ≤ x ≤ 1, 0 < t ≤ 1

(41)

is used as the test case. Eq. (41) can be utilized to measure
the pollutant concentration C(x, t) in a flow stream. The
variable and parameters in (41) are described as follows: x is
the longitudinal distance along the stream, t is time, C(x, t)
is the concentration (kg/m3) averaged in depth at the point x
and at time t, ū is the water flow velocity in the x-direction,
and Df is the dispersion coefficient. It is found from [26]–
[28] that if ū = 1 and Df = 0.01 then the analytical solution
of (41) is

C(x, t) =
0.025√

0.000625 + 0.02t
exp

[
− (x+ 0.5− t)2

(0.00125 + 0.04t)

]
,

(42)

provided that the initial condition is

C(x, 0) = e−800(x+0.5)2 , 0 < x < 1, (43)

and the boundary conditions are

C(0, t) =
0.025√

0.000625 + 0.02t
exp

[
− (0.5− t)2

(0.00125 + 0.04t)

]
,

0 < t < 1,
(44)

C(1, t) =
0.025√

0.000625 + 0.02t
exp

[
− (1.5− t)2

(0.00125 + 0.04t)

]
,

0 < t < 1.
(45)

The 3D graph of the analytical solution (42) of the initial-
boundary value problem consisting of (41) and (43)-(45) is
plotted on the domain as shown in Fig. 1.
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Fig. 1. The 3D graph of the analytical solution C(x, t) of the initial-
boundary value problem consisting of (41) and (43)-(45).

The implicit FTCS scheme applied to the above prob-
lem for obtaining the approximated pollutant concentration
C(x, t) is given as

ϕn+1
i,j − ϕni,j

∆t
+ ū

ϕn+1
i+1,j − ϕn+1

i−1,j

2∆x

−Df

(
ϕn+1
i+1,j − 2ϕn+1

i,j + ϕn+1
i−1,j

∆x2

)
= 0. (46)

Substituting ∆x = 0.0250,∆t = 0.0020 and the conditions
(43)-(45) into the above scheme, we obtain the numerical
water pollutant concentration C(x, t) on the discretized do-
main as demonstrated in Fig. 2. Two comparisons between
the analytical and numerical pollutant concentrations are
investigated by fixing t = 1 and x = 0.5. Firstly, the
analytical and numerical solutions of the problem when t = 1
and 0 ≤ x ≤ 1 are depicted in Fig. 3. It is noticed that
the maximum values of the water pollutant concentration
obtained by the analytical and numerical solutions occur
at x ≈ 0.5. In addition, the scheme numerically gives the
maximum absolute error of 5.3×10−3 when compared with
the analytical solution at x ≈ 0.5. Secondly, Fig. 4 show
the comparison between analytical and numerical pollutant
concentrations of the test problem when x is fixed at x = 0.5
and 0 ≤ t ≤ 1. We can observe that both solutions provide
the maximum values of the water pollutant concentration
at the final time t = 1. The maximum absolute error
obtained using the method for this problem is approximately
5.7×10−3 when compared with the analytical solution on the
discretized grid. Therefore, the proposed scheme is appropri-
ate and trustworthy for computing numerical solutions of the
real-world problem because it is a straightforward method
and not difficult to write computer-codes.

V. NUMERICAL RESULTS

Applications of the ADRE to construct a governing
equation for water pollution problems have been found
in [28]–[33]. In this section, we will use the implicit FTCS
scheme to numerically solve the water pollution problem
which can be formulated using the ADRE. The considering
problem consists of a two-dimensional advection-diffusion-
reaction equation, initial and boundary conditions. The two-
dimensional ADRE representing the model dispersion of a
water pollutant with non-removal and removal mechanism is
expressed as [33]:

Fig. 2. The 3D graph of the numerical solution C(x, t) of the initial-
boundary value problem consisting of (41) and (43)-(45) using the implicit
FTCS scheme with ∆x = 0.0250,∆t = 0.0020.

Fig. 3. Comparison between the analytical solution and numerical solution
(∆x = 0.0250,∆t = 0.0020) for the test problem using t = 1 and
0 ≤ x ≤ 1.

Fig. 4. Comparison between the analytical solution and numerical solution
(∆x = 0.0250,∆t = 0.0020) for the test problem using x = 0.5 and
0 ≤ t ≤ 1.

∂C

∂t
+ ū

∂C

∂x
+ v̄

∂C

∂y
−Df

(
∂2C

∂x2
+

∂2C

∂y2

)
+RC = Q(x, y, t),

(47)

where C(x, y, t) is the water pollutant concentration aver-
aged in depth at the point x = (x, y) at time t (kg/m3), ū and
v̄ are velocity components (m/s) in x− and y−directions,
respectively, Df is the pollutant dispersion coefficient (m2/s),
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R ≥ 0 is the decay rate of water pollutant (s−1), and
Q(x, y, t) is a decreasing rate of water pollutant concentra-
tion due to a water pollutant sink (kg/m3s). The initial pol-
lutant concentration in reservoir is C(x, y, 0) = c0 (kg/m3).
Since we want to study effects of the number of the entrance
gates on C(x, y, t), then we supply one and two entrance
gates as our boundary conditions. The water pollutant is
released from the open entrance gate into the reservoir, which
is the averaged pollutant concentration along the entrance
gate defined by c1 (kg/m3), where c1 is a positive constant.
The reservoir has drained water through the exit gate by
assuming rate of water drain as ∂C/∂x = −c2 (kg/m3),
where c2 is a non-negative constant. There is no rate of
change of pollutant concentration at the boundary of the
opened reservoir, ∂C/∂n = 0, where n is a normal vector.
The opened reservoirs equipped with the above initial and
boundary conditions for one and two entrance gates are
described by the diagrams in Fig. 5 and Fig. 6, respectively.
Here our numerical experiments are calculated using three
types of the decreasing rate of water pollutant concentration
Q(x, y, t) as follows:

(a) Q(x, y, t) = 0,
(b) Q(x, y, t) = −0.01,
(c) Q(x, y, t) = −e−t,

and the following parameter values [33]: the approximate
velocity in x-direction is ū = −0.002461 and y-direction
is v̄ = 0.04527 and the decaying rate R = 0.1 × 10−6.
Also the following fixed initial and boundary conditions [33]
c0 = 1.5, c1 = 10, c2 = 0.001 are used in our simulations.
However, the pollutant dispersion coefficient Df is chosen
as Df = 50, 100, 150, 200 in our experiments. Defining the
domain for (47) as 0m ≤ x, y ≤ 2000m and 0 s ≤ t ≤ 100 s
and the spatial step size ∆x = ∆y = 31.25m and the time
step size ∆t = 1 s, the proposed scheme provides numerical
solutions of the problems depending upon the number of the
entrance gates as follows.

Fig. 5. The initial and boundary conditions of water pollutant dispersion
model in the opened reservoir for one entrance gate.

A. Numerical solutions for one entrance gate reservoir

As mentioned, numerical simulations for this case are
computed using three different cases of Q(x, y, t), the initial
condition and the boundary conditions as shown in Fig. 5.
In each case, the coefficient Df = 50, 100, 150, 200 are
varied to perform the simulations. We consequently have the
following results in which all of the graphs are plotted at the
final time t = 100 s.

Fig. 6. The initial and boundary conditions of water pollutant dispersion
model in the opened reservoir for two entrance gates.

(a) Q(x, y, t) = 0: The distributions of pollutant concen-
tration C(x, y, t) and their contours are depicted in Fig. 7
(a)-(d) and Fig. 8 (a)-(d), respectively when the coefficient
Df is varied as Df = 50, 100, 150, 200. We can observe
from these figures that the minimum value of C(x, y, t) is
about 1.5 (kg/m3) and it decreases to 1.46, 1.41, 1.39, 1.38
nearby the exit gate, respectively.

(b) Q(x, y, t) = −0.01: The distributions of pollutant con-
centration C(x, y, t) and their contours are plotted in Fig. 9
(a)-(d) and Fig. 10 (a)-(d), respectively when the coefficient
Df is changed as Df = 50, 100, 150, 200. It is noticed
from these figures that the minimum value of C(x, y, t) is
about 0.5 (kg/m3) and it is decreased as 0.44, 0.41, 0.39, 0.38
(kg/m3) nearby the exit gate, respectively.

(c) Q(x, y, t) = −e−t: We have the distributions of pollu-
tant concentration C(x, y, t) and their contours as shown in
Fig. 11 (a)-(d) and Fig. 12 (a)-(d), respectively when Df =
50, 100, 150, 200. The minimum value of C(x, y, t) is about
0.92 (kg/m3) and it is decreased 0.854, 0.852, 0.81, 0.79
when close to the exit gate, respectively.

In addition, we attempt to observe the behaviors of the
pollutant concentration at y = 1000, i.e., C(x, 1000, t)
for 0m ≤ x ≤ 2000m and 0 s ≤ t ≤ 100 s. The
distribution graphs of C(x, 1000, t) when Df fixed at 50
for Q(x, y, t) = 0,−0.01 and −e−t are shown in Fig. 13
(a)-(c), respectively. While the graphs of C(x, 1000, t) when
Df = 200 for Q(x, y, t) = 0,−0.01 and −e−t are shown in
Fig. 14 (a)-(c), respectively. We can see that C(x, 1000, t)
rapidly decreases as x and t initially increase and then
the values C(x, 1000, t) slightly change when x and t are
sufficiently large. Furthermore, in case of Df = 50, the
values of C(2000, 1000, 100) for Q(x, y, t) = 0,−0.01 and
−e−t are 1.405, 0.405, 0.823, respectively. For Df = 200,
the values of C(2000, 1000, 100) for Q(x, y, t) = 0,−0.01
and −e−t are 1.345, 0.345, 0.763, respectively. In particular,
the pollutant concentration at y = 1000 when x nearby the
entrance gate are plotted in Figs. 15-18 as follows. The 2D
graphs of C(125, 1000, t) for Df = 50 and Df = 200
are depicted in Fig. 15 and Fig. 17, respectively. It can be
observed from these figures that the higher value of Df

results the higher value of C(125, 1000, t) as t increases.
Moreover, the higher value of Df makes the x-intersection
between the curves C(125, 1000, t) for Q(x, y, t) = −0.01
and Q(x, y, t) = −e−t shorter. Furthermore, the 2D graphs
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of C(250, 1000, t) for Df = 50 and Df = 200 are portrayed
in Fig. 16 and Fig. 18, respectively. The behaviors of these
graphs are similar to Fig. 15 and Fig. 17. From all numerical
results as described above, we can observe that the value
of Df slightly affects on C(x, y, t), in other words, higher
value of Df makes the values of C(x, y, t) a bit lower.

B. Numerical solutions for two entrance gates reservoir

The functions Q(x, y, t), the initial condition, the bound-
ary conditions and the pollutant dispersion coefficient Df

used for the previous case will be also utilized to obtain
numerical simulations for the case of two entrance gates
reservoir. The diagram of the reservoir for this case is drawn
in Fig. 6. The numerical results for t = 100 s obtained using
the the proposed scheme with the conditions and parameters
as mentioned above are as follows.

(a) Q(x, y, t) = 0: The distributions of pollutant concen-
tration C(x, y, t) and their contours are depicted in Fig. 19
(a)-(d) and Fig. 20 (a)-(d), respectively when the coefficient
Df is varied as Df = 50, 100, 150, 200. Since the two
entrance gates are symmetric, then the numerical results are
symmetrically similar about y = 1000 m. We can observe
from these figures that the minimum value of C(x, y, t) is
around 1.5 (kg/m3) and it decreases to 1.44, 1.41, 1.39, 1.38
(kg/m3) close to the exit gate, respectively.

(b) Q(x, y, t) = −0.01: The distributions of pollutant
concentration C(x, y, t)are plotted in Fig. 21 (a)-(d) when
the coefficient Df is changed as Df = 50, 100, 150, 200,
respectively. In addition, their contours are shown Fig. 22
(a)-(d). Because there are two entrance gates which are
symmetric about y = 1000 m, then the numerical results
around both gates are symmetrically similar. From these
figures, the minimum value of C(x, y, t) is about 0.5 (kg/m3)
and it is decreased to 0.44, 0.41, 0.39, 0.38 nearby the exit
gate, respectively.

(c) Q(x, y, t) = −e−t: We have the distributions of
pollutant concentration C(x, y, t) in Fig. 23 (a)-(d) when
Df = 50, 100, 150, 200, respectively. The contours of
C(x, y, t) as shown Fig. 24 (a)-(d). The minimum value
of C(x, y, t) is about 0.92 (kg/m3) and it is decreased to
0.85, 0.83, 0.81, 0.79 when close to the exit gate, respec-
tively. The symmetrical results of C(x, y, t) occur about in
the middle of y-axis.

From the contour plots in Figs. 20 (a)-(d), 22 (a)-(d) and 24
(a)-(d), we can observe that as the coefficient Df is higher,
the contours are more symmetric about y = 1000 m. For the
case of two entrance gates, the numerical solutions for the
first half part of y-axis are closely similar to the obtained
results for the other half part.

Furthermore, we attempt to observe the behaviors of the
pollutant concentration at y = 500 m and y = 1000 m
for 0m ≤ x ≤ 2000m and 0 s ≤ t ≤ 100 s when Df

fixed only at 200. The distribution graphs of C(x, 500, t) and
C(x, 1000, t) for Q(x, y, t) = 0,−0.01 and −e−t are shown
in Fig. 25 (a)-(c) and Fig. 26 (a)-(c), respectively. We can
see that C(x, 500, t) sharply decreases as x and t initially
increase and then the values C(x, 500, t) slightly change
when x and t are adequately large. However, the behavior of
C(x, 1000, t) is different from the previous one. As a result,
rapid reduction of C(x, 1000, t) cannot be observed as x

and t initially increase. In particular, Fig. 26 (a) shows that
there are some changes for C(x, 1000, t), i.e., decreasing,
maintaining constant, and decreasing when x moves from
0 to 2000. In Fig. 26 (b), C(x, 1000, t) behaves like a slant
plane and decreases when x and t increase. Fig. 26 (c) shows
that C(x, 1000, t) has a sharp reduction for an initial amount
of time and then its graph is quite flat as x and t increase.
Moreover, the values of C(2000, 500, 100) for Q(x, y, t) =
0,−0.01 and −e−t are 1.499, 0.499, 0.917, respectively and
the values of C(2000, 1000, 100) for Q(x, y, t) = 0,−0.01
and −e−t are 1.345, 0.345, 0.763, respectively. Particularly,
the pollutant concentration at y = 500 and y = 1000
when x nearby the entrance gates, Q(x, y, t) = 0,−0.01
and −e−t and Df = 200 are plotted in Figs. 27-30 as
follows. The 2D graphs of C(125, 500, t) are depicted in
Fig. 27. It can be observed from these figures that the curves
of C(125, 500, t) tend to increase as t increases. The 2D
graphs of C(125, 1000, t) are plotted in Fig. 29. The curve of
C(125, 1000, t) for Q(x, y, t) = 0 seems to be quite constant
for all values of t. For Q(x, y, t) = −0.01, the graph of
C(125, 1000, t) keeps decreasing as t increases. The graph of
C(125, 1000, t) for Q(x, y, t) = −e−t rapidly decreases in
the first 5 second and then keep constantly as t increases. The
2D graphs of C(250, 500, t) and C(250, 1000, t) with Df =
200 are also portrayed in Fig. 28 and Fig. 30, respectively.
The behaviors of these graphs are similar to Fig. 27 and
Fig. 29. From all numerical results, it can be concluded that
at y = 500 m the behaviors of C(x, 500, t) are similar for
all Q(x, y, t) but the behaviors of C(x, 1000, t) are different
at y = 1000 m depending on Q(x, y, t).

VI. CONCLUSION

The convergence of finite difference method with the
implicit forward time central space (FTCS) scheme applied
to the 2-D advection-diffusion-reaction equation (ADRE)
with the average velocity in x- and y-directions have been
investigated via its consistency and stability. In other words,
the truncation error from the scheme approaches zero when
the grid sizes tend to zero. The scheme is unconditional
stable when applied to the homogeneous ADRE and the
criteria (14) is satisfied for the nonhomogeneous problem
by establishing some conditions. In addition, the scheme has
been applied to numerically solve the real problem of the
ADRE which is the water pollution problem in the reservoir
with one and two entrance gates. The decreasing rate of
water pollutant concentration due to a water pollutant sink
denoted by Q(x, y, t) and the pollutant dispersion coefficient
Df are the parameters varied in the numerical simulations.
In average, the water pollutant concentration C(x, y, t) for
Q = −0.01 and Q = −e−t is less than its concentration
for Q = 0. In consequence, the water quality for the case
Q ̸= 0 is better than the quality of the case Q = 0. The
value of C(x, y, t) is quite high when close to the entrance
gates but rapidly decreases when far away from the entrance
gates. The numerical results have shown that the pollutant
concentration in water can be distributed more when the
dispersion coefficient (Df ) is higher.
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(a)

(b)

(c)

(d)

Fig. 7. The 3D graphs of the approximated pollutant concentrations for
one entrance gate when Q = 0 and (a) Df = 50, (b) Df = 100, (c)
Df = 150 and (d) Df = 200.

(a)

(b)

(c)

(d)

Fig. 8. The contour plots for one entrance gate case when Q = 0 and (a)
Df = 50, (b) Df = 100, (c) Df = 150 and (d) Df = 200.
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(a)

(b)

(c)

(d)

Fig. 9. The 3D graph of the approximated pollutant concentrations for one
entrance gate case when Q = −0.01 and (a) Df = 50, (b) Df = 100, (c)
Df = 150 and (d) Df = 200.

(a)

(b)

(c)

(d)

Fig. 10. The contour plots for one entrance gate case when Q = −0.01
and (a) Df = 50, (b) Df = 100, (c) Df = 150 and (d) Df = 200.
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(a)

(b)

(c)

(d)

Fig. 11. The 3D graph of the approximated pollutant concentrations for
one entrance gate case when Q = −e−t and (a) Df = 50, (b) Df = 100,
(c) Df = 150 and (d) Df = 200.

(a)

(b)

(c)

(d)

Fig. 12. The contour plots for one entrance gate case when Q = −e−t

and (a) Df = 50, (b) Df = 100, (c) Df = 150 and (d) Df = 200.
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(a)

(b)

(c)

Fig. 13. The 3D graph of the approximated pollutant concentrations for
one entrance gate case when Df = 50, y = 1000 m and (a) Q = 0, (b)
Q = −0.01 and (c) Q = −e−t.

(a)

(b)

(c)

Fig. 14. The 3D graph of the approximated pollutant concentrations for
one entrance gate case when Df = 200, y = 1000 m and (a) Q = 0, (b)
Q = −0.01 and (c) Q = −e−t.
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Fig. 15. Comparison of the pollutant concentrations for one entrance gate
case when Df = 50, x = 125, and y = 1000 m with Q = 0, Q = −0.01
and Q = −e−t.

Fig. 16. Comparison of the pollutant concentrations for one entrance gate
case when Df = 50, x = 250, and y = 1000 m with Q = 0, Q = −0.01
and Q = −e−t.

Fig. 17. Comparison of the pollutant concentrations for one entrance gate
case when Df = 200, x = 125, and y = 1000 m with Q = 0, Q = −0.01
and Q = −e−t.

Fig. 18. Comparison of the pollutant concentrations for one entrance gate
case when Df = 200, x = 250, and y = 1000 m with Q = 0, Q = −0.01
and Q = −e−t.
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(a)

(b)

(c)

(d)

Fig. 19. The 3D graph of the approximated pollutant concentrations for
two entrance gates case when Q = 0 and (a) Df = 50, (b) Df = 100,
(c) Df = 150 and (d) Df = 200.

(a)

(b)

(c)

(d)

Fig. 20. The contour plots for two entrance gates case when Q = 0 and
(a) Df = 50, (b) Df = 100, (c) Df = 150 and (d) Df = 200.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_05

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



(a)

(b)

(c)

(d)

Fig. 21. The 3D graph of the approximated pollutant concentrations for two
entrance gates case when Q = −0.01 and (a) Df = 50, (b) Df = 100,
(c) Df = 150 and (d) Df = 200.

(a)

(b)

(c)

(d)

Fig. 22. The contour plots for two entrance gates case when Q = −0.01
and (a) Df = 50, (b) Df = 100, (c) Df = 150 and (d) Df = 200.
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(a)

(b)

(c)

(d)

Fig. 23. The 3D graph of the approximated pollutant concentrations for
two entrance gates case when Q = −e−t and (a) Df = 50, (b) Df = 100,
(c) Df = 150 and (d) Df = 200.

(a)

(b)

(c)

(d)

Fig. 24. The contour plots for two entrance gates case when Q = −e−t

and (a) Df = 50, (b) Df = 100, (c) Df = 150 and (d) Df = 200.
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(a)

(b)

(c)

Fig. 25. The 3D graph of the approximated pollutant concentrations for
two entrance gates case when y = 500 m and (a) Q = 0, (b) Q = −0.01
and (c) Q = −e−t.

(a)

(b)

(c)

Fig. 26. The 3D graph of the approximated pollutant concentrations for
two entrance gates case when y = 1000 m and (a) Q = 0, (b) Q = −0.01
and (c) Q = −e−t.
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Fig. 27. Comparison of the pollutant concentrations for two entrance gates
case when Df = 200, x = 125, and y = 500 m with Q = 0, Q = −0.01
and Q = −e−t.

Fig. 28. Comparison of the pollutant concentrations for two entrance gates
case when Df = 200, x = 250, and y = 500 m with Q = 0, Q = −0.01
and Q = −e−t.

Fig. 29. Comparison of the pollutant concentrations for two entrance gates
case when Df = 200, x = 125, and y = 1000 m with Q = 0, Q = −0.01
and Q = −e−t.

Fig. 30. Comparison of the pollutant concentrations for two entrance gates
case when Df = 200, x = 250, and y = 1000 m with Q = 0, Q = −0.01
and Q = −e−t.
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