
Accelerating Type Confusion Detection with
Pointer Analysis

Xiaokang Fan, Zeyu Xia, Sifan Long, Chun Huang, and Canqun Yang

Abstract—C++ is widely used in performance critical ap-
plications. Due to the lack of type safety, programs written
in C++ are vulnerable to memory corruption errors. Type
confusion bug is an emerging attack vector. Several type
confusion detection tools have been proposed to detect unsafe
cast instructions. However, these tools suffer from the problem
of high runtime overhead. The perfromance problem has
prevented the deployment of type confusion detection tools into
production software.

This paper proposes a new method to mitigate the per-
formance problem. The novelty of this paper is that we use
pointer analysis to identify redundant instrumentations. By
removing the identified redundant instrumentations, we can
significantly reduce the runtime overhead incurred by type
confusion detection tools. We have applied our pointer analysis
to Typesan - an-open source type confusion detection tool.
Statically, 68.67% of instrumentations for tracing types of
objects and 57.84% of instrumentations for verifying downcast
instructions can be removed on average. Dynamically, the
average (maximum) runtime overhead can be reduced from
40.10% (89.71%) to 12.22% (24.90%).

Index Terms—C++, type confusion, pointer analysis

I. INTRODUCTION

C++ has been widely used in large software systems
due to its abstraction and high performance. For example,
major web browsers like Chrome and Firefox, and language
runtimes like Oracle’s Java Virtual machine are mainly
implemented in C++.

Type casting, which allows a program to convert objects
from one pointer type to another, is a very important feature
to achieve polymorphism. C++ offers both static cast and
dynamic cast. A static cast is done at compile time.
The compiler is responsible for checking whether the cast
is valid. While a dynamic cast is done at runtime. The
validity of the cast is verified at runtime using RTTI (Run-
time Type Information), which incurs expensive runtime
overhead (e.g., 90 times slower than a static cast) [1].
Thus, dynamic cast is prohibited in performance critical
applications like Chrome, Firefox.

Without verification, a static cast may lead to serious
errors that compromise the program. For instance, a program
may cast a base object into a derived object. If the derived
class lacks some data field, a following field access will lead
to a memory corruption or memory leak. If the derived class
lacks some virtual functions, a following virtual function call
will lead to some unwanted functions called, which may
result in a control flow attack. Figure 1(lines 4-6) shows
an example of memory corruption caused by an unsafe

Manuscript received January 12, 2020; revised August 11, 2020.
X. Fan, Z. Xia, S. Long, C. Huang, and C. Yang are with the

School of Computer, National University of Defense Technology, Chang-
sha, 410073, Hunan, P.R.China. Email: fanxiaokang@nudt.edu.cn, xzyschu-
macher@hotmail.com, 164712110@csu.edu.cn chunhuang@nudt.edu.cn,
canqun@nudt.edu.cn,

1: class Base { public: double f1; }
2: class Derived: public Base { public: double f2; }
3:
4: Base *b1 = new Base;
+: type(*b1) = Base;
+: assert(type(*b1)<:Derived) 7
5: Derived *d1 = static_cast<Derived*>(b1);
6: d1->f2 ...; //memory corruption
7:
8: Base *b2 = new Derived;
+: type(*b2) = Derived;
+: assert(type(*b2)<:Derived) 3
9: Derived *d2 = static_cast<Derived*>(b2);
10: d2->f2 ...; //benign memory access

Fig. 1. An example showing how Typesan [2] detects an unsafe downcast
instruction (line 5) and prevents a memory corruption (line 6). However,
it introduces a redundant check before a benign downcast instruction
(line 9), which will cause redundant runtime overhead. “+” represents
instrumentations of Typesan. “<:” represents a subclass relation.

downcast. Pointer b1 of type Base* points to an object
of type Base (line 4). Then it is casted into a pointer d1
of type Derived* (line 5). Pointer d1 is used to access a
field f2 outside the original object (line 6). Resulting in a
memory corruption.

An unsafe downcast like in the previous example is called
a type confusion or a bad type cast. Type confusions have
been exploited in bugs found in a wide range of applica-
tions [2].

Type confusion has become a new attack vector and
attracted a lot research effort [1], [2], [3]. Two types of
methods have been proposed to address this problem: (1)
methods that make use of vtable pointers embedded in C++
objects to identify the type of an object [3], and (2) methods
with the help of disjoint metadata [1], [2].

The advantage of vtable based methods is that vtable
contains the type information, so these methods avoid the
overhead of tracing the types of C++ objects. However, as
only polymorphic classes have vtables, the disadvantage is
that these methods only support polymorphic classes. So
these methods can only cover a limited number of downcast
instructions.

With the help of disjoint metadata, methods like Caver [1]
and Typesan [2] can support both polymorphic and non-
polymorphic classes. So they can cover a much larger number
of downcast instructions. Two kinds of instrumentations are
required: (1) instrumentation after the creation of every C++
object to trace its type, and (2) instrumentation before every
downcast instruction to verify whether the downcast is safe
or not.

Figure 1 (lines 4-6) shows an example of how a type
confusion bug can be detected by a disjoint metadata based
method. An object of type Base (created at line 4) is
casted into type Derived (line 5). This unsafe downcast
will cause a memory corruption when a data field (f2)
outside the original object is accessed. With the help of the

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_06

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



dealII eon

omnetpp
soplex

Xalan
Fire

fox

Average

Program

0

10

20

30

40

50

60

70

80
P

e
rc

e
n

ta
g

e
 (

%
)

Fig. 2. Percentage of traced objects by Typesan that will not be used in
any downcast instructions.

instrumentations to trace the type of the object (after line 4)
and verify the downcast (before line 5). This type confusion
bug can be detected.

Although disjoint metadata based methods can cover most
downcast instructions. The high runtime overhead has pre-
vented them from being deployed in production software. For
example, Typesan incurs nearly 100% performance overhead
on Firefox. The high runtime overhead are caused by large
number of instrumentations for all C++ objects and every
downcast instruction.

However, a large number of these instrumentations may
be redundant, as a traced object may never be used in any
downcast instructions, and a downcast instruction may never
cast a base object into a derived object. We call a downcast
instruction that will never cast a base object into a derived
object a safe downcast instruction. Otherwise, a downcast
instruction is referred as an unsafe downcast instruction.

Figure 1 (lines 8-10) shows an example of redundant
instrumentations. The downcast instruction at line 9 is safe
as the object being casted is of type Derived. So the in-
strumentations for object tracing and runtime check between
line 8 and line 9 are redundant.

Figure 2 shows the percentage of objects that will never
be used in any downcast instructions based on our pointer
analysis. As the figure shows, nearly 65% of the objects
traced by Typesan will never be used in any downcast
instructions in the program eon. Nearly 50% of objects
traced will never be used in any downcast instructions, on
average.

A precise inter-procedural pointer analysis can identify the
objects that may be pointed to by each pointer at runtime.
With the help of pointer analysis, more safe downcast in-
structions and more objects that does not need tracing can
be identified. By removing redundant instrumentations for
these safe downcast instructions and objects, type confusion
detection tools can be made deployable to production soft-
ware.

However, developing a precise inter-procedural pointer
analysis for identifying redundant instrumentations in C++
programs is quite challenging. Type information is not in-
cluded in traditional whole program pointer analyses [4], [5],
[6], [7]. Without type information for each C++ object, it
would be impossible to identify redundant instrumentations.

To overcome the above challenges, we propose a pointer
analysis for C++ programs with type information for all
C++ objects included. With the help of the type information,
we can identify safe downcast instructions, and objects that

will never be used in any unsafe downcast instructions.
Instrumentations for the above mentioned safe downcast
instructions and objects can be removed.

Contributions In summary, this paper makes the follow-
ing contributions:
• We propose a pointer analysis for C++ programs. The

type information for every C++ object can be resolved
using our pointer analysis.

• We present a prototype implementation of our pointer
analysis in LLVM-3.9.0.

• We have applied our pointer analysis to Typesan [2],
a typical type confusion detection tool. We conduct a
thorough evaluation using SPEC 2000/2006 C++ bench-
marks, and one open-source web browser: Mozilla’s
Firefox. Statically, we can remove 68.67% of instru-
mentations for tracing types of objects and 57.84% of
instrumentations for verifying downcast instructions on
average. Dynamically, the average (maximum) runtime
overhead can be reduced from 40.10% (89.71%) to
12.22% (24.90%), making type confusion detection
tools deployable to production software.

The rest of the paper is organized as follows: Section II
provides some background knowledge on type casting of
C++ and defenses against type confusion. Our threat model
is defined in Section III. Section IV describes our pointer
analysis in detail. And Section V explains how to remove
redundant instrumentations based on the results of pointer
analysis. We provide a thorough evaluation in Section VI.
Related work are discussed in Section VII and Section VIII
concludes the paper.

II. BACKGROUND

In this section, we will first briefly explain type casting
in C++ and the potential vulnerabilities caused by a type
confusion bug. Followed by defense techniques against type
confusion bugs.

A. Type Casting

C++ allows reinterpretation of memory through type cast-
ing to achieve polymorphism. An object declared of one class
type can be casted into its base class, its derived class, or even
another class outside the class hierarchy. As an example, line
5 in Figure 1 shows a cast from a base object to a derived
type.

Based on the relation between the source type and the
target type, a cast instruction can be divided into two classes:
• An upcast converts an object of a derived class into a

base class. Since an object of a derived class always
inherits all the data fields from the base class, the
resulting pointer can not access memory outside the
original object. An upcast is always safe.

• A downcast converts an object of a base class into
a derived class. As a base object may lack some of
the data fields or some virtual functions in the derived
object. This may lead to a memory leak or a memory
corruption when the resulting pointer is used to access
memory outside the original base object.

C++ offers two kinds of type casts: dynamic cast, and
static cast. dynamic cast verifies the safety of type con-
version at runtime using RTTI (Run-Time Type Information).

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_06

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



A runtime verification performed by dynamic cast incurs
expensive runtime performance overhead (e.g., over 90 times
slower that static cast) [1]. Thus, dynamic cast is prohib-
ited in performance critical applications.

static cast relies on the compiler to verify the cast at
compile time. The compiler only checks whether the source
and the target type in the cast instruction are subtype or
supertype relations.

reinterpret cast allows a programmer to explicitly break
the inheritance relation and interpret a memory block into a
different type. It is out of the scope of this paper.

Without the verification for safety of the type conversion,
static cast can become a security vulnerability that could
be exploited by attackers. Example exploitable vulnerabilities
include Adobe Flash (CVE-2015-3077), Microsoft Internet
Explorer (CVE-2015-6184), PHP (CVE-2016-3185), and
Google Chrome (CVE-2013-0912).

B. Defense Techniques Against Type Confusion Bugs

Several recent techniques have been proposed to address
the type confusion problem. Depending on whether disjoint
metadata is required, type confusion detection techniques can
be classified into two types: (1) methods that leverage vtable
pointers embedded in C++ objects to identify an object’s
type, and (2) methods relying on disjoint metadata to trace
the type of C++ objects.

Clang’s UBSan [3] leverages the RTTI (Run-Time Type
Information) stored in vtables to identify a C++ object’s
type. It can detect unsafe downcast instructions with the
wrong dynamic type. Without the need for disjoint metadata,
vtable based methods avoid the overhead for tracing types
of C++ objects. However, there are a few limitations for
these methods. First, as the RTTI is used to identify an
object’s type, it can not be disabled during compilation.
Second, since only polymorphic classes have vtables, unsafe
downcast instructions with non-polymorphic class objects
can not be detected.

Caver [1] and Typesan [2] are examples of disjoint meta-
data based methods. With the help of disjoint metadata,
objects of both polymorphic class and non-polymorphic class
can be traced. As a result, these methods can significantly
improve the coverage of downcast instructions. Two kinds
of instrumentations are required: (1) every C++ object al-
location site is instrumented with code to record the type
of the object, and (2) every static downcast instruction is
instrumented with an explicit runtime check to verify whether
the downcast is safe. Caver [1] is the first tool which
leverages disjoint metadata for type confusion detection. It
uses red-black trees to track objects and a direct mapping
for heap objects. Typesan [2] improves object allocation
coverage by including C-style object allocation. It also uses
a more efficient system to manage metadata. As a result, it
can improve type confusion detection coverage and reduce
runtime overhead compared with Caver. However, as every
C++ object allocation site and every downcast instruction are
instrumented, these methods suffer from the problem of high
runtime overhead, which prevents them from being deployed
into production software.

TABLE I
ANALYSIS DOMAINS.

f ∈ F Program functions
c, fld ∈ C Constants
t ∈ T Types
p, q, ret ∈ P Top-level Pointers
a, af, a.fld, a[i] ∈ A Allocation-based objects
v ∈ V = P ∪A Program variables

TABLE II
LLVM IR.

Prog ::= M PROGRAM

M ::= m MODULE

m ::= g | f(p1, . . . , pn){ inst; } GLOBAL |FUNCTION

inst ::= p = &a ADDRESSOF

p = ∗q LOAD

∗p = q STORE

p = (t) q CAST

p3 = phi(p1, p2) PHI

p = &(q→ fld) FIELD

p = &q[i] ARRAY

ret = fp(p1, . . . , pn) CALL

returnf q RETURN

III. THREAT MODEL

We follow the threat model in previous type confusion
detection works Caver [1] and TypeSan [2]. Our approach
exclusively focuses on detecting type confusion errors. Other
vulnerabilities such as integer overflow and memory safety
are out of scope and we assume that orthogonal defense
mechanisms for these vulnerabilities are deployed. The ap-
proach does not rely on information hiding, so we assume
the attackers can read arbitrary memory. However, we assume
that the attackers can not perform arbitrary writes.

IV. STATIC ANALYSIS

In this section, we will describe our pointer analysis for
analyzing C++ programs. The program representation and
LLVM IR will be first described as a basic knowledge. Then
we will explain the inference rules in detail.

A. Analysis domain and LLVM IR

We use LLVM’s partial SSA form to represent a program.
It has been adopted by a lot of previous work on pointer
analysis [4], [5], [8], as it avoids unnecessary propagation
of pointer information along the CFG and enables efficient
analysis.

a) Analysis domain: Our analysis domains are pre-
sented in Table I. Set V represents all the variables in a
program. It is made up of two subsets: the set of all top-
level pointers P and the set of all possible targets A. The
set A stands for all allocation based objects, which includes
function objects af, subobject a.fld due to field access
and subobject a[i] due to array access. Each object in A
corresponds to a memory location. Finally, F stands for all
the functions. While C and T represent constants and types
in the programs, respectively.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_06

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



[ADDRESSOF]
p = &a t = T (p)

{a} ⊆ pt(p) { t̃ } ⊆ ts(a)
[PHI]

p3 = phi(p1, p2)

pt(p1) ⊆ pt(p3) pt(p2) ⊆ pt(p3)

[LOAD]
p = ∗q a ∈ pt(q) a ∈ A

pt(a) ⊆ pt(p) [STORE]
∗p = q a ∈ pt(p) a ∈ A

pt(q) ⊆ pt(a)

[FIELD]
p = &(q→ fld) a ∈ pt(q) a ∈ A t = T (p)

{a.fld} ⊆ pt(p) { t̃ } ⊆ ts(a.fld)
[ARRAY]

p = &q[i] a ∈ pt(q) a ∈ A t = T (p)

{a[i]} ⊆ pt(p) { t̃ } ⊆ ts(a[i])

[FUNCTION]
f(p1, ..., pn) t = T (f)

{af} ⊆ pt(f) { t̃ } ⊆ ts(af)
[CALL-EDGE]

ret = fp(p1, ..., pn) f(q1, ..., qn) returnf q

∀i ∈ {1, ..., n} : pt(pi) ⊆ pt(qi) pt(q) ⊆ pt(ret)

[CAST-U]
p =(t) q a ∈ pt(q) a ∈ A t′ = T (q) t̃ ≮: t′̃ and t′̃ ≮: t̃

{a} ⊆ pt(p) { t̃ } ⊆ ts(a)
[CAST-I]

p =(t) q a ∈ pt(q) a ∈ A t′ = T (q) t̃ <: t′̃ or t′̃ <: t̃

{a} ⊆ pt(p)

Fig. 3. Inference rules for pointer analysis. “<:” represents a subclass relation. T̃ stands for the type of the object pointed to by a pointer of type T .
ts(a) denotes the types an allocation-based object a may have. pt(p) represents the points-to set of pointer p.

b) LLVM IR: LLVM IR defines a comprehensive in-
struction set. Table II presents a subset of LLVM instructions
that are relevant to our pointer analysis.

A program is made up of a set of modules M. Each module
corresponds to a source file (compiled to a LLVM bitcode
file using clang with option -flto). A module contains a set
of global variables and function definitions. Each function
definition consists of a set of instructions.

An ADDRESSOF instruction models an allocation site for
both stack and heap objects. Read and write operations of
address-taken variables are modeled with LOAD and STORE
instructions, respectively. CAST represents a bitcast instruc-
tion in LLVM IR. And PHI models the LLVM instruction
implementing the ϕ node in the SSA graph. FIELD models
field access instructions. Array accesses are modeled with
ARRAY. Call instructions are modeled with CALL. And
finally, a return instruction in function f is modeled as
returnf q.

B. Inference rules

Figure 3 gives the inference rules. Before diving into the
rules, we first explain three notations used in the rules:

1) T̃ stands for the type of the object pointed to by a
pointer of type T . For example, consider a pointer
declaration A ∗ p, then T (p) = A∗ and T (p)̃ = A.

2) ts(a) includes the types an allocation-based object a
may have due to type casting.

3) pt(p) represents the points-to set of pointer p. It
includes all the allocation-based object that pointer p
may point to.

Below we explain our inference rules in detail.
[ADDRESSOF] handles address taken instructions. The

type of an abstract object a ∈ A is read from its allocation
site. Besides putting object a into the points-to set of pointer
p, the pointee type (T (p)̃) of p will be put into the type set
of object a. [PHI] propagates the points-to sets between
pointers. [LOAD] and [STORE] handle loads and stores
instructions, respectively.

The two rules [ARRAY] and [FIELD] realize field-
and array-senstivity. For an instruction p = &(q→ fld)
or p = &q[i], where q points to a base object a ∈ A, a
subobject a.fld or a[i] will be put into the points-to set of

safe(p = (t)q)=

{
false | ∃a ∈ pt(q) ∧ t′ ∈ ts(a) ∧ t̃ <: t′

true | Otherwise

Fig. 4. Rule for determining whether a downcast instruction is safe.

p. The pointee type (T (p)̃) of p will also be put into the type
set of the subobject. In LLVM IR, a temporary pointer will be
introduced to help handle filed and array access instructions.
A high-level statement p->f=q will be decomposed into
tmp = &(p->f) and *tmp = q. Similarly, p[i]=q will
be decomposed into tmp = &p[i] and *tmp = q.
[FUNCTION] creates a function object f whose address is

taken by pointer p for making possible indirect calls. While
[CALL-EDGE] handles function calls by passing arguments
into and receiving return values from a callee.

Cast instructions can be classified into three kinds: (1) cast
instructions between unrelated types (e.g. cast from float to
double), (2) upcast instructions, which cast from a derived
class type to a base class type, and (3) downcast instructions,
on the contrary to upcast instructions, cast from a base class
type to a derived class type.
[CAST-U] handles cast instructions between unrelated

types, while [CAST-I] handles cast instructions between in-
herited types. Besides propagating the points-to information,
[CAST-U] adds the pointee type of the target pointer to the
typeset of abstract object a ∈ pt(q).

V. REMOVE REDUNDANT INSTRUMENTATIONS

The runtime overhead of a type confusion detection tool
comes from two places: (1) the instrumentation for runtime
check, and (2) the instrumentation for tracing the types of
objects. In this section, we will describe how to remove
redundant instrumentation for both runtime check and object
tracing based on the results of pointer analysis.

A. Runtime check

A downcast instruction is potentially unsafe only if it
may convert an object of a base class type into a derived
class type. Figure 4 gives the rule for determining whether
a downcast instruction is safe based on the results of pointer
analysis. For a given downcast instruction, if an allocation

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_06

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



based object a in the points-to set of the source pointer q
has a type t′ that is a base of the target type t̃, then we
will mark this downcast instruction as unsafe. Otherwise,
this downcast instruction will be regarded as safe. Runtime
checks for safe downcast instructions can be removed to
reduce runtime overhead.

B. Object tracing

After identifying all safe downcast instructions, we also
need to identify objects that will never appear in any unsafe
downcast instructions and remove the code for tracing the
types of these objects.

Algorithm 1: Algorithm for collecting objects that may
appear in a unsafe downcast instruction
Procedure COLLECTOBJS
begin
1 Let C be the set of unsafe downcast instructions;
2 Let O be the set of objects that need tracing;
3 foreach p = (t)q ∈ C do
4 foreach a ∈ pt(q) do
5 put a into O

First, we collect all the objects that may appear in unsafe
downcast instructions, denoted as O. We only need to trace
the types of objects in the set O. The instrumented code
for tracing types of objects outside set O will be removed.
Algorithm 1 describes how to construct the set O. For each
unsafe downcast instruction p = (t)q, all allocation-based
object a in the points-to set of pointer q will be put into O.

VI. EVALUATION

This section shows that our pointer analysis can signif-
icantly remove redundant instrumentations and reduce the
runtime overhead for type confusion detection tools and
make these tools deployable to production software.

We applied our pointer analysis to the open source type
confusion detection tool Typesan [2]. Statically, we can
remove 68.67% of instrumentations for tracing types of ob-
jects and 57.84% of instrumentations for verifying downcast
instructions on average. Dynamically, we can reduce the av-
erage (maximum) runtime overhead from 40.10% (89.71%)
to 12.22% (24.90%).

A. Implementation

Our pointer analysis is implemented in LLVM-3.9.0. Our
pointer analysis is field- and array-sensitive. Each field of a
struct is treated as a separate object. Elements of an array
are distinguished when accessed using constant indexes.
Distinct allocation sites (i.e., ADDRESSOF instructions) are
modeled by distinct objects [4], [5]. Our inclusion-based
pointer analysis uses a wave propagation solver for constraint
resolution,

TABLE III
PROGRAM CHARACTERISTICS.

Program KLOC #Stmt #Ptrs #Objs #CallSite
dealII 199 577482 530249 77894 94284
eon 41 65218 63385 15855 14033
omnetpp 48 95961 108349 8592 20601
soplex 41 54190 69287 4191 9878
Xalan 553 744971 703675 73973 106090
Firefox 10304 11094975 20768646 785042 1802572
Total 11186 12632797 22243591 965547 2047458

TABLE IV
NUMBER OF INSTRUMENTATIONS. ALLOCATION: INSTRUMENTATIONS

FOR TRACING THE TYPES OF OBJECTS. CAST: INSTRUMENTATIONS FOR
RUNTIME CHECK.

Program
Typesan pta

Allocation Cast Allocation Cast
dealII 203776 154 117782 88
eon 17220 7 8042 2
omnetpp 183349 161 59955 57
soplex 3225 2 1407 1
Xalan 144046 2806 60355 1071
Firefox 4169551 81673 1231589 34530

B. Experimental Setup

All our experiments were conducted on a platform consist-
ing of a 3.60GHz Core i7-9700KF CPU with 16 GB memory,
running Ubuntu Linux 16.04. The compiler we used is Clang-
3.9.0.

In our evaluation, we consider the following three different
configurations:

1) Baseline: All programs are compiled with Clang-3.9.0
at the default optimization level. No instrumentations
are made.

2) Typesan: All programs are compiled with Clang-3.9.0
using Typesan [2] with instrumentation enabled.

3) Pta: All programs are first compiled with Clang-3.9.0
using the Typesan [2] with instrumentation enabled.
Then our pointer analysis will be applied to remove
redundant instrumentations.

The overhead of Typesan is the overhead incurred by the
Typesan configuration compared with the baseline config-
uration. The overhead of pta is the overhead of the pta
configuration compared with the baseline configuration.

C. Programs

We use five SPEC2000/2006 C++ programs: dealII, eon,
omnetpp, soplex, and Xalan and one open-source web
browser: Mozilla’s Firefox (version 47.0) to evaluate. The
rest three SPEC2000/2006 C++ programs: astar, namd, and
povray are not selected because there is no runtime check
emitted by Typesan [2]. The characteristics of these programs
are listed in Table III.

D. Static Statistics

First, we measure how many instrumentations can be
removed by pointer analysis. Table IV compares the number
of instrumentations of Typesan before and after applying our
pointer analysis. Column 2 and column 3 show the number of
instrumentations of Typesan for tracing the types of objects

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_06

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



TABLE V
OVERHEAD OF BINARY SIZE AND INSTRUCTION NUMBER.

Program
Binary size (%) Inst Num (%)

Typesan pta Typesan pta
dealII 62.81 18.50 328.21 77.57
eon 78.36 11.38 333.83 15.28
omnetpp 98.57 24.16 369.30 77.13
soplex 30.91 16.23 82.07 38.28
Xalan 81.65 22.38 269.75 53.84
Firefox 128.78 58.70 304.10 64.04

dealII eon

omnetpp
soplex

Xalan

ff-b
asemark

ff-d
romaeo-js

ff-d
romaeo-dom

ff-j
etst

ream

ff-k
raken

ff-l
ite

brite

ff-m
otio

nmark

ff-o
cta

ne

ff-s
peedometer

ff-s
unspider

Average

Program

0

20

40

60

80

100

R
u

n
ti

m
e
 O

v
e
rh

e
a
d

 (
%

)

Typesan pta

Fig. 5. Runtime overhead of Typesan and pta compared with native runs.

and runtime check, respectively. Column 4 and column 5
show the number of the two types of instrumentations after
applying our pointer analysis. For the six programs evaluated,
pointer analysis can remove 68.67% of the instrumentations
for tracing the types of objects, and 57.84% of the instrumen-
tations for runtime check, on average. The largest reduction
in the instrumentations for object tracing and runtime check
come from the program Firefox (70.46%) and eon (71.42%).

Table V compares the overhead in binary size (columns
2 and 3) and the number of LLVM instructions (columns 4
and 5) of Typesan and pta compared with the baseline. The
average (maximum) overhead in binary size can be reduced
from 80.18% (128.78%) to 25.23% (58.70%).

Typesan incurs an average (maximum) overhead of
281.21% (369.30%) in the number of instructions. After
applying pointer analysis, the average (maximum) overhead
can be reduced to 54.36% (77.57%).

E. Performance Overhead

We measure the performance of the SPEC programs
using their reference inputs. We use nine industry browser
benchmarks, including basemark [9], dromaeo [10], jet-
stream [11], kraken [12], litebrite [13], motionmark [14],
octane [15], speedometer [16], and sunspider [17] to test
Firefox. These benchmarks are designed for evaluating a
browser’s performance on JavaScript execution and HTML5
3D rendering.

Figure 5 compares the runtime performance overhead of
Typesan and pta. For CPU intensive SPEC programs, Type-
san can incur as much as 80.12% performance overhead. For
Firefox, the highest performance overhead is 89.71%. Such

dealII eon

omnetpp
soplex

Xalan

ff-b
asemark

ff-d
romaeo-js

ff-d
romaeo-dom

ff-j
etst

ream

ff-k
raken

ff-l
ite

brite

ff-m
otio

nmark

ff-o
cta

ne

ff-s
peedometer

ff-s
unspider

Average

Program

0

20

40

60

80

100

R
e
d

u
c
ti

o
n

 o
f 

E
x
e
c
u

ti
o
n

 N
u

m
 (

%
)

object tracing runtime check

Fig. 6. Reduction in the execution number of instrumentations for object
tracing and runtime check.

dealII eon

omnetpp
soplex

Xalan

ff-b
asemark

ff-d
romaeo-js

ff-d
romaeo-dom

ff-j
etst

ream

ff-k
raken

ff-l
ite

brite

ff-m
otio

nmark

ff-o
cta

ne

ff-s
peedometer

ff-s
unspider

Average

Program

0

20

40

60

80

100

120

M
e
m

o
ry

 O
v
e
rh

e
a
d

 (
%

)

Typesan-max pta-max Typesan-avg pta-avg

Fig. 7. Memory overhead of Typesan and pta compared with native runs
in terms of maximum and average resident set size (RSS).

high runtime performance overhead makes it unpractical to
be deployed in production software. After removing the
redundant instrumentations by pointer analysis, the highest
performance overhead of SPEC programs and Firefox can
be reduced to 23.97% and 24.90%, respectively. The aver-
age performance overhead of all programs can be reduced
from 40.10% to 12.22%, The result shows that our pointer
analysis can make type confusion detection tool deployable
to production software.

Figure 6 shows the reduction of the execution number
of instrumentations for both object tracing and runtime
check after applying pointer analysis. On average, 71.47% of
instrumentations for object tracing and 64.85% of instrumen-
tations for runtime check can be removed. For the program
soplex, we have removed one of the two runtime checks
instrumented by Typesan (see Table IV). While the remained
runtime check has not been executed, so the reduction in the
execution number of runtime checks is 100%.

F. Memory Overhead

We also measure the runtime memory overhead of Typesan
and pta compared with native runs. Most of the runtime
memory overhead come from (1) the instrumented instruc-
tions for object tracing and runtime check, (2) the metadata

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_06

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



required to record the type of each object traced. Since
pointer analysis can identify redundant instrumentations, it
reduces (1) the number of instructions instrumented, and (2)
the metadata required. As a result, it can reduce the runtime
memory overhead.

Figure 7 shows the memory overhead in terms of the
maximum and average resident set size (RSS). For all the
programs, Typesan incurs as much as 90.95% (118.36%)
overhead in terms of maximum (average) resident set size.
After applying pointer analysis, the highest overhead in
maximum (average) resident set size can be reduced to
53.67% (48.85%). On average, the overhead in maximum
(average) resident set size can be reduced from 56.39%
(71.42%) to 26.45% (28.91%).

VII. RELATED WORK

Software security has been studied extensively during the
last several decades [18], [19], [20], [21], [22], [23]. At-
tacks against C/C++ programs usually starts from a memory
corruption. So a great deal of research [24], [25], [26],
[27] has been devoted to detecting and eliminating memory
errors in C/C++ programs. Memory safety measures can
stop the attacks against C/C++ programs in their first step.
However, as memory safety measures usually incur non-
negligible runtime performance overhead, few of them have
been deployed in production software.

Control Flow Integrity (CFI) [28] aims to keep a program
in a statically computed Control Flow Graph (CFG), even if a
memory error took place. Thus it can prevent attackers from
compromising the program. After CFI was proposed in 2005,
it has drawn much attention from the research community.
A lot of effort has been devoted to general CFI [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], and
virtual call protection [40], [41], [42], [43], [44], [45], [46],
[47]. General CFI techniques protect both forward (indirect
function call) and backward (return instruction) control flows.
However, as class hierarchy information is generally missing,
the CFG constructed is not precise enough to prevent vtable
hijacking attacks in C++ programs. Virtual call protection
techniques focus on the protection of virtual calls only. Both
source-level and binary-level mitigation techniques have been
proposed.

Caver [1] and TypeSan [2] are two typical techniques pro-
posed for detecting type confusion bugs. This paper proposed
a novel method to reduce the high runtime performance
overhead of type confusion detection tools by using pointer
analysis to remove redundant instrumentations.

Pointer analysis is an important static analysis technique.
It has been studied intensively during the last several decades
[4], [5], [48]. This paper proposes a pointer analysis for C++
programs. Type information for every C++ objects can be
inferred using our inference rules. We enforced our pointer
analysis results for identifying redundant instrumentations of
Typesan [2], and achieved significant performance improve-
ment.

VIII. CONCLUSION

Type confusion bug is an emerging attack vector in
the widely used C++ programming language. Modern type
confusion detection tools suffer from the problem of high

runtime overhead. This paper proposes a new method to
reduce the runtime overhead of type confusion detection tools
by applying pointer analysis. We have applied our pointer
analysis to Typesan, a type confusion detection tool, and
successfully removed large number of redundant instrumen-
tations. As a result, we can reduce the average (maximum)
runtime performance overhead from 40.10% (89.71%) to
12.22% (24.90%), making type confusion detection tools
deployable to production software.

REFERENCES

[1] B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification:
Stopping an emerging attack vector,” in USENIX Security ’15, 2015,
pp. 81–96.

[2] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and
E. van der Kouwe, “Typesan: Practical type confusion detection,” in
CCS ’16. ACM, 2016, pp. 517–528.

[3] Clang UndefinedBehaviorSanitizer, 2020,
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html.

[4] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions
of lines of code,” in CGO ’11, 2011, pp. 289–298.

[5] O. Lhoták and K.-C. A. Chung, “Points-to analysis with efficient
strong updates,” in POPL ’11, 2011, pp. 3–16.

[6] F. M. Q. Pereira and D. Berlin, “Wave propagation and deep propaga-
tion for pointer analysis,” in CGO ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 126–135.

[7] M. Hind, M. Burke, P. Carini, and J.-D. Choi, “Interprocedural pointer
alias analysis,” TOPLAS ’99, vol. 21, no. 4, pp. 848–894, 1999.

[8] G. Balatsouras and Y. Smaragdakis, “Structure-sensitive points-to
analysis for C and C++,” in SAS ’16, 2016, pp. 84–104.

[9] Basemark 3.0 benchmark, 2020, https://web.basemark.com/.
[10] Dromaeo JavaScript performance test suite, Mozilla, 2020,

http://dromaeo.com/.
[11] JetStream JavaScript performance test suite, BrowserBench, 2020,

http://browserbench.org/JetStream/.
[12] Kraken 1.1 Javascript benchmark suite, Mozilla, 2020,

http://krakenbenchmark.mozilla.org/.
[13] LiteBrite: HTML, CSS and JavaScript Perfor-

mance Benchmark, Microsoft, 2020, https://testdrive-
archive.azurewebsites.net/Performance/LiteBrite/.

[14] MotionMark 1.1 benchmark, Browserbench, 2020,
https://browserbench.org/MotionMark1.1/.

[15] Octane JavaScript benchmark suite, Google, 2020,
https://chromium.github.io/octane/.

[16] Speedometer benchmark, Browserbench, 2020,
https://browserbench.org/Speedometer2.0/.

[17] Sunspider 1.0.2 javascript benchmark suite, Apple, 2020,
https://webkit.org/perf/sunspider/sunspider.html.

[18] W. R. Simpson and K. E. Foltz, “Minimal instantiation of enterprise
level security,” in Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering and Computer
Science 2019, 22-24 October, 2019, San Francisco, USA, 2019, pp.
88–93.

[19] M. N. Gedam and B. B. Meshram, “Vulnerabilities & attacks in srs for
object-oriented software development,” in Lecture Notes in Engineer-
ing and Computer Science: Proceedings of The World Congress on
Engineering and Computer Science 2019, 22-24 October, 2019, San
Francisco, USA, 2019, pp. 94–99.

[20] I. A. Ibraheem, W. Zhang, A. M. Abdelgader, and F. Shu, “Analysis
of possible security attacks and security challenges facing vehicular-
ad hoc networks,” in Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and
Computer Science 2019, 22-24 October, 2019, San Francisco, USA,
2019, pp. 144–149.

[21] P. Uma, K. Siddivinayak, and P. Ramachandra, “Smart captcha to
provide high security against bots,” in Lecture Notes in Engineer-
ing and Computer Science: Proceedings of The World Congress on
Engineering 2019, 3-5 July, 2019, London, U.K, 2019, pp. 144–149.

[22] N. Jones, Q. Yu, K. Schell, and H. Yu, “Teaching secure program
design,” in Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering 2019, 3-5 July,
2019, London, U.K, 2019, pp. 240–245.

[23] A. Das, S. K. Sarma, and S. Deka, “Data security with dna cryp-
tography,” in Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering 2019, 3-5 July,
2019, London, U.K, 2019, pp. 246–251.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_06

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



[24] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“Softbound: Highly compatible and complete spatial memory safety
for c,” in Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’09.
New York, NY, USA: ACM, 2009, pp. 245–258. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542504

[25] ——, “Cets: Compiler enforced temporal safety for c,” in Proceedings
of the 2010 International Symposium on Memory Management, ser.
ISMM ’10. New York, NY, USA: ACM, 2010, pp. 31–40. [Online].
Available: http://doi.acm.org/10.1145/1806651.1806657

[26] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 27, no. 3,
pp. 477–526, 2005.

[27] N. Nethercote and J. Seward, “Valgrind: A framework for
heavyweight dynamic binary instrumentation,” in Proceedings
of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’07. New
York, NY, USA: ACM, 2007, pp. 89–100. [Online]. Available:
http://doi.acm.org/10.1145/1250734.1250746

[28] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in CCS’ 05. ACM, 2005, pp. 340–353.

[29] M. Zhang and R. Sekar, “Control flow integrity for cots binaries.” in
USENIX Security Symposium, 2013, pp. 337–352.

[30] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity.” in NDSS ’15, vol. 26, 2015, pp. 27–
30.

[31] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking modern
defenses.” in USENIX Security Symposium, 2014, pp. 385–399.

[32] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection.” in USENIX Security Symposium, vol. 14, 2014, pp. 401–
416.

[33] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 575–589.

[34] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi:
cryptographically enforced control flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 941–951.

[35] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings
of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’14. New
York, NY, USA: ACM, 2014, pp. 577–587. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594295

[36] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows
using intel processor trace,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2017, pp. 585–598.

[37] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, “Transparent
and efficient cfi enforcement with intel processor trace,” in High
Performance Computer Architecture (HPCA), 2017 IEEE International
Symposium on. IEEE, 2017, pp. 529–540.

[38] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent rop
exploit mitigation using indirect branch tracing.” in USENIX Security
Symposium, 2013, pp. 447–462.

[39] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive
cfi,” in CCS ’15. ACM, 2015, pp. 927–940.

[40] I. Haller, E. Göktas, E. Athanasopoulos, G. Portokalidis, and H. Bos,
“Shrinkwrap: Vtable protection without loose ends,” in ACSAC ’15.
ACM, 2015, pp. 341–350.

[41] V. van der Veen, E. Göktas, M. Contag, A. Pawlowski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A
tough call: Mitigating advanced code-reuse attacks at the binary level,”
in S&P ’16, 2016, pp. 934–953.

[42] D. Bounov, R. Kici, and S. Lerner, “Protecting C++ dynamic dispatch
through vtable interleaving,” in NDSS ’16, 2016.

[43] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow in-
tegrity in gcc & llvm,” in USENIX Security ’14, 2014, pp. 941–955.

[44] A. Prakash, X. Hu, and H. Yin, “vfguard: Strict protection for virtual
function calls in cots c++ binaries,” in NDSS ’15, 2015.

[45] D. Jang, Z. Tatlock, and S. Lerner, “Safedispatch: securing C++ virtual
calls from memory corruption attacks,” in NDSS ’14, 2014.

[46] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song,
“Vtrust: Regaining trust on virtual calls,” in NDSS ’16, 2016.

[47] X. Fan, Y. Sui, X. Liao, and J. Xue, “Boosting the precision of virtual
call integrity protection with partial pointer analysis for c++,” in ITTSA
’17. ACM, 2017, pp. 329–340.

[48] Y. Sui, X. Fan, H. Zhou, and J. Xue, “Loop-oriented array- and
field-sensitive pointer analysis for automatic simd vectorization,” in
Proceedings of the 17th ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, Tools, and Theory for Embedded Systems,
ser. LCTES 2016. New York, NY, USA: ACM, 2016, pp. 41–51.
[Online]. Available: http://doi.acm.org/10.1145/2907950.2907957

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_06

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 




