

Abstract—The success of new programming paradigm such

as the Aspect-Oriented Programming (AOP) relies mainly on

solid support tools and advanced development environments.

However, the productivity is still restricted by a text-based

primary input method at coding level, what makes program

understanding, building, and maintaining difficult for

developers. To reduce such difficulties, we propose to take the

AOP out of the conventional style of coding by using a new

approach, which is partially visual. The approach is intended to

better support the coding process by introducing more

interactivity and a high-degree of flexibility. We seek to

minimize the influence of language syntax on overall usability

by using the ordinary drag-and-drop technique to overcome the

weaknesses of text-based style to the of AOP paradigm. Our

approach has been implemented in an Eclipse-based prototype

tool and evaluated through a controlled experiment to prove its

feasibility and usefulness. As preliminary results, we notice that

programmers were able to express effectively crosscutting

concerns with a high-level of interactivity.

Index Terms— Aspect-oriented programming (AOP),

AspectJ, Coding methodology, Codeless program development,

Separation of concerns (SoC), Visual programming.

I. INTRODUCTION

N the software development life cycle, the implementation

often referred to "programming" or "coding", is regarded

as one phase, where generally, the adopted method depends

on writing source-code by hand according to a specific

language syntax. For a long time, programmers have done

their work using tools that depend on the text-based style,

and were often confronted with the difficulty of evolving

their codes. During the understanding process, they may

execute several tasks all together such as reading, searching,

thinking, translating, recall and mental modeling, which

make much harder the focus on specific problems.

Programming languages are the primary vehicles for

supporting the practices of software engineering. To address

various issues, it is important, therefore, that they should be

Manuscript received November 1, 2019; revised July 30, 2020. This

work was supported in part by the DGRSDT (General Directorate of

Scientific Research and Technological Development) - MESRS (Ministry

of Higher Education and Scientific Research), Algeria.

Sassi BENTRAD is with the LISCO Laboratory, University of Badji

Mokhtar-Annaba (UBMA), and the Department of Computer Science,

University of Chadli Bendjedid (UCBET), Algeria (e-mail:

sassi_bentrad@hotmail.fr, bentrad-sassi@univ-eltarf.dz).

Hasan KAHTAN KHALAF is with the Faculty of Computer Systems

and Software Engineering, Universiti Malaysia Pahang (UMP), Malaysia

(e-mail: hasankahtan@ump.edu.my).

Djamel MESLATI is with the LISCO Laboratory (Laboratoire

d'Ingénierie des Systèmes COmplexes), University of Badji Mokhtar-

Annaba (UBMA), Algeria (e-mail: meslati_djamel@yahoo.com).

well designed and implemented along with their supporting

tools [35]. The latter must offer simultaneously a high-

degree of flexibility and efficiency in code editors, so that

making the programming process more efficient. There are

many different attempts and a major effort has been directed

to overcome this challenge. The modern editors come with

some helpful features like code outline, syntax coloring,

highlighting and checking, code auto-completion, and so on,

in order to make the traditional programming style less

disheartening and boring, especially for novices having only

basic understanding of concepts and programming-language

constructs. However, usually most of abstractions that are

meaningful at the design may be lost when implemented at

the coding phase.

In spite of these advances, using text-based editors still

requires programmers to spend effort and focus on

implementation details. A considerable research issues have

been identified for making the act of "coding" relatively easy

and effective, and researchers are focusing on bringing more

improvements to the coding process [45]. In fact, numerous

projects have investigated the ability of the Graphical User

Interface (GUI) through other techniques like Templates,

Code-generators, Assistants, and Designers in almost

modern Integrated Development Environments (IDEs) [4,9].

In the last few years, the tendency of programming

environments to support graphical techniques has been

emphasized to provide the development, the execution and

the visualization of the programs [8,9]. Unfortunately, most

of them have proven success within limited domains as the

case of Visual Zero [14], Tersus [27], etc. Most recently, a

significant attention from the research community has been

given for assisting the general-purpose programming tasks.

The codeless program development represents one direction

for prototyping and building quickly programs in a high-

level of interactivity. It is a convenient way that tries to

lessen the focus on formalisms by exploring the idea of code

structure editor [26].

Aspect-oriented programming (AOP) is a dynamic

research field that focuses on the modular implementation of

concerns (i.e., non-business operations such as: logging,

authentication, threading, transactions...) that cut across a

system's functionalities (i.e., business logic) [2,10,17]. It

came to provide and to deliver a better separation of

concerns (SoC). Gregor Kiczales coined the term as a

complement to the object-oriented programming (OOP)

paradigm rather than as a replacement to it [2]. However,

there are still some problems, like implementation cost and

its complexity were not in view, that defined by Gail C.

Murphy as the main factors to keep in mind while evaluating

Towards a Hybrid Approach to Build

Aspect-Oriented Programs

Sassi BENTRAD, Hasan KAHTAN KHALAF, and Djamel MESLATI

I

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

a software engineering methodology [50].

As with any new technology, AOP has both strengths and

limitations in terms of their impact on software engineering.

Roger T. Alexander and James M. Bieman [21] reported a

number of studies that explore these challenges. Muhammad

Sarmad Ali et al. [37] have performed a systematic literature

review of empirical studies that explore the benefits and

limitations of AOP-based development from the perspective

of its effect on certain characteristics. According to their

findings, a majority of the studies reported positive effects

for code size, performance, modularity, and evolution

related characteristics, and a few studies reported negative

effects, where AOP appears to have performed poorly on

cognitive dimensions of software development (i.e.,

cognitive burden issues) due to the new language constructs

and mechanisms offered. Cognitive outcomes were

measured by looking at two relevant factors: the time taken

for understandability and development efficiency, which is

measured in terms of the amount of time and effort spent to

build programs. Obtained results were insignificant and not

encouraging [18].

Although AOP is much more efficient and has been in

existence for more than a decade, it has not gained the

expected adoption as OOP, the most popular paradigm today

[36]. The reasons that have hindered its wide acceptability

are: (1) the awareness (it is still less user friendly); (2) the

lack of universal supporting framework; and (3) it has been

still less heard of so technical experts are very few in

number [21]. In addition, AOP introduced new dimensions

and standards to programming. This, in general, creates

complexity and possible resistance, but it was also the case

when OOP was introduced, which indicates that this is a

normal scenario [15,21].

Over the last few years, it has matured and received

increasing attention from researchers across the world.

Numerous works has been carried out on strong AOP-based

implementations such as AspectJ language [3,20]. However,

their acceptance in mainstream software development is still

limited [36]. They are mainly used only for maintaining,

rather than for developing the initial version of a system

[19]. The prominent reason for this is the fact that support

tools purely depend on the text-based style, which generally

do not facilitate development tasks, as is the case of AJDT

(AspectJ Development Tools [10,24]) in spite of its

completeness and maturity.

The success of such new paradigm heavily relies on

providing a solid support that allows its adoption in industry

and provide the basic resources for both developers and

researchers to study and understand it. We do agree that in

training, understanding the abstract model of a programming

language is more crucial than its syntax. However, novices

spend usually considerable time and efforts for learning

formalisms and following strict rules to ensure that the

source program executes [39]. This, decreases relatively the

motivation to programming and understanding the essence

of the paradigm adopted, and even precludes them from

being more creative [36].

With new powerful language constructs that are not

straightforward, AOP offers new ways of implementing

traditional mechanisms. For novices, expressing and

specifying crosscutting concerns and their relationships is

considered to be a challenging issue that existing support

tools, such as AJDT, cannot assist to express it very

effectively. Certainly, this area needs further research. In this

article, we introduce a new approach to handle this issue.

We target to provide better results in code quality and

software development efficiency.

In our opinion, even if it is not ready for large-scale

industrial adoption, since most supporting tools are still

being in infancy stage of development [44], the visual

programming (VP) capabilities may help in maturing AOP

and makes it worthwhile to receive more attention in both

academia and industry [40,42,47]. Therefore, to better serve

the needs of improving the quality and usability of tools, we

should devise new form for programming that allows code

and visual objects to be freely combined with more

interactivity and flexibility. The main aim is to providing a

higher freedom degree with respect to source-code

languages and their syntax difficulties. Therefore,

programming efforts go into interacting with graphical

interface instead of focusing on typing codes. This reduces

the amount of code that has to be written, in addition to

assisting in understanding and handling efficiently the

source-code, what consequently, reduces the time-

consuming and effort.

In this work, we present a new approach for building

aspect-oriented (AO) programs in which both text-based and

drag-and-drop methods are used conjointly for taking more

advantages of their capabilities. The goal of our proposal is

to investigate the effect of a hybrid interactive technique on

AOP tasks, and how the graphical expression of basic

programming constructs and features provides a new

opportunity for programming in an efficient way with

simplicity and high-degree of flexibility. We seek to raise

awareness of the strengths of AOP technology, and to

decrease knowledge required for its use.

Our research work aims to achieving two goals:

 We aim to provide a new way of AO-specific

programming facility, allowing programmers on one

hand, to express crosscutting concerns using visual

representations of concepts (visual code development),

and on the other hand, making the program source

entities and their relationships, explicitly visible and

accessible by constructing visualization views (graphical

code illustration). This allows assisting them in

understanding and handling the overall source-code

efficiently during development and maintenance

activities. This work is the beginning of an ongoing

project to introduce a new methodology for improving

AOP coding skills and increasing its adoption.

 Our initial work focus is on the educational context

where we provide a preliminary supporting tool

addressing the AspectJ implementation for training

purposes. The prototype is expected to assist novices in

building knowledge on AOP concepts and features and

being familiar with them. The main goal is to allow them

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

building effectively programs with more focus on

innovations rather than on implementation details such as

syntactic formalisms. This will allow obtaining high-

quality codes with less miss-typing, which further will

simplify both teaching and training in terms of amount of

time and effort spent for understanding and

programming.

The remainder of this article is organized as follows:

Section II presents an overview of relevant background to

VP capabilities and AOP. Section III is devoted to

introducing the proposed approach, the process and

technologies used to develop it, followed by a detailed

description of the design and implementation of the tool

support. Section IV reports and discusses the results of a

case study on an illustrative example and a preliminary user

evaluation. Section V describes an overview of some related

works. Finally, in Section VI, conclusions are drawn and

further work issues that we plan to investigate are given.

II. BACKGROUND

According to Nong Ye and Gavriel Salvendy [35],

technical experts have better knowledge of programming at

an abstract level, and novices tend to have more concrete

knowledge. Current research works seek to provide a higher-

level of abstraction for developers by exploiting various

graphical techniques during the development process [8].

They tend to make programming tasks easier for those

having little background in the field, and may also be useful

for the experienced ones for a fast software development or

prototyping.

Visual Programming (VP) is a subject of current active

research that has transformed the art of programming in

recent years, aimed at reducing some of the difficulties

involved in creating and using programs [8,9,40]. The main

reason for using such techniques is that they are often more

convenient to users than the traditional text-based style. It

allows representing the coding itself entirely or partially

using graphical constructs instead of, or in addition to, the

text-based coding [9]. In many cases, handling interactively

visual representations offer significant advantages (for

comprehension and development of large systems) over

textual descriptions [45].

However, there is a common misunderstanding, which

assumes that the research targets to eliminate the text-based

method. In fact, this is a fallacy; most visual programming

languages (VPLs) include text to some extent, in a

multidimensional context. Their overall goal is to strive for

improvements in the design of programming languages and

associated tools. The opportunity to achieve this comes from

the fact that in VP, we have fewer syntactic restrictions on

the way a program can be expressed interactively, and this

affords an independence to discover programming

mechanisms that have not been possible formerly

[8,9,42,46].

On the other hand, unlike the text-based style that can be

used for any coding tasks, the visual style is only suitable for

certain tasks (limitation of suitability). For instance, in some

cases of complex control structures like loops and recursion,

the textual description is often more efficient and economic,

and the code is usually more compact than visual programs.

SoC is an important software engineering principle,

meaning the ability to identify, encapsulate, and manipulate

those parts of the software that are relevant to a particular

concern (concept, goal, purpose).

Although it is an abstract concept, a concern at

implementation level is usually considered as a particular

behavior or functionality in a program. Concerns can be very

primitive, such as adding a variable. High-level concerns are

coarser, such as transaction management.

A new emerging paradigm is introduced–AOP that makes

possible to build those programs that OOP fails to support. It

deals with those concerns that cut across the modularity of

traditional programming mechanisms [17]. AOP languages

have been an important means to control the complexity, to

improve the modularity and to support development

flexibility. A good overview of the AOP scene can be found

at [22].

It has emerged initially at the programming level using

strong implementations such as AspectJ, the de facto AOP

standard language [2,10]. AspectJ encapsulates crosscutting

concerns into new modular programming abstractions called

"aspects" to preserve modularity instead of scattering them

in the core modules "classes" [1,2]. However, programmers

and especially novices experience some difficulties in using

syntactic formalisms of some concepts and features [36].

In addition, the conventional coding is a tedious task that

hinders their understanding, and often an impediment to

effective programming. It can lead to repetitive stress due to

the syntactic formalisms, what consequently, affects

negatively the programmer's ability to be more creative.

There is, therefore, a need for solid support tools to facilitate

programmers’ tasks. At the opposite, the codeless program

development, which we advocate here, represents a way for

building programs, with a significant decrease in the amount

of code written, and less focus on detailed formalisms.

III. OUR APPROACH

A. An Overview

For the SoC we distinguished two different levels. The

concerns identified at the conceptual level, generally

considered a primary means to manage complexity, are

mapped into the implementation level using a programming

language. By abstracting concerns out and separating them,

implementing individual concerns becomes substantially less

complex, and code can be effectively reused. However, few

languages allow these meaningful abstractions to be

separately implemented [52].

Especially for novices without highly technical

backgrounds, AOP complicated programming by combining

two programming levels; for the low base code and

crosscutting concerns. Our opinion on this issue is the use of

a hybrid approach, a visual and text-based oriented method.

It is a seamless integration between both to support novices'

difficulties at coding time when combining these two levels.

The idea of codeless program development, such as under

the tool Limnor Studio [26] whither it enhances the OOP by

adding actions for reducing the hand-typing, is to make a

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

general-purpose visual style that is simple and preserves the

programming power. The trend was towards moving farther

away from traditional editors through elevating the level of

abstraction. The associated tools are changing the role of

software engineering and allowing novice programmers to

more easily developing and even getting quick overviews of

large source-codes, which is difficult without higher

abstractions. It is likely that this kind of tools will make the

next-generation of development systems. Significant

advantages can be mentioned as follows:

i. Developers can focus more on the design and

innovations,

ii. Higher quality of code by avoiding potential and the

most common programming mistakes, and

iii. Less time and effort to accomplish tasks efficiently, this

boosts the productivity for huge systems.

This is the source of our inspiration to propose a new kind

of code editing. Our proposal addresses particularly the

aspect-oriented approach. The idea we present in this article

is a Hybrid Methodology for Aspect-Oriented Programming

(HM4AOP). It provides a way to leverage the usage of

interactivity during the coding process, which can help

bridge the gap among programmers and the complex

syntactic formalisms on programming system, while

overcoming some weaknesses of the text-based method.

Before editing the target source program in an AOP-based

implementation (e.g., AspectJ), and as an essential step, the

skeletons of code have to be designed and specified

interactively in a high-level way by using predefined visual

representations and specifications for the fundamental AO-

basic programming constructs and features. We retain the

strengths of text-based style, while enabling the visual way

where it is beneficial. While graphical techniques are

cumbersome to work with in general-purpose programming;

we do agree, that it is probably best suited for a specific-

domain, whereas text-based languages may be used as host-

languages, and carefully designed graphical notations can be

useful.

In our proposal, we have to provide programmers with a

high-level way to express the domain-specific concepts and

features of interest, and isolate the low-level implementation

concerns, so that even non-professional programmers can

prototype and efficiently create programs. More specifically,

they can describe the structure and entities of base code

(business logic) besides crosscutting concerns (non-business

operations) and their relationships in a flexible combination

of textual and graphical notations within an appropriate

editor.

Figure 1 illustrates our proposal. It depicts the overall

programming process, in the case of the conventional

method adopted for coding and our methodology. We can

distinguish two programming styles. The first one is a low-

level presented via a host-language, a conventional text-

based language. The second is a high-level presented via a

domain-specific visual language with added concepts and

features borrowed from the AOP paradigm.

The overall process of AOP include:

i. Developing primary abstractions (base code).

ii. Identifying concerns that crosscut primary abstractions.

iii. Defining aspects to encapsulate each concern.

iv. Weaving aspects into the primary abstractions, yielding

a composite program compiled.

v. Executing the composite program (woven program).

Fig. 1. Overall process of a hybrid construction of aspect-oriented

programs.

By doing so, programmers will obtain the benefits of both

the widely used general-purpose language (i.e., code-

oriented method) and the straightforward domain-specific

language (i.e., interactive code editing). An advanced visual

editor will be designed to make them more productive

editing code; specifically for crosscutting concerns and their

relationships. We try to reduce cognitive load while coding

by simplifying as much as possible. It is important, to notice

that the programmer will be able to switch to whatever

coding style is appropriate to a given context. Therefore,

both textual and graphical techniques are complementing

each other, and we can take more advantages of each one

and avoid their limitations.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

B. The Approach

The visual paradigm capabilities may not completely

replace the conventional style of programming but it can

enrich the textual view. The two forms can support each

other in the educational context, development and

maintenance activities. It is expected that the student will

begin with the visual view, perhaps later moving on to the

textual view as it allows them to perform some useful visual

programs with a small investment of time and then go on to

more advanced levels of understanding textually when they

are ready.

A brief comparison between the conventional code editing

and our proposal is shown in Table 1.

TABLE 1

CONVENTIONAL CODING VS. HYBRID CODELESS METHODOLOGY

Conventional Input

Methodology

(Text-based

programming)

Hybrid Codeless Methodology

(General-purpose partially-visual

code editing)

Ordinary Code Editor

(OCE)

Visual Model Designer (VMD), an advanced

visual editor

Code-oriented method

(i.e., hand-typing)

Interactive code editing method, a flexible

combination of the text-based style, graphical

constructs and simple objects.

Syntactic formalisms of

programming language

Visual representations & specifications to

build a Visual Model of target program (i.e.,

a high-level description and specification of

source-code structure).

Writing code entirely

within a text-based editor

Interaction techniques (e.g., drag-and-drop

interaction) on top of a general-purpose

hybrid programming interface.

Ordinary Compiler

such as the

AspectJ Compiler

(ajc)

Visual programming components (modules):

(1) Model constructor (VMD) to build a

Visual Model of target program ;

(2) AO code-generation engine to insure

the translation service of the Visual

Model into Code Skeletons Templates

(i.e., a source-code structure in text-

based form).

Fig. 2. Global view of the proposed approach.

(Numbers indicate the sequence of process steps in building & rebuilding an aspect-oriented program)

Figure 2 illustrates the idea we propose and its practical

supporting tool. We aim to introduce a next-generation of

tools for making development process more attractive and

flexible. It features an effective and scalable interface that

improves the ability to view, edit, and interact with code

visually. The process is focused on the building of the

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

program structure, behavior and requirements. As shown

earlier, the building process can be summarized in the

following three steps:

The first step (labeled in Figure 2), the "Rapid Code-

Prototyping", requires one to design manually preliminary

templates of AO code skeletons for the program being

developed and specify the structure of its entities and their

relationships. The composition specification depends on

some expressive artifacts using the conventional natural

language as a simple scripting language on sheets of UML

diagrams, without any structural definitions or syntactic

formalisms. This paper-based prototyping can be considered

as an initial implementation that helps to find design faults

especially for the non-functional concerns (aspects

candidates) and their relationships at an early stage (i.e.,

specification and design phases).

In the second step (labeled in Figure 2), the

"Interactive Code Editing", the programmer expresses the

target code structure and some behavior according to these

draft templates in terms of visual, interactive elements within

a visual editor. Once the visual coding is accomplished, the

resulting model can be inspected, controlled manually and

discussed through high-level views.

These two steps constitute the quickest way to design the

preliminary templates, as well as a key method to empower

programmers to:

i. Maintain the separation of concerns earlier in the life

cycle.

ii. Refine and make meaningful changes quickly in the

code,

iii. Communicate seamlessly —involve development team

members to get feedback early in a collaborative

environment,

iv. Be more creative —experiment with many ideas before

committing to one, and

v. Save programming time by solving key problems from

the very beginning —the unexpected changes can be

extremely expensive to be implemented when they are

discovered later at coding time, in contrast, the early

identification of what is really required to achieve high-

quality codes can lead to more productivity, especially

for large software applications.

To perform the code generation and to simplify

interchanging of the constructed models among developers

and their favorites IDEs with manipulation capabilities, such

models must be available in a standard and interoperable

format, a text-based notation that can be readily processed.

This is possible using the XMI (XML Metadata

Interchange) standard. The main purpose is to serialize the

visual model data in an XMI format file (considered as an

intermediate model), which can then be easily deployed and

manipulated automatically, without the need of intermediate

models, as usually done in semi-formal approaches. This file

can then be fed to the suitable generator for producing on

output AO code templates.

At the third step (labeled in Figure 2), the "Ordinary

Coding", the generated templates can then be manually

refined and re-edited by adding the required code (i.e., hand-

made modification for completing both structural and

behavioral codes of generated methods, advices, etc.) until

obtaining an ultimate implementation for the target program.

Following the process outlined, we now describe, in

Figure 3, the overall flow of main activities using an

illustrative example of AspectJ program.

Fig. 3. Steps of coding process.

C. The Tool Support

We show the practical feasibility and effectiveness of the

approach through a tool prototype over Eclipse IDE. We

have chosen AspectJ to be our first target implementation as

it is the most frequently used and mature. AJDT is arguably

the most complete, open and mature support, additionally

regarded as representative in the AOP research community

[11].

We have so far developed a first prototype called

"HCodelessAJ" (Hybrid Codeless Methodology for

AspectJ). More precisely at technical level, it is a general-

purpose icon-based coding tool, completely leverages AJDT

and includes initial implementation. It offers a hybrid-

programming interface with the following features: (1) users

can present the structure of the program and some behavior

in a flexible combination of textual and graphical notations

within a visual editor; (2) visual representations are coupled

with interaction techniques to simplify the navigation and

understanding of code. Users can easily verify the

completeness of entities that make up the program source

and the consistency of its relationships; and (3) regardless of

which development stage they are currently at, they can

rapidly check what they have developed. This is crucial in

modern tools, where we have to deal with huge systems and

are subject to information overload from various

programming tasks: analysis, verification, testing,

debugging, and so on.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

1) Design

Figure 4 depicts the overall structure of an open

architecture for HM4AOP supporting tools, with the adopted

implementation frameworks. Open means that there are no

limits for both internal and external extensibility.

Fig. 4. High-level architecture of HM4AOP tool support.

 Advanced code editor: The Visual Model Designer

(VMD) is an innovative editor assistant, where the user

can manipulate visual, interactive objects to build a

Visual Model (*.vaj) for code skeletons of the target

program. It is a graphical editor of code structure

providing a clear view that permits to obtain quick

overview of concerns to be considered from the

preliminary specification of the model. This tool is built

as a novel class of visual, highly interactive code editor.

Some of its important features include:

i. Less hand-typing of codes.

ii. Exploring, navigating and modifying effortlessly

the structure of program and its entities by means of

its model, and without the need to look more deeply

the source-code, and then regenerate corresponding

templates.

iii. Importing and exporting the already created

models, what consequently allow reusing their

constituent elements using a drag-and-drop

technique.

 HM4AOP Code Generator: A specific code-generation

engine, i.e., AOP implementation generator, represents

this component. In our implementation, the HCodelessAJ

Code-Generator is a template-based AspectJ code

extractor based on Acceleo technology [30]. It takes as

input the model already built, and produces as output

textual templates of code suitable for the target

implementation. In the following sub-section, we will

explain the transformation process in more detail.

 HM4AOP Model: This Visual Model describes the

structure of the target program. In its simplest form, it

seems as an interactive code visualization that may assist

in understanding the overall program source. It consists

of a set of Model Elements described in the form of

graphical notations that represent AO-basic

programming constructs and features. Each element can

be customized, and has a specification according to the

syntactic formalism description of the corresponding

concept. The whole specification of the model data is

stored as a relatively small file (*.vaj), defined in the

XMI format.

Furthermore, to elaborate additional details, the model

can contain important artifacts such as a consistent

documentation at different levels of abstraction (e.g.,

UML models, graphs, tables, textual descriptions and

comments, voice recording, etc.). Having together such

extra data in a single repository allows creating useful

links between the generated code and these artifacts.

Fig. 5. Functional architecture of HM4AOP tool support

(e.g., HCodelessAJ prototype).

Figure 5 depicts an overview of the functional architecture

of HM4AOP tool support, e.g., HCodelessAJ prototype. It is

an arrangement of functions and their sub-functions and

interfaces, which define the steps sequencing for both

control flow and data flow throughout the coding process.

The facing down arrows represent the flow or steps of

functionalities. The horizontal arrow shows the control flow,

while the horizontal dash arrow shows the data flow.

The visual paradigm capabilities can facilitate

programming tasks by using explicit and intuitive

representations to express various aspects and entities of

source-code [9]. To this end, it is desirable to provide

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

carefully designed graphical notations for fundamental AO-

basic programming constructs and features, such as aspect-

constructs (pointcut, advice, inter-type declarations, and

weave-time declarations), class-constructs (method, field,

etc.), inheritance, and structured constructs (package, class,

interface, aspect, loops, conditions, etc.).

In more advanced implementation, it is good to let the

program source take the form of a visual, interactive

document [16]. In order to facilitate navigation, these

representations must be coupled with efficient interaction

techniques that permit to support two main functions: (1)

controlling programming concepts through their

corresponding constructs in a high-degree of flexibility; and

(2) specifying parameters and properties for each model

element selected. Based on this requirement, we have

selected the following features to be implemented: (a) semi-

separation among users and the language syntax; (b) no

restrictions; and (c) an ordinary graphical user-interface. In

this trend, the high-level descriptions encapsulate the

underlying implementation technology adopted, which eases

its replacement, e.g., replacing AspectJ implementation with

AspectC++.

2) Implementation Overview

o Steps Followed to Implement the Approach

The process followed to define the approach includes

three main steps depicted in the right side of Figure 6 and

listed below:

 Defining a Meta-model for an AOP-based

implementation.

To this aim, we first chose a target AOP-based

implementation, and then we defined a source meta-

model (e.g., AspectJ.ecore, an EMF Ecore model for

AspectJ) able to represent the design of visual model to

be built for the intended program. An Ecore model

(*.ecore) is an EMF meta-model of the target language

generated from its UML Profile (*.uml). It is used to

ensure that the output complies with the language (i.e.,

the language’s syntax should be defined with this meta-

model). In addition to the Ecore model already defined, a

Generator model (*.genmodel) associated and required

to generate code (e.g., AspectJ.genmodel). As opposed to

the Ecore model that holds only platform-independent

information (i.e., PIM, Platform-Independent Model);

the Generator model provides the platform-specific

information (i.e., PSM, Platform-Specific Model).

 Developing an editor for the defined Meta-model.

A graphical editor was developed to enable programmers

to build, view, and edit visual models, which are

instances of the meta-model defined. The resulting tool is

an advanced code editor (VMD) which supports drag-

and-drop, cut-and-paste and so on.

 Develop an engine for automatic code generation.

As our proposal is a template-based approach, the

suggested mechanism of mapping model-to-code is

mainly based on the technique of Acceleo Model

Transformation (M2T, Model-to-Text transformation) as

a standard alternative for code generation [30]. This

mapping is achieved by the application of M2T

transformation rules expressed in Acceleo modules

(*.mtl) to automatically transform the visual model

already constructed into AO code skeletons templates

conforming to the chosen target AOP-based

implementation. The code-generation engine component

is composed of a collection of Acceleo modules, which

are made of set of Acceleo templates (i.e., scripts to

customize the generator accurately) that define the

required rules of transformation. These templates are

implemented by using Acceleo language within an EMF-

based tool support. A valid template of the target code

that determines its content must be defined and

developed before establishing the process of code

generation.

Fig. 6. Overall process and technologies adopted for implementing

HM4AOP tool support.

o MDE Technologies and Frameworks Adopted

The underlying technology is the Eclipse platform with its

plug-in capabilities. The approach exploits well known

MDE (Model-Driven Engineering) technologies and

frameworks provided under the Eclipse Modeling Project

(EMP) [23,51], such as Eclipse EMF, GEF, GMF, and

Acceleo technology [30], to enable building its graphical

editor (VMD) besides a code-generation engine.

The left side of Figure 6 summarizes the frameworks and

technologies we used. To define a metamodel for a target

AOP-based implementation (e.g., AspectJ) we used EMF,

while to build the code editor, we used GMF. We have

chosen Acceleo as a Model-to-Text (M2T) transformation

definition tool, mainly because of its very good support of

EMF metamodels, to develop an automatic code-generation.

Acceleo defines a template-based language used within an

EMF-based tool support such as ObeoDesigner [30], for

transforming models conforming to (i.e., an instance of) an

EMF meta-model into text (source-code).

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

o The Transformation Process

Figure 7 summarizes the process to generate code

templates. In particular, it highlights the technologies

adopted at each step. Our development process is based on

the Model-Driven-Architecture (MDA). Part (A) shows the

MDA process as described in [38]. Part (B) illustrates our

development process as a translation service for generating

templates.

The overall process is carried out in two main phases.

First, it takes as input the visual model created, conforming

to the EMF meta-model (e.g., AspectJ.ecore) and stored in

XMI format file (*.vaj). Second, parsing and generating in

the output templates of code skeletons (containing the

structure and some behavior) on the target implementation,

e.g., AspectJ code templates.

In the case of current prototype (Figure 5), the suitable

HM4AOP Code-Generator is the HCodelessAJ Code-

Generator component that uses the corresponding Acceleo

modules and the Generator Model, e.g., AspectJ.genmodel

to generate the code. The generated templates can be

completed by adding the rest of required code to finalize the

program. The resulting code is a complete AspectJ program

that can be processed using the language compiler (ajc).

o HCodelessAJ, a first prototype tool

Figure 8 shows a screenshot of the current stage of the

tool on the Eclipse platform. The first goal is to show the

feasibility of the approach. It works well for small programs

but it has not yet been tested for the development of large

real systems. A sample demonstration, showing an overview

of the main features and how it essentially works, available

online at: http://www.bentrad-sassi.sitew.com/.

Fig. 7. Overall process of generating code templates.

Fig. 8. HM4AOP tool support screenshot (e.g., HCodelessAJ prototype).

(A) & (B) snippets of fibonacci program implementation respectively in "VMD" and "OCE"; (C) a fragment of an XMI

representation of visual model created.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

http://www.bentrad-sassi.sitew.com/

IV. EVALUATION

The first goal of undertaking an early assessment was to

show the interactive capabilities of this prototype, as

presented previously, and to investigate and evaluate the

effectiveness of the approach.

A. Case Study

We report herein a preliminary concrete case study on an

illustrative example of how the current version of the

prototype can be used. We have considered a simple AspectJ

project named "Telecom example", which is packed with the

AJDT distribution [10,11,24]. It handles local and long

distance phone connections between customers. An

introductory video demonstration of this first example of use

can be found on the author's website (see Appendix).

As a first step (Rapid Code-Prototyping), we complete the

UML class diagram to indicate how the aspects intervene in

the application. We indicate which aspects advice which

methods (or calls methods) and, which aspects declare which

members in which classes. Figure 9 shows the UML source-

model.

Fig. 9. Paper-based prototyping of aspects candidates.

The project has six classes: Call, Timer, Customer,

Connection, Local and Local Distance.

– Call: A call supports the process of a customer trying to

connect with others.

– Timer: A simple timer machine used to record elapsed

time.

– Customer: Customers have a unique ID (name in this

case for didactic purposes but it could be telephone

number) and area code. They also have a protocol for

managing calls.

– Connection: Connections are circuits between customers.

There are two kinds: Local and LongDistance

(subclasses).

We decided to add three aspects:

– Timerlong Aspect is concerned with the connection time

recorded.

– Timing Aspect is concerned with the duration of

connections and with customer's cumulative connection

time.

– Billing Aspect, to generate a bill according to the type of

the call and the corresponding connection time.

Then (Interactive Code-Editing), we express visually the

code structure and some behavior for the target program

using the visual designer. Figure 10 shows a snippet of the

visual model created (*.vaj) and the corresponding XMI

output definition file.

Fig. 10. An excerpt of a visual model and its output XMI definition for the

target project.

Fig. 11. Generated AspectJ code template.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

Figure 11 illustrates the result of mapping the XMI

description into code templates on the target implementation

(e.g., AspectJ code). We just show the generated template of

the indicated (the circled) model element presented in the

Figure 10.

B. User Evaluation

We conducted a preliminary user evaluation to show the

effectiveness of the proposed approach and to prove its

feasibility. The experimentation was conducted on a group

of sixteen students of Master degree in Software

Engineering.

In order to perform an impartial analysis and to clarify the

features of the prototype (HCodelessAJ) as compared to the

ordinary AspectJ-based tool support for Eclipse IDE

(AJDT), we asked them to build code for some examples of

programs that are provided with the AJDT distribution using

these tools separately after minimal training. The satisfaction

of the users has been also investigated here. To this aim, the

evaluation has been divided into three steps:

Firstly, the participants were given a short, formal

introduction, providing them with the background and

purposes, as well as a demonstration illustrating the main

features of both tools. In the second step, participants were

randomly divided into two balanced groups. We instructed

both groups to write the source-code of some selected

programs using separately both tools. One group started with

AJDT, whereas the other had to build code firstly using

HCodelessAJ. During every experiment moment, for each

participant and each program, some observation data were

annotated and written down with respect to some criteria

(Pretest: Controlled Experiment). In the third step, the

participants have to fill in a post-experiment questionnaire to

collect information on their satisfaction, opinions and

comments (Posttest: Questionnaire-Based Survey).

During every experiment moment, we did not provide any

help to the participants to avoid biasing the experiment. We

only wrote comments and difficulties they encountered. For

each participant and each program, some observation data

were annotated and written down. Finally, in order to

perform an impartial analysis, we conducted a comparison of

the obtained results (quantitative & qualitative), and the

opinions gathered among participants.

In the following, we provide a summary of assessment

tables (Quantitative Assessment).

TABLE 2

GENERAL SUMMARY OF THE QUANTITATIVE ASSESSMENT TABLES

Test

Programs

AJDT HCodelessAJ

T1 T2 T3 P T1 T2 T3 P

Program 1

. . .

Program n

Average

Legend:

 T1: Training time (in day)

 T2: Development time (in minutes)

 T3: Compilation time (in seconds, ms)

 P: Miss-typing percentage ()

NB: In this table, we show the average of results obtained from all

participants.

The results of the comparative survey between AJDT and

HCodelessAJ according to some defined criteria

(Qualitative Assessment), are summarized in Table 3, and

presented graphically in Figure 12.

TABLE 3

GENERAL SUMMARY OF A COMPARATIVE STUDY ACCORDING TO

QUALITATIVE CRITERIA

Aspects

Consid-

ered

AspectJ

Tool

Support

E
x

p
r
e
ss

iv
e
n

e
ss

Usability :

Efficiency,

Learnability,

Memorability,

Error Handling,

User Satisfaction C
o

m
p

u
ta

ti
o

n
a

l

P
e
r
fo

r
m

a
n

c
e
 Productivity :

Flexibility,

Scalability,

Reusability,

Comprehensibility,

Maintainability

AJDT 2/4 2/4 4/4 2/4

HCodelessAJ 3,5/4 3/4 4/4 3,5/4

Fig. 12. Boxplots of the Questionnaire Answers.

The post-experiment questionnaire we used contained 26

questions, shown in Table 4, arranged in seven categories.

TABLE 4

THE POSTTEST: A QUESTIONNAIRE-BASED SURVEY

ID Questions & Responses (Percentage % : ?/16)

Subject Experience (Background Information)

Q1 . . .

Methodology of Coding & Prototype Satisfaction

Q11 . . .

Performed Coding Task

Q12 . . .

Suitability for the Coding Task

Q16 . . .

Suitability for Learning

Q21 . . .

Error Tolerance

Q26 . . .

Comments

. . .

C. Discussion

The results indicated the effectiveness of the tool support,

even if in its prototype stage, for the development of small

programs. As depicted in the visual editor, the representation

of program code makes explicit some of its entities with

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

their constructs and relationships (such as inheritance,

crosscutting relationships, and more) which are implicit in

the textual descriptions within conventional editors. The

amount of code generation with respect to the total project

code is about 70% of the considered examples. In addition,

the high-quality templates are consistent with original

program code, and easy to understand, which in turn

improved the overall factors of quality such as extensibility,

maintainability, and reusability.

Another point is that various capabilities of interactive

and graphical techniques can make it easier to see a big

picture of the system. Professional programmers and novices

alike can get an idea of what the program does at a glance.

D. Threats to Validity

According to Gregor Kiczales and his team: "it is

extremely difficult to quantify the benefits of using AOP

without a large experimental study, involving multiple

programmers using both AOP and traditional techniques to

develop and maintain different applications" [17]. Since the

case study was explorative in nature and aimed to illustrate

and investigate the effectiveness of our proposal; the

analysis is primarily qualitative, which can be considered as

a threat to the validity. However, it appeared to be too small

to observe a statistically significant difference compared to

the conventional methodology.

Although the current prototype is still in its experimental

stage, participants perceived that the proposed approach is

usable and easy to use. The obtained results revealed a good

satisfaction degree. Readers can return to the appendix when

seeking information on the detailed evaluation.

From another point of view, think that adopting the

approach will lead finally to an interesting alternative way of

teaching an aspect-oriented language. Compared to AJDT,

the prototype supports an alternative to the AJDT wizard for

generating aspects, as it is more complete: can fill aspects

with pointcuts, advices, introductions, and others. However,

major challenges in this area include enhancing the code

generation engine, developing a second engine for reverse

engineering, and adding visual representations for various

concepts and features borrowed from AOP.

The automated transformation through Acceleo is a

growing area of interest due to its main benefits such assist

possibility to generate behavioral specifications, the cost

reduction and the accuracy of generated templates. Acceleo

does not restrict the kind of code generated; there is only one

rule: "If you can write it, Acceleo can generate it". In this

way, the proposed approach could be adapted to work with

various AOP-based implementations.

From our point of view, based on what has been presented

herein, the maintainability will be higher because developers

will have to update the visual models already build, generate

new templates and transfer parts of an old source-code to

new templates. As our contribution is the first step towards a

novel support for aspect-oriented coding, there are still more

possible extensions to do (we will discuss them in Section

VI). After, some extensions, a large-scale study assessment

is required in the context of real applications. In addition, it

is thus important to evaluate how the approach affects the

code quality and development efficiency.

V. RELATED WORKS

The graphical techniques have been around the software-

development space for a long time and have also been

investigated in a variety of fields. For the last decade, a great

deal of research has been concerned with the development of

new support tools that enable to accomplish tasks more

quickly and effortlessly when compared to the traditional

coding [5].

VP’s efforts have a long history and have been used

successfully so far in many application areas from

educational software to specialized programming tools

[41,43]. However, only a few general-purpose tools are

available currently. Some of them addressed the OOP

paradigm such as Prograph [6], Larch Environment [7],

BlueJ [29] and Larch Environment [7]. The latter is a based

programming environment for Python that takes a hybrid

approach; combine textual and visual programming by

allowing visual, interactive objects to be embedded within

textual source-code, and segments of code to be further

embedded within those objects. Additionally, many of them

are used exclusively for educational purposes (e.g., output

syntactically correct code, etc.) as is the case of Alice [25],

Greenfoot [28] and Raptor [34]. The Limnor Studio [26],

Tersus [27] and Jeeves [33] are three mature tools that

employ the drag-and-drop interaction style within a visual

editor but for limited standalone, web and mobile

applications.

AOP is an active research field, which has made huge

progress both in theoretical and practical aspects [17]. Over

the last few years, it has matured and received considerable

attention from research and practitioner communities alike,

where numerous works have been carried out on AOP-based

implementations such as the case of AspectJ, which is the

major language available to practitioners [2,10]. To the best

of our knowledge, although a significant number of works

focused on AOP as a promising field, among a wide variety

of support tools, there has been no work performed upon

various capabilities of interactive and graphical techniques.

Among the projects that were sources of inspiration for

our work were Citrus [31], Barista [32] and Limnor Studio

[26]. The latter is one of the most experimental tools based

on the idea of general-purpose codeless program

development, which can be used to build efficiently

programs in an interactive manner. We have emulated its

interaction technique, but in a new way. We have focused to

merge graphical techniques together with the conventional

style as a practical option of coding. In this respect, we can

reduce the hand-typing at development time.

Our choice of AspectJ was influenced by its maturity and

availability of good documentation. The implemented

prototype, in the form of Java plug-ins, completely leverages

the AJDT project [10,24]. We have already positioned and

motivated our work with respect to AJDT; as it is arguably

the most complete, open mature tool support and regarded as

the representative in the community for this language [32].

Our tool essentially distinguishes itself from it in that,

within the visual editor, the new form of representation of

code makes explicit some of its entities, its code structure

and their relationships, which are implicit in the textual

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

descriptions within conventional editors as is the case with

AJDT. Hence, program source may be much easier to read

and understand and, therefore, to maintain, to extend it and

facilitating its reuse.

From a state of the art review in model transformations

and code generation, many proposals have been identified.

The most relevant for AOP is introduced in [48], by J.

Bennett, K. Cooper and L. Dai. They proposed a code

generation approach from models to aspects. The translation

among models is accomplished by means of XML

specifications and metamodels of XML and AspectJ. The

code is generated from those specifications and the aspects

are controlled in the program by throwing and handling

exceptions.

In [12,13], Abid Mehmood and Dayang N.A. Jawawi

conducted a systematic mapping study of existing research

in the area of aspect-oriented model-driven code generation.

The existing methods focus on UML design models with just

the possibility to generate code skeletons. The most related

work to our adopted mechanism is the work done by Hyun

Seung et al. [49]. They proposed an approach to generate

more sophisticated Java code for Android Platform from

both UML Class and Message Sequence diagrams, based on

Acceleo. Until now, our mapping mechanism deals with an

automatic generation of Java/AspectJ code templates from

the visual model data, already build and stored in an XMI

format, by using predefined Acceleo transformation rules.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

Despite the evolution of programming paradigms, the

traditional style is still disheartening and boring. Users suffer

generally from some technical limitations due to the input

method adopted for code editing which reduces the

productivity and software quality. In fact, for the case of

AOP, a great challenge for editing arises, where usually

most of the abstractions that are meaningful at the design

phase may be lost at implementation time due to the lack of

solid and appropriate support tools. With new language

constructs that are not straightforward for novices, AOP

offers new ways to implement traditional mechanisms. In our

opinion, certainly this area needs further research.

To overcome that and in order to make AOP more widely

accepted, we proposed an approach for expressing and

specifying crosscutting concerns. It is partially visual that

leverages the usage of interactivity for providing a degree of

freedom with respect to source-code languages and their

syntactic formalisms while overcoming some weaknesses in

the traditional style.

To show the feasibility of our approach, a prototype tool

was developed and a preliminary evaluation conducted to

assess its usefulness. It seems highly promising to narrow the

gap between the programmer and the programming system,

and enable an effective coding by focusing more on

innovations instead of on implementation details.

In general, we believe that the programming environments

will change greatly in the future according to our proposal.

This is expected to improve programming motivation,

program comprehension, and efficiency of programming

education. In other way, it is also promising for teaching

techniques, especially in the area of AOP. We also believe it

is essential for supporting novices to take the paradigm into

their own hands.

AOP is promising and deserves more attention from

developers and researchers. This work can be considered as

a step towards making this paradigm more usable and more

efficient for development. Currently, the tendency has been

emphasized to introduce it into programming courses for

undergraduate students. We hope that it succeeds to attract a

considerable interest from researchers and practitioners. In

addition, we hope that the planned extensions, mentioned

below, are appropriate for emerging further research.

B. Future Work Issues

Other ongoing work is intended to improve the approach

itself. We could divide possible extensions from the current

state of research in three parts:

 The first opportunity lies in extending the current

prototype with more graphical views including a set of

interaction possibilities through advanced techniques that

allow a user to easily edit and navigate the code

(depicted in item (A) in Figure 13).

 Second, supporting multiple AOP-based

implementations similar to AspectJ; like AspectC++,

AspectR, AspectAda, etc. Such an extension to the editor

"VMD" and their notations along with the "HM4AOP

Code Generator" should be straightforward; only the

mapping rules for code generation should have to be

specified (we can use multiple metamodels in an Acceleo

module, each one for an implementation). The generation

templates on the preferred implementation from the

generic visual model is performed by the suitable

component within this code-generation engine (depicted

in item (B) in Figure 13).

This potential extension can contribute to:

– Increasing the reusability of an AOP code through

exporting its visual model for future reuse.

– Enable easy interchanging of visual model data

between various implementations—towards a neutral

exchange based on XMI format among aspect-

oriented software development tools.

 Third, while the translation service mechanism is mainly

based on the Acceleo technology (M2T, Model-to-Text

transformation) for transforming model elements into

textual templates, it will be interesting to focus on doing

the opposite (Text-to-Model transformation) with a

reverse-engineering engine for the reconstruction of

initial visual models from code (i.e., back transformation

of AspectJ code).

The above extensions appear to be feasible and, in our

opinion, will be useful for AOP. The programmer will

always have the choice to switch seamlessly between both

Bottom-Up and Top-Down paths whenever needed to

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

transform the source of a program (low-level representation)

from one implementation to another by creating visual

models (higher-level models and artifacts) along the way and

without performing major modification in the code.

Ultimately, our goal is an attempt to introduce a complete

tool supporting “Round-Trip Engineering" of produced

artifacts, so that manual customizations of the generated

templates are taken into account and merged by the

generator (shown as item (C) in Figure 13).

Fig. 13. A future vision of the HM4AOP framework architecture.

Figure 13 depicts a general preview of the conceptual

architecture of a HM4AOP framework that collects these

prospect extensions. As shown, in order to get flexibility for

further extensions, we have divided its design into two main

layers, which also could easily be enhanced with additional

VP capabilities.

APPENDIX

Supplementary data, availability information, additional

material: an online appendix, available on the author’s

website (http://www.bentrad-sassi.sitew.com/), showing:

(1) A video demonstrations showing the main features and

basic functionalities of the prototype "HCodelessAJ", along

with brief examples of use.

(2) A detailed report on the results of a preliminary user

evaluation we conducted.

ACKNOWLEDGMENT

The authors are highly grateful to the Referees and Editor-

in-Chief for their valuable comments and suggestions helpful

in improving this paper.

REFERENCES

[1] Mens T. and Tourwé T., "Evolution issues in aspect-oriented

programming," in: Software Evolution. Springer, Berlin, Heidelberg,

pp203-232, 2008.

[2] Ramnivas Laddad, "AspectJ in action: practical aspect-oriented

programming," Manning Publications Co., 2003.

[3] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., Griswold

W.G., "An overview of AspectJ," Lecture Notes in Computer

Science: Proceedings of the 15th European Conference on Object-

Oriented Programming (ECOOP), vol. 2072. Springer, Berlin,

Heidelberg, pp327-353, 2001.

[4] Plauska, I. and Damasevicius, R., "Usability analysis of visual

programming languages using computational metrics," in:
Proceedings of the IADIS International Conference on Interfaces

and Human-Computer Interaction, Chech Republic, pp63-70, 2013.

[5] Sanders K. and Van Dam A., "Object-oriented programming in Java:

a graphical approach," Addison-Wesley, 2006.

[6] R. Mark Meyer and Tim Masterson, "Towards a better visual

programming language: critiquing Prograph's control structures,"

Journal of Computing Sciences in Colleges, vol.15, no .5, pp181-

193, 2000.

[7] French, G.W., "The Larch Environment - Python programs as visual,

interactive literature," Master of Science Thesis, School of

Computing Science - University of East Anglia, 2013.

[8] Ferruci F., Tortora G., and Vitello G., "Exploiting visual languages in

software engineering," in: Chang S. K., Handbook of Software

Engineering and Knowledge Engineering. River Edge, NJ: Singapore

World Scientific, 2002.

[9] Zhang K., "Visual languages and applications," Springer-Verlag US,

2007.

[10] A. Colyer and A. Clement, "Aspect-oriented programming with

AspectJ," in: IBM Systems Journal, vol. 44, no. 2, pp301-308, 2005.

[11] Colyer A., Clement A., Harley G., and Webster M., "Eclipse AspectJ:

aspect-oriented programming with AspectJ and the Eclipse AspectJ

Development Tools," Addison-Wesley Professional, 2004.

[12] Abid M. and Dayang N. A. Jawawi, "Aspect-oriented code generation

for integration of aspect-orientation and model-driven engineering,"

International Journal of Software Engineering and Its Applications,

vol. 7, no. 2, 2013.

[13] Abid M. and Dayang N. A. Jawawi, "Aspect-oriented model-driven

code generation: a systematic mapping study," Information and

Software Technology, vol. 55, no. 2, pp395-411, 2013.

[14] Garcia Perez-Schofield J.B., Garcia Rosello E., Ortin Soler F., Perez

Cota M., "Visual Zero: a persistent and interactive object-oriented

programming environment," Journal of Visual Languages &

Computing, vol. 19, no. 3, pp380-398, 2008.

[15] Despi I. and Luca L., "Aspect-oriented programming challenges,"

Anale Seria Informatica, vol. 2, no. 1, pp65-70, 2005.

[16] French, G.W., Kennaway, J.R., and Day, A.M., "Programs as visual,

interactive documents," Software: Practice and Experience, vol. 44,

no. 8, pp911-930, 2014.

[17] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V.,

Loingtier, J-M., Irwin, J., "Aspect-oriented programming," published

in: Proceedings of the 11th European Conference on Object-

Oriented Programming (ECOOP), Finland. Springer-Verlag LNCS

1241, pp220-242, 1997.

[18] L. Madeyski and L. Szala, "Impact of aspect-oriented programming

on software development efficiency and design quality: an empirical

study," IET Software Journal, vol. 1, no. 5, pp180-187, 2007.

[19] Md. Asraful Haque, "Problems in aspect-oriented design: facts and

thoughts," International Journal of Computer Science Issues, vol. 8,

no. 2, 2011.

[20] D. Zhengyan, "Aspect-oriented programming technology and the

strategy of its implementation," in: Proceedings of International

Conference on Intelligence Science and Information Engineering,

pp457-460, 2011.

[21] Roger T. Alexander and James M. Bieman, "Challenges of aspect-

oriented technology," in: ICSE Workshop on Software Quality,

Florida, 2002.

[22] Aspect-Oriented Software Development (AOSD), http://aosd.net/

[23] Eclipse Modeling Project (EMP). http://www.eclipse.org/modeling/

[24] Eclipse AJDT Project, https://www.eclipse.org/ajdt/

[25] Alice Project, http://www.alice.org/

[26] Limnor Studio, http://www.limnor.com/

[27] Tersus Project, http://www.tersus.com/

[28] Greenfoot Project, https://www.greenfoot.org/

[29] BlueJ Project, https://www.bluej.org/

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

http://www.bentrad-sassi.sitew.com/
http://aosd.net/
http://www.eclipse.org/modeling/
https://www.eclipse.org/ajdt/
http://www.alice.org/
http://www.limnor.com/
http://www.tersus.com/
https://www.greenfoot.org/
https://www.bluej.org/

[30] Acceleo Project, http://www.eclipse.org/acceleo

[31] Ko, A.J. and Myers, B.A., "Citrus: a toolkit for simplifying the

creation of structured editors for code and data," in: ACM Symposium

on User Interface Software and Technology (UIST), pp3-12, 2005.

[32] Ko, A. J. and Myers, B. A., "Barista: an implementation framework

for enabling new tools, interaction techniques and views in code

editors," in: Proceedings of Conference on Human Factors in

Computing Systems, vol. 1, pp387-396, 2006.

[33] Rough, D. and Quigley, A., "Jeeves – a visual programming

environment for mobile experience sampling," in: Visual Languages

and Human-Centric Computing (VL/HCC), 2015.

[34] M. C. Carlisle, "Raptor: a visual programming environment for

teaching object-oriented programming," Journal of Computing

Sciences in Colleges, vol. 24, no. 4, pp275-281, 2009.

[35] Nong Ye and Gavriel Salvendy, "Expert-novice knowledge of

computer programming at different levels of abstraction,"

Ergonomics, vol. 39, no. 3, pp461-481, 2007.

[36] F. Steimann, "The paradoxical success of aspect-oriented

programming," in: Proceedings of the 21st Annual ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages,

and Applications (OOPSLA), ACM, pp481-497, 2006.

[37] Muhammad Sarmad Ali, Muhammad Ali Babar, Lianping Chen,

Klaas-Jan Stol, "A systematic review of comparative evidence of

aspect-oriented programming," Information and Software

Technology, vol.52, no.9, pp871-887, 2010.

[38] A. Kleppe, J. Warmer, and W. Bast., "MDA explained, the model-

driven architecture: practice and promise," Addison-Wesley, 2003.

[39] Khin Zaw, Win Zaw, Nobuo Funabiki, and Wen-Chung Kao, "An

informative test code approach in code writing problem for three

object-oriented programming concepts in java programming learning

assistant system," IAENG International Journal of Computer

Science, vol. 46, no. 3, pp445-453, 2019.

[40] Rémi Dehouck, "The maturity of visual programming," 2015.

[Online]. Available at : http://www.craft.ai/blog/the-maturity-of-

visual-programming/

[41] F. I. Anfurrutia, A. Álvarez, M. Larrañaga and J. López-Gil, "Visual

programming environments for object-oriented programming:

acceptance and effects on student motivation," IEEE Revista

Iberoamericana de Tecnologias del Aprendizaje, vol. 12, no. 3,

pp124-131, 2017.

[42] Aleksandr Miroliubov, "Visual programming – an alternative way of

developing software," Thesis Bachelor of Engineering: Information

and Communications Technology, Metropolia University of Applied

Sciences, 2018.

[43] Gábor Csapó, "Placing event-action-based visual programming in the

process of computer science education," Acta Polytechnica

Hungarican, vol. 16, no. 2, University of Debrecen, 2019.

[44] Jeremy T. Bradley, "An examination of aspect-oriented programming

in industry," Technical Report, Colorado State University, USA,

2003.

[45] G. Lommerse, F. Nossin, L. Voinea, and A. Telea, "The visual code

navigator: an interactive toolset for source code investigation," in:

IEEE Symposium on Information Visualization (INFOVIS),

Minneapolis, MN, pp24-31, 2005.

[46] Zhang, K., Kong, J., and Cao, J., "Visual software engineering,"

Wiley Encyclopedia of Computer Science and Engineering, 2007.

[47] P. Ahmed and S. Ahmadi, "Extended visual object based intelligent

visual programming environment," in: Proceedings of the 4th

International Conference on Information and Automation for

Sustainability (ICIAFS), Colombo, pp224-229, 2008.

[48] J. Bennett, K. Cooper and L. Dai, "Aspect-oriented model-driven

skeleton code generation: a graph-based transformation approach,"

Science of Computer Programming, Elseiver, vol. 75, no. 8, pp689-

725, 2010.

[49] H.S. Son, W.Y. Kim, and R.Y.C. Kim, "MOF based code generation

method for Android platform," International Journal of Software

Engineering and Its Applications, vol. 7, no. 3, 2013.

[50] G.C. Murphy, R.J. Walker, and E. L. A. Banlassad, "Evaluating

emerging software development technologies: lessons learned from

assessing aspect-oriented programming," IEEE Transactions on

Software Engineering, vol. 25, no. 4, pp438-455, 1999.

[51] J. Bezivin, "Model driven engineering: an emerging technical space,"

Lecture Notes in Computer Science: Generative and

Transformational Techniques in Software Engineering (GTTSE), vol.

4143, pp36-64. Springer Berlin, Heidelberg, 2006.

[52] Cristina Videira Lopes, "Aspect-oriented programming: an historical

perspective (what's in a name?)," ISR Technical Report, Institute for

Software Research, University of California, Irvine, 2002.

Sassi BENTRAD obtained his Master degree in

Computer Science and PhD in Software Engineering

from the University of Badji Mokhtar-Annaba

(UBMA), Algeria, in 2009 and 2015, respectively.

Since 2015, he was appointed as an Assistant Professor

at the department of Computer Science at the

University of Chadli Bendjedid El-Tarf (UCBET).

Currently, he is a researcher at the LISCO laboratory.

His research interests include Software Visualization,

Visual Programming, Model-Driven Engineering, and

Separation of Concerns.

Hasan KAHTAN KHALAF is Lecturer with the

Faculty of Computer Systems & Software Engineering,

Universiti Malaysia Pahang (UMP), Malaysia.

Currently, he is a member at the Software Engineering

Research Group (SERG). His research interests include

Software Security and Dependability Attributes, Fuzzy

Logic Approach, Visualization, and Big Data.

Djamel MESLATI is a Professor in the department of

Computer Science at the University of Badji Mokhtar-

Annaba (UBMA), Algeria. He is the head of the LISCO

laboratory (Laboratoire d’Ingéniérie des Systèmes

COmplexes). His current research interests include

Software Development, Evolution Methodologies, and

Separation of Concerns.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_08

Volume 47, Issue 4: December 2020

__

http://www.eclipse.org/acceleo
http://www.craft.ai/blog/the-maturity-of-visual-programming/
http://www.craft.ai/blog/the-maturity-of-visual-programming/

