
Iterative Method for Image Compression by Using
LSPIA

Lijuan Hu, Yeqing Yi, Chengzhi Liu, and Juncheng Li

Abstract—In this paper, the curve fitting by cubic B-spline
curves is used to compress gray-level images. The fitting tool
is the progressive and iterative approximation method for least
square fitting (LSPIA), which is used to approximate scanned
image data. Different from the existing methods by using
piecewise curves, the image data are fitted by a single curve.
Hence it can well preserve the relative information between
neighborhood pixels. In particular, to reduce the compression
ratio, we further exploit some techniques to save storage
space. Numerical implements show that the proposed method
outperforms the existing methods by using fitting curves.

Index Terms—image compression, LSPIA, cubic B-spline,
Hilbert scan, curve fitting.

I. INTRODUCTION

IN digital image processing, many image files with large
amount of data are generated. These files usually need

to be stored or transmitted. Therefore, an effective image
compression method is often required to store and transmit
these files. Digital images can be compressed because they
often contain redundant and unrelated information. The task
of image compression is to eliminate these redundant and
unrelated information. Despite the fact that there exist a large
amount of image compression techniques, further research
is needed to meet the continuous improvements for more
efficient compression methods. Therefore, the image com-
pression remains a hot topic in image processing, on which
various compression methods have been presented, see [1],
[2], [3].

Roughly speaking, there exist two kinds of methods for
image compression [3]. One is lossless compression, which
only removes the redundant information of the image, such
as medical images and fingerprint images, and so on. We
can accurately restore the original image after decompression
without any distortion [3], e.g., Huffman coding, arithmetic
coding. However, it is known that the compression ratio (CR)
is limited by the theory of statistical redundancy. Another is
lossy compression, which can obtain high CR by reducing
the quality of images, e.g., singular value decomposition
[3], transform coding [3], predictive coding [3], curve fitting
[4], [5] and so on. For more detailed research on image
compression techniques, we refer the reader to read recent
surveys ([1], [2], [3]).
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Curve fitting plays an important role in computer aided
geometry design (CAGD), image processing, shape modeling
and data mining. There are some works involving with curve
fitting in image compression [4], [5], [6], [7], [8], [9], [11].
It is known that the data of a scanned image are very
large, it may bring a large amount of computational cost
and cause computational instability when fitting by higher
order polynomials or non-polynomials. Hence we should
find suitable fitting curves and efficient solvers to fit these
data. Due to these reasons, piecewise curves are suggested in
fitting these scanned data. For example, piecewise Bernstein
polynomials of degree 2 [8], [9]; piecewise quasi cubic ra-
tional Bézier curve [10]; trigonometric Bézier curve [11] and
so on. Despite the fact that fitting by piecewise curves has
good fitting performance and is easy to operate, there are also
drawbacks. For instance, the continuity condition between
two adjacent curve segments can not be guaranteed, hence it
may loss the relative information of the neighborhood pixels.

Very often, it is necessary to solve a linear system in
traditional curve fitting methods. The system can be solved
by direct solvers [12], e.g., Cholesky factorization, Gauss
elimination with partial pivot and QR factorization. However,
it is known that the solutions solved by direct solvers may be
loss of accuracy and instability when the condition number of
the coefficient matrices are very large [12]. We note in [13]
that for large scale problems, the iterative methods would be
good choices. In 2014, an efficient and robust iterative fitting
method, named LSPIA, was proposed by Deng et al. [14]. It
has the property of shape preserving and can deal with large
data. Moreover, we can adjust the control points until the
fitting error satisfies a given tolerance. These elegant merits
make convenience in using the LSPIA in curve fitting. This
naturally arises a question that whether we can apply the
LSPIA to fit the image data and thus compress the image.
In this paper, we study the application of LSPIA in image
compression by using cubic B-spline curves.

This paper is organized as follows. In section II we review
the least square fitting method and the methodology of
LSPIA. The image compression algorithm is presented in
Section III. Some image compression examples are given to
illustrate the effectiveness of the proposed method in Section
IV. Some improvement are presented in Section V. A brief
conclusion is drawn in Section VI.

II. CURVE FITTING BY USING CUBIC B-SPLINE

A. Least square fitting curve

Let us first recall some details for the conventional curve-
fitting method in CAGD.

Given a data points {Qj}mj=0 to be fitted, and tj be the
parameters of Qj such that 0 = t0 < t1 < . . . < tm < 1.
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The aim of curve fitting is to find a cubic B-spline curve

r(t) =
n∑

i=0

PiBi,3(t), (1)

that approximates the points {Qj}mj=0 best. Here the {Pi}ni=0

in (1) are the control points to be determined, Bi,3(t) are
the cubic B-spline basic functions defined at the knot vector
{0 = u0 = u1 = u2 = u3 < u4 < u5 < . . . < un < un+1 =
un+2 = un+3 = un+4 = 1}, in details

Bi,0(t) =

{
0 if ui ≤ t ≤ ui+1;
1 otherwise.

Bi,p(t) =
t− ui

up+1 − ui
Bi,p−1(t) +

ui+p+1 − t

ui+p+1 − ui+1
Bi+1,p−1(t),

p = 1, 2, 3.

For simplicity, we denote the cubic B-spline basic functions
Bi,3(t) by Bi(t) in this paper. Oftentimes, the number of the
control points is less than that of the points to be fitted, i.e.,
n < m.

The main idea of the least square fitting (LSF) method is
to find an optimal control polygon {Pi}ni=0 that minimizes
the distances between r(t) and {Qj}mj=0, i.e.,

min f(P0,P1, . . . ,Pn) = min
Pi

m∑
j=0

‖Qj − r(tj)‖2

= min
Pi

m∑
j=0

‖Qj −
n∑

i=0

PiBi(tj)‖2.

(2)

The norm in (2) is the Euclidean norm.
The optimal curve r(t) obtained by solving (2) is said to be

the LSF curve of {Qj}mj=0. To minimize f(P0,P1, . . . ,Pn),
set the gradient of f to zero, i.e.,

∂f

∂Pi
= −2

m∑
j=0

Bi(tj)‖Qj −
n∑

i=0

PiBi(tj)‖ = 0,

i = 0, 1, . . . , n.

Hence, we have

Qj −
n∑

i=0

PiBi(tj) = 0, j = 0, 1, . . . ,m. (3)

Let P = [P0,P1, . . . ,Pn]
T and Q = [Q0,Q1, . . . ,Qm]T .

Then the equations (3) can be written in the matrix form

BP = Q, (4)

where the matrix B = (Bi(tj))
j=0,1,...,m
i=0,1,...,n is the so-called

collocation matrix resulting from the cubic B-spline basis.
Therefore the control polygon {Pi}ni=0 can be obtained by
solving the linear system (4). Since n < m, the system (4)
is over-determined and can be solved by solving the related
system of normal equations, i.e.,

BTBP = BT Q. (5)

As mentioned earlier, the system (5) can be solved by di-
rect solvers or iterative methods. In the following subsection,
we will introduce an iterative method for curve fitting with
clear geometric meaning.

In curve fitting, we need to measure the fitting error.
Let {Qj}mj=0 be the points to be fitted and tj be their
corresponding parameters. Then we use

ε =

√√√√ 1

m+ 1

m∑
j=0

‖Qj − r(tj)‖2. (6)

to represent the fitting error of the fitting curve r(t).

B. LSPIA by using cubic B-spline

Given an ordered points set {Qj}mj=0 to be fitted, and tj be
the parameters of Qj such that 0 = t0 < t1 < . . . < tm < 1.

Firstly, we select {P(0)
i }ni=0 from {Qj}mj=0 as the initial

control points and construct the initial approximate fitting
curve

r(0)(t) =
n∑

i=0

P(0)
i Bi(t).

Let δ(0)j = Qj − r(0)(tj), j = 0, 1, . . . ,m. Then the first
adjusting vector for the i-th (i = 0, 1, . . . , n) control point
is given by

∆
(0)
i = µ

m∑
j=0

Bi(tj)δ
(0)
j ,

where µ ∈ (0, 2/λ0) is a constant, λ0 represents the largest
eigenvalue of BTB.

Next, we can generate a new approximate fitting curve

r(1)(t) =
n∑

i=0

P(1)
i Bi(t),

where P(1)
i = P(0)

i +∆
(0)
i , i = 0, 1, . . . , n.

Suppose that we have obtained (k − 1)-th (k = 1, 2, . . .)
curve r(k−1)(t), then the k-th approximate fitting curve can
be generated by

r(k)(t) =
n∑

i=0

P(k)
i Bi(t), (7)

where 
P(k)
i = P(k−1)

i +∆
(k−1)
i ,

∆
(k−1)
i = µ

m∑
j=0

Bi(tj)δ
(k−1)
j ,

δ
(k−1)
j = Qj − r(k−1)(tj).

(8)

Therefore, we get a sequence of curves r(k)(t), k =
0, 1, . . .. The initial curve is said to have the LSPIA property
if r(k)(t) is convergent. The limit curve of r(k)(t) is the LSF
curve of {Qj}mj=0. Deng et al. proved that the B-spline curves
have the LSPIA property [14].

Let P(k) = [P(k)
0 ,P(k)

1 , . . . ,P(k)
n ]T . Then the euqations (8)

can be written in the matrix form

P(k+1) = BT Q + (I − µBTB)P(k). (9)

The LSPIA property means that the sequence of control
polygons {P(k)

i }ni=0 converges to the control polygon of the
LSF curve.

For LSPIA, the fitting error of the k-th approximate fitting
curve r(k)(t) is given by

ε(k) =

√√√√ 1

m+ 1

m∑
j=0

∥∥Qj − r(k)(tj)
∥∥2. (10)
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III. IMAGE COMPRESSION ALGORITHM

In this section, we employ the LSPIA for cubic B-spline
curves to fit the image data. Curve fitting means to replace
the original data points with less control points. Thus, we
can reach the aim of data compression by LSPIA, and we
illustrate in Fig. 1 the main process of image compression.

Fitting the 

scanned data

by LSPIA

Hilbert 

scan

Original 

image

Compressed 

image

Sample at 

the fitting

curve

Fig. 1. The main process of image compression.

A. Construction of Hilbert curve

To compress a image, one has to convert the 2-dimensional
image data to a 1-dimensional sequence by scanning the
image. There are many methods to scan images [9], e.g.,
raster scan, Z-scan and Hilbert scan, etc. Recently, re-
searchers are more likely to use Hilbert scan in the area of
image processing because the Hilbert scan can preserve the
relationship of the neighborhoods pixels as much as possible.
In [9], Biswas compared the raster scan with Hilbert scan and
concluded that Hilbert scanned images can provide better CR
than raster scanned images. Therefore, we use Hilbert scan
in this paper. For more details about Hilbert scan, readers
can refer to [9]. We show in Fig. 3 two Hilbert curves of
Lena and Girl given in Fig. 2.

(a) Lena (b) Girl

Fig. 2. Original 128× 128 ′Lena′ and ′Girl′.

B. Fitting the Hilbert curve by LSPIA

Suppose that we have obtained the 1-dimensional sequence
{Qj}mj=0 by scanning the image. Then the LSPIA for B-
spline is employed to fit {Qj}mj=0. Before giving the image
compression algorithm, we discuss some implementation
details of LSPIA.

1) Parametrization: Since the abscissas of Qj(j =
0, 1, . . .m) are distributed uniformly, we can employ the
uniform parametrization in which we assign a parameter
tj = j/m for Qj .

Remark 3.1: The parametrization of data points is a diffi-
cult hotpot and plays important role in curves representation.
In general, the accumulated chord parametrization is superior
to the uniform one in curves representation. While in image
compression, the uniform parametrization will yield smaller
CR, which will be discussed later.
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(a) Lena
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(b) Girl

Fig. 3. The corresponding Hilbert curves of Lena and Girl in Fig. 2.

For comparison, the accumulated chord parametrization is
also used in numerical examples, and is given by

t0 = 0, tm = 1,

tj = tj−1 +
‖Qj −Qj−1‖

D
, j = 1, 2, . . . ,m− 1,

(11)

where D =
m∑
j=0

‖Qj−Qj−1‖ is the totally chord length [14].

2) Computation of knot vector: We use the same knot
vector as in [14], i.e.,

u0 = u1 = u2 = u3 = 0,

uj+3 = (1− α)ti−1 + αti, j = 1, 2, . . . , n− 3,

un+1 = un+2 = un+3 = un+4 = 1,

(12)

where i = djde, α = jd− i, d = m+1
n−2 and dxe is the largest

integer not large than x.
3) Selection of initial control points: We note in [14] that

the initial points {P(0)
i }ni=0 can be set arbitrary in theory. In

this paper, the selection of the initial control points {Pi}ni=0

is the same as the method used in [14], i.e.,

P(0)
0 = Q0, P(0)

n = Qm,

P(0)
i = Qf(i), i = 1, 2, . . . , n− 1,

(13)
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where f(i) =
⌈
(m+1)i

n

⌉
.

C. Compression quality metrics

Very often, the peak signal to noise ratio (PSNR) and the
CR are used to measure the quality of the compressed image.
We review the definitions of CR and PSNR [1].

For the original data Qj(j = 0, 1, . . . ,m) and the recon-
structed data Q̃j = r(k)(tj), the PSNR is defined as

PSNR = 10× log10
2552

MSE
, (14)

where MSE = 1
m+1

m∑
i=0

[
Qj − r(k)(tj)

]2
. The PSNR is

usually termed as bit per pixel (bpp). Generally speaking,
the bigger the PSNR, the higher the quality of the image,
and vice versa.

The CR is defined as

CR =
Bc

Buc
, (15)

where Bc represents the number of bits in compressed data,
Buc represents the number of bits in uncompressed data. The
CR is termed as bit per pixel (bpp) in image compression.

Next we discuss the CR of the proposed method. Given an
image of size M×M pixels with gray levels {0, 1, . . . , 255}.
Since the corresponding Hilbert curve is approximated by
a cubic B-spline curve r(k)(t), which can be stored by
saving the control points P(k)

i (i = 0, 1, . . . , n) as well as
the knot vector ui(i = 0, 1, . . . , n). Besides, having obtained
the fitting curve r(k)(t), we need to save the parameters tj
when regenerating the approximate image data by sampling
at tj , i.e., r(k)(tj)(j = 0, 1, . . . ,m). Clearly, it will bloats
the repository unnecessarily, making it difficult to compress
image efficiently. It should be pointed out that when the
uniform parametrization is used, we never need to worry
about saving tj . In addition, we can obtain the knot vector
ui according to (12). This means that we can save massive
storage space.

According to (7), we remark that the coordinates of the
control points P(k)

i do not always to be integers. It is well
known that the decimals require larger storage space than
the integers. To save storage space, we only take the integer
parts of the coordinates as the control points of the cubic
B-spine curve. This can be desirable in image compression
for the following two reasons. On one hand, since Bi(t) ≤
1 (t ∈ [0, 1]), the decimal parts of the coordinates have a
little influence on the results. More exactly, the impact of the
ignored decimal parts on the recovered data is no more than
1. On the other hand, the image data are in the gray levels
{0, 1, . . . , 255}. We have to round off the decimal parts of the
recovered data. The rationality of integration of the control
points is also verified by numerical experiments.

D. Image compression algorithm

To ensure the computational efficiency, the iteration (9)
can also be terminated, if the following stopping criterion

ε(k) ≤ θε(k−1), θ ∈ (0, 1), (16)

is satisfied.

Finally, we summarize the image compression algorithm
into the following Algorithm 3.2.

Algorithm 3.2: (Image compression algorithm)
Input: a gray-level image.
Output: a compressed image.

1) Scan the image to obtain the Hilbert sequence
{Qj}mj=0.

2) Parameterize Qj with tj and select the initial control
points {P(0)

i }ni=0 according to (13).
3) Compute the knot vector for cubic B-spline according

to (12).
4) Compute the collocation matrix B and the optimal

value of µ.
5) For k = 1, 2, . . . , kmax

(a) Update P(k) = µBT Q + (I − µBTB)P(k−1).
(b) Compute the fitting error ε(k) according to (10).
(c) If ε(k) ≤ θε(k−1), break for.

End for.
6) Compute the approximate fitting curve r(k)(t) accord-

ing to (7).
7) Sample at tj and obtain the recovered data Q̃j =

r(k)(tj), j = 0, 1, . . . ,m.
8) Calculate the PSNR and the CR according to (14) and

(15), respectively.
9) Display the compressed image.

IV. IMAGE COMPRESSION EXAMPLES

In this section we employed Algorithm 3.2 to test the
following two well-known images, which are often used to
illustrate the effectiveness of image compression methods.
All the numerical experiments were done by Matlab R2012b
on a PC with Intel(R) Core(TM) i5-5200U CPU @2.20 GHz
and RAM 6GB.

Firstly, we select n = 6200 control points when we
compress the Lena image and select n = 4745 control points
when we compress the Girl image. The fitting errors of
the approximate fitting curves r(k)(t) and the PSNR of the
compressed images are shown in Fig. 4(a) and Fig. 4(b),
respectively. We observe that the fitting error decreases fast
in the first several iterations, and then decreases slowly. Sim-
ilarly, the PSNR increases fast in the first several iterations,
and then slows down. Therefore, there is no need to iterate
many times because it is time-consuming. Hence we add a
terminal condition (16) and we set θ = 0.98 in our tests.

By using two different parametrization methods, we list
in Table I the number of iterations required, the CR and
the PSNR of the compressed images obtained by Algorithm
3.2. We denote by UP the uniform parametrization, by ACP
the accumulated chord parametrization, by n the number of
control points of cubic B-spline curve, and by k the iteration
number required, respectively. In our tests, we test different
n.

From Table I, we observe that the quality of the com-
pressed images is improved as the number of control points
increases. Consequently, the CR increases. Besides, despite
the fact that the accumulated chord parametrization can
provide good results for compression of images. As stated in
Section III-C, it is not advisable in practice, because it will
take up lots of storage space to save the knot vectors and
parameters.
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Fig. 4. The fitting error and PSNR of the compressed image versus the
iteration.

TABLE I
NUMERICAL RESULTS OF COMPRESSED 128× 128 IMAGES

Image n CR
UP ACP

k PSNR k PSNR

Lena

4000 0.4883 8 26.3166 8 27.4178
5000 0.6104 7 27.2148 7 28.3812
6000 0.7324 9 28.1842 9 29.8114
7000 0.8545 10 29.1810 10 31.4707
8000 0.9766 10 30.0596 10 32.8733
9000 1.0986 12 31.1216 12 34.0487

Girl

4000 0.4883 7 29.2893 7 29.9472
5000 0.6104 7 30.0564 7 30.7359
6000 0.7324 9 31.0910 9 32.4577
7000 0.8545 10 32.0776 10 34.1655
8000 0.9766 9 33.0083 9 35.7128
9000 1.0986 11 34.0185 11 36.6352

In Fig. 5 and 6, we show the cubic B-spline curves with
different n when fitting the scanned Hilbert curves in Fig.
3. In Fig. 7, we show the compressed images obtained by
Algorithm 3.2. All the numerical results demonstrate that
the proposed method achieves a good performance in image
compression.

Secondly, we employ Algorithm 3.2 to compress 256 ×
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(a) n = 5000
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(b) n = 8000

Fig. 5. Fitting the scanned Hilbert curves of Lena in Fig. 3(a).

256 gray images. In Table II, we list the numerical results
obtained by Algorithm 3.2. The numerical results obtained
by Biswas’s methods [9] are also listed for comparison. We
can observe that with the same CR, the PSNR of Algorithm
3.2 is bigger than those of Biswas’s methods. This means that
our method performs much better than Biswas’s methods.

The compressed Lena and Girl images are shown in
Fig. 8 and 9, respectively. We can see that the compressed
images obtained by Biswas’s methods suffer from visible
blocking artifacts, while the compressed images obtained by
Algorithm 3.2 could avoid blocking artifacts satisfactorily.
Furthermore, it can be found from the detailed figures in
Fig. 8 and 9 that there exists sawtooth effect at the edges,
no matter whether Algorithm 3.2 or Biswas’s methods are
used. But the images compressed by Algorithm 3.2 have
the weaker sawtooth effect than those by Biswas’s methods.
These results indicate that the proposed method not only
reduces blocking artifacts and sawtooth effect but also has
more compression effect than Biswas’s methods.

V. DISCUSSION AND IMPROVEMENT

Oftentimes, compressed images are polluted by many
kinds of noises during the process of image compression,
especially in lossy compression. Consequently, it will bring
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Fig. 6. Fitting the scanned Hilbert curves of Girl in Fig. 3(b).

TABLE II
COMPARISON OF ALGORITHM 3.2 WITH BISWAS’S METHODS [9]

Image Algorithm 1 [9] Algorithm 2 [9] Algorithm 3.2

CR PSNR CR PSNR CR PSNR

Lena 1.44 30.577 1.44 31.222 1.44(11796) 33.641
1.28 29.757 1.34 30.821 1.28(10485) 33.495

Girl 1.09 30.577 1.07 30.436 1.07(8765) 36.010
0.67 27.692 0.68 28.811 0.67(5488) 32.872

unbearable block artifacts, sawtooth effect at the edges and
other defects. At this time, we can improve the quality of
the compressed images by employing some pre-processing
or post-processing techniques, such as transform coding [3],
image filtering [15] and so on.

Here we use some image filtering algorithms to reduce the
sawtooth effect at the edges. The median filtering [15] and
the Gauss filtering [16] algorithms are employed to filtering
the compressed image in Fig. 7(c). The filtered images are
illustrated in Fig. 10. From these two examples we conclude
that the image filtering algorithms can reduce the sawtooth
effect of the compressed images but can not eliminate it
entirely.

(a) n = 5000, Lena (b) n = 8000, Lena

(c) n = 5000, Girl (d) n = 8000, Girl

Fig. 7. Compressed 128× 128 images.

(a) Original 256× 256 image (b) By Algorithm 1 [9], CR = 1.28

(c) By Algorithm 3.2, CR = 1.28 (d) By Algorithm 3.2, CR = 1.44

Fig. 8. Comparison of compressed Lena images.

VI. CONCLUSIONS

In this paper, we have exploited an image compression
algorithm by using LSPIA due to its efficient and reliable
performance in data fitting. Compared with the other curve
fitting methods, the proposed method can well preserve the
relative information between neighborhood pixels. Numerical
experiments also show that the proposed method outperforms
the similar image compression methods, in terms of the
CR, the PSNR and the blocking artifacts of the compressed
images.
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(a) Original 256× 256 image (b) By Algorithm 1 [9], CR = 0.67

(c) By Algorithm 3.2, CR = 0.67 (d) By Algorithm 3.2, CR = 1.07

Fig. 9. Comparison of compressed Girl images.

(a) Median filter (b) Guass filter

Fig. 10. Post-processing the compressed image in Fig. 8(c) with image
filter.

As a shortcoming of this paper, we use a single curve
to approximate the image data. This technique increases the
quality of the compressed image at the cost of computational
time.
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