
Multi-LSB and Modified Vernam Cipher to
Enhance Document File Security

Erna Budhiarti Nababan*, Member, IAENG, Goklas Tomu Simbolon, Opim Salim Sitompul, Member, IAENG

Abstract—Numerous methods can be used to secure im-
portant information from potential misuses. Generally, there
are two methods of data security, namely steganography and
cryptography. Least significant bit (LSB) is a method that
is often used in steganography, whereas the Vernam cipher
is a popular cryptographic algorithm used for encryption.
However, the simplicity of the LSB method and Vernam cipher
is inappropriate for long term use. Thus, the Vernam cipher is
modified to be more complex, wherein the bit arrangement
of each character is modified, and the plaintext content is
scrambled by rotating the bits prior to the XOR operation. The
LSB method is also modified using multi-bit LSB which can
be used to insert as much as 1-, 2-, 3-, or 4-bit information. In
this study, the combination of steganography and cryptography
methods are tested to evaluate the influence of character length
and image resolution on the mean-square error (MSE) and peak
signal-to-noise ratio (PSNR) values and then to compare the
percentage of pixel usage at each bit insertion level. The result
shows that the resulting stego images are good in concealing
the secret information, which give small MSE values and PSNR
values > 40. In addition, the use of 4-bit LSB is still feasible and
use smaller percentage of storage. The application of multi-bit
LSB method in steganographic activities is thus advantageous,
in term of each pixel can hold more message bits compared
with the conventional LSB method.

Index Terms—Cryptography, LSB, Steganography, Vernam
encryption.

I. INTRODUCTION

ACCORDING to the Cisco Visual Networking Index, the
global IP traffic that occurred in 2022 was estimated to

reach 4.8 zettabytes per year [1]. Given this amount of traffic,
data security is becoming increasingly important, particularly
for sensitive data, such as company data and state security
information, authentications are more threatened than ever
due to the unlimited copying [2]. Digital information is
indirectly transmitted through a data network via a small
electric current that is used as a link to analog signals [3].
Data often comprise important information that must be
properly secured to prevent theft by certain parties [4], [5],
[6].

Steganography and cryptography are two methods of se-
curing data. Steganography conceals data, whereas cryp-
tography secures data by encoding the plaintext. Acts of
crime are becoming more advanced, and consequently, these
methods often fail. Various types of data theft are performed

Manuscript received September 26, 2019; revised August 12, 2020.
*Corresponding author: E. B. Nababan is with the Department of Informa-

tion Technology, Faculty of Computer Science and Information Technology,
Universitas Sumatera Utara, Medan, Indonesia, phone/fax: +6261822139;
+6261822129; (e-mail: ernabrn@usu.ac.id)

G. T. Simbolon formerly was a graduate student at Department of
Computer Science, Universitas Sumatera Utara; Medan, Indonesia; (e-mail:
gks.simbolon@gmail.com)

O. S. Sitompul is with the Department of Information Technology, Faculty
of Computer Science and Information Technology, Universitas Sumatera
Utara, Medan, Indonesia (e-mail: opim@usu.ac.id)

to solve well-encrypted ciphertexts; hence, the power of
steganography and cryptography must be increased through
various methods.

The least significant bit (LSB) steganography technique
operates by replacing the rightmost bit of each pixel corre-
sponding to the message bit. Herein, three color elements of
a pixel in a color image: red, green, and blue are alternately
used. The vulnerability of LSB lies in the placement of plain-
text bits in one row, allowing intruders to easily extract bits
of confidential information. Thereby, the aim of this study
is to improve data security by combining steganography and
cryptography techniques.

The Vernam algorithm encrypts data by performing
exclusive-OR (XOR) operations on each plaintext charac-
ter in a given set of data. This algorithm is modified by
rotating bits. After obtaining the cryptographic results, the
ciphertext is concealed via the multi-bit LSB steganography
technique on 24-bit image using several storage bit models.
Steganography suppresses each bit of information into RGB
color components [7], and multi-bits can be used to increase
security by creating variations of the LSB technique [7], [8],
[9]. Each sample is tested for the mean square error (MSE)
and peak signal-to-noise ratio (PSNR) values obtained from
stego-images, which are used to determine the best quality
image with smallest error rate; this finest image could then
be used as the storage image. In this manner, the hybrid
technique can be used to improve data security.

II. CRYPTOGRAPHY AND STEGANOGRAPHY
ALGORITHMS

A. Vernam Algorithm

The Vernam cipher is an algorithm based on the principle
that each character in the plaintext is encrypted using the
XOR process against a certain generated key [10], [11]. The
provided key is generated repeatedly or extended to have
as many plaintext lengths. In the Vernam cipher algorithm,
a symmetric key type signifies that the same key is used
for both encryption and decryption. The Vernam cipher’s
vulnerability could be identified by the use of simple XOR
operation for both plaintext encryption and decryption. The
following illustration of message encryption and decryption
are performed using the Vernam algorithm.

The encryption process is initiated by representing each
character of the plaintext in ASCII character set binary
format and then XORing each binary character with a
provided key which also reprented in the same binary format.
For example, a plaintext: “binary” and key: “modify” will
generate a cipher text: ›˚˙˛»`.

01100010 01101001 01101110 01100001 01110010 01111001
01101101 01101111 01100100 01101001 01100110 01111001⊕
00001111 00000110 00001010 00001100 00010100 00000000

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_11

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



The same process is performed in decryption process in order
to recreate the plaintext “binary” from the ciphertext.

00001111 00000110 00001010 00001100 00010100 00000000
01101101 01101111 01100100 01101001 01100110 01111001⊕
01100010 01101001 01101110 01100001 01110010 01111001

B. Least Significant Bit (LSB)

An eight-bit binary string could be viewed as an integer
number, in which bits are ordered from left to right direction
showing the most significant bit (MSB) located at the left-
most bit (bit poition 0) to least significant bit (LSB) located
at the right most bit (bit position 7). In this ordering scheme,
bit sequencing from 0 to 7 could represent the intensity value
of a color. For example,

value: 27 26 25 24 23 22 21 20

number: 0 1 1 1 0 0 0 0

position: 0 7(LSB)

In this illustration, the MSB is located at bit position 1
(26), representing number with a value of 112 in decimal.
The value will change quickly if the LSB’s change. For
example, 1-bit LSB changes from (01110000) to (01110001)
resulting a difference value of 1 (113), 2-bit LSB changes
from (01110000) to (01110011) resulting a difference value
of 3 (115), and a 3-bit LSB changes from (01110000) to
(01110111) will result a difference value of 7 (119).

C. Steganography

Steganography, which is a Greek term that means “closed
writing,” is the technique of communicating by hiding the
existence of messages. Steganography plays an important
role in data security, whereby a steganography system com-
prises three elements: the cover image, secret message, and
stego-image. Digital images are represented using X and Y
coordinates that contain three color elements in each pixel.
Typically, a gray image uses 8 bits, whereas a color image
uses 24 bits to describe the RGB color model.

Several techniques exist for hiding information in the cover
image. Spatial domain techniques manipulate pixel bit values
to embed confidential information, and message bits are
directly encoded into the pixel bits of the cover image. Thus,
spatial domain techniques can be easily implemented [12].

In digital steganography, messages can be hidden by
manipulating and storing information in pixels. If a user
manipulates a 2-bit LSB in each color component in pixels,
the value of the color component changes, at maximum, from
-3 to +3, which may not be distinguishable to the human eye
[13]. An illustration of how these manipulation of the 2-bit
LSB values of a 24-bit RGB black color could be seen in
Table I.

D. Fidelity Measurement

Fidelity is a security element in the practice of hiding se-
cret messages. The measurement of fidelity in steganography
can be performed by calculating values of the mean squared
error (MSE) and Peak Signal-to-Noise Ratio (PSNR) [14]
as shown in (1) and (2), respectively. The PSNR is usually
measured in decibels (dB). To determine the PSNR, first,
the average value of the square of the MSE error must be

TABLE I
COLOR VARIATION OF 2-BIT MODIFICATION OF A BLACK IMAGE

R G B Image

Dec 0 0 0

Hex 0h 0h 0h

Bin 00000000 00000000 00000000

R G B Image

Dec 3 3 3

Hex 3h 3h 3h

Bin 00000011 00000011 00000011

Fig. 1. Black color image: (a) RGB(0,0,0) (b) RGB(3,3,3)

determined. If the MSE value is small, a large PSNR value
is produced, and vice versa. Images with a PSNR value ≥ 40
dB are considered high-quality images [15].

The MSE value can be calculated using the following
formula:

MSE =

∑M
i=1

∑N
j=1 [f(i, j)− g(i, j)]2

MN
(1)

where MSE is the MSE value of the image; M is the length of
the image (in pixels); N is the width of the image (in pixels);
while f(i, j) and g(i,j) are the value of the pixel coordinates
of the stego image and cover image. After calculating the
MSE value, the PSNR value can be calculated as in (2).

PSNR = 10× log10
(C2

max

MSE

)
(2)

In (2) the PSNR value of the image is calculated in terms of
logarithm of the maximum pixel value Cmax divided by the
value of MSE. For RGB color images with values in each
pixel, the MSE value is calculated for each color component,
and then all values are summed-up and divided by 3 as shown
in (3).

MSE =

(∑n

i=1

[
(R

′
i −Ri)

2 + (G
′
i −Gi)

2 + (B
′
i −Bi)

2
])
/3

MN
(3)

In (3), R
′

i, G
′

i, B
′

i are the RGB components of the stego
image ith-pixel, Ri, Gi, Bi are the RGB components of
the cover image ith-pixel, whereas M and N denote the
dimensions of the image.

Fig.1 shows an example of changing two bits of LSB
values of a black image. The color difference between the
two images is almost not detected with bare human eyes. In
fact, this difference could be calculated in terms of MSE and
PSNR using (3) and (2), respectively.

III. METHODOLOGY

The document file security model used in this research
could be viewed as consists of three stages: input preparation
stage, cryptography stage using modified Vernam cipher, and
the steganography stage using multi-bit LSB. The general
architecture of the system design is shown in Fig.2.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_11

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



Fig. 2. General Architecture

TABLE II
CONFIDENTIAL LETTERS (CF) IN .DOCX FILE

No .docx Number of charachters Size (bytes)

1. CF1 1450 13722

2. CF2 2149 13824

3. CF3 1925 14029

4. CF4 4746 21095

A. Input Preparation Stage

In this study we used samples of confidential letters of a
person or an agency which need to be kept securely. Number
of characters and size of .docx file used are shown in Table
II. Input in the form of a .docx file is limited to characters
that can be changed in ASCII code, and the system cannot
encrypt tables, images, or symbols.

The steps performed in this preparation stage are initiated
by retrieving content of the .docx file. Each ASCII character
extracted is then represented in its corresponding 2-digit
hexadecimal in order to simplified the conversion of the
character into binary digit.

B. Modified Vernam Cipher

Modification of Vernam cipher algorithm is performed
through bits rotation, whereby all character bits are rotated to
the left. The cryptography key is also converted into binary
digit from its 2-digit Hex representation before the key bit
positions are rotated to the right. The two rotated bits are
XORed to produce an encrypted character. One character
contains 8 bits, and bit rotation is performed from the 1st bit
to the 8th bit (this might be adjusted as needed). Because one
character contains 8 bits, if the rotation is performed more
than eight times, the bit position will return to its original
position; i.e., 9-bit rotation is the same as 1-bit rotation,
whereas 8-bit rotation is the same as 0-bit rotation.

The process of modifying the Vernam algorithm for en-
cryption is illustrated as in the following.

1) Modifying the Vernam algorithm for encryption:
Step 1. Read plaintext:
The first step is to read the plain text characters, represented
by P0, P1, ..., P4.

P0 P1 P2 P3 P4

Step 2. Convert into bit:
Each of the plain text character is converted into 8 binary
digits, represented by B00, B01, ..., B07 for P0, etc.

B07 B06 B05 B04 B03 B02 B01 B00 → P0
B17 B16 B15 B14 B13 B12 B11 B10 → P1
B27 B26 B25 B24 B23 B22 B21 B20 → P2
B37 B36 B35 B34 B33 B32 B31 B30 → P3
B47 B46 B45 B44 B43 B42 B41 B40 → P4

Step 3. Perform plaintext 1-bit left rotation:
Each binary digit of the plain text character is rotated to the
left one bit, displacing bits positon left circularly.

B06 B05 B04 B03 B02 B01 B00 B07 → P0’
B16 B15 B14 B13 B12 B11 B10 B17 → P1’
B26 B25 B24 B23 B22 B21 B20 B27 → P2’
B36 B35 B34 B33 B32 B31 B30 B37 → P3’
B46 B45 B44 B43 B42 B41 B40 B47 → P4’

Step 4. Read key:
Cryptography key is read in the form of K0, K1, ..., K4.

K0 K1 K2 K3 K4

Step 5. Convert key into bits:
Each key is converted into 8-bit sequence, represented as
K00, K01, ..., K07 for K0, etc.

K07 K06 K05 K04 K03 K02 K01 K00 → K0
K17 K16 K15 K14 K13 K12 K11 K10 → K1
K27 K26 K25 K24 K23 K22 K21 K20 → K2
K37 K36 K35 K34 K33 K32 K31 K30 → K3
K47 K46 K45 K44 K43 K42 K41 K40 → K4

Step 6. Perform key 1-bit right rotation:
Each binary key character is rotated right one bit, displacing
bits position to the right circularly.

K00 K07 K06 K05 K04 K03 K02 K01 → K0’
K10 K17 K16 K15 K14 K13 K12 K11 → K1’
K20 K27 K26 K25 K24 K23 K22 K21 → K2’
K30 K37 K36 K35 K34 K33 K32 K31 → K3’
K40 K47 K46 K45 K44 K43 K42 K41 → K4’

Step 7. Create ciphertext using XOR:
Each binary representation of character text is XORed with
binary key.

B06⊕K00 B16⊕K10 B26⊕K20 B36⊕K30 B46⊕K40
B05⊕K07 B15⊕K17 B25⊕K27 B35⊕K37 B45⊕K47
B04⊕K06 B14⊕K16 B24⊕K26 B34⊕K36 B44⊕K46
B03⊕K05 B13⊕K15 B23⊕K25 B33⊕K35 B43⊕K45
B02⊕K04 B12⊕K14 B22⊕K24 B32⊕K34 B42⊕K44
B01⊕K03 B11⊕K13 B21⊕K23 B31⊕K33 B41⊕K43
B00⊕K02 B10⊕K12 B20⊕K22 B30⊕K32 B40⊕K42
B07⊕K01 B11⊕K11 B27⊕K21 B37⊕K31 B47⊕K41
↓ ↓ ↓ ↓ ↓

C0 C1 C2 C3 C4

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_11

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



2) Modifying the Vernam algorithm for decryption: As for
the decryption process the steps are reversed, in which the
first step is the XOR operation between the ciphertext and
the key. The XOR results are then rotated to the right for the
message to return to its original plaintext sequence.

Step 1. Read ciphertext:
Each chipertext character is read, represented by C0, C1, ...,
C4.

C0 C1 C2 C3 C4

Step 2. Convert ciphertext into bits:
Each chipertext character is converted into 8 binary digits,
represented by C00, C01, ..., C07 for C0, etc.

C07 C06 C05 C04 C03 C02 C01 C00 → C0
C17 C16 C15 C14 C13 C12 C11 C10 → C1
C27 C26 C25 C24 C23 C22 C21 C20 → C2
C37 C36 C35 C34 C33 C32 C31 C30 → C3
C47 C46 C45 C44 C43 C42 C41 C40 → C4

Step 3. Read key:
The cryptography key is read, represented by K0, K1, ...,
K4.

K0 K1 K2 K3 K4

Step 4. Convert key into bit:
Each cryptography key is converted into 8 binary digits,
represented by K00, K01, ..., K07 for K0, etc.

K07 K06 K05 K04 K03 K02 K01 K00 → K0
K17 K16 K15 K14 K13 K12 K11 K10 → K1
K27 K26 K25 K24 K23 K22 K21 K20 → K2
K37 K36 K35 K34 K33 K32 K31 K30 → K3
K47 K46 K45 K44 K43 K42 K41 K40 → K4

Step 5. Perform key 1-bit right rotation:
Each cryptography key is rotated one bit to the right,
displacing bits position right circularly.

K00 K07 K06 K05 K04 K03 K02 K01 → K0’
K10 K17 K16 K15 K14 K13 K12 K11 → K1’
K20 K27 K26 K25 K24 K23 K22 K21 → K2’
K30 K37 K36 K35 K34 K33 K32 K31 → K3’
K40 K47 K46 K45 K44 K43 K42 K41 → K4’

Step 6. Recreate plaintext using XOR:
The ciphertext characters are XORed with the cryptography
key to recreate the plaintext characters.

C07⊕K00 C17⊕K10 C27⊕K20 C376⊕K30 C47⊕K40
C06⊕K07 C16⊕K17 C26⊕K27 C36⊕K37 C46⊕K47
C05⊕K06 C15⊕K16 C25⊕K26 C35⊕K36 C45⊕K46
C04⊕K05 C14⊕K15 C24⊕K25 C34⊕K35 C44⊕K45
C03⊕K04 C13⊕K14 C23⊕K24 C33⊕K34 C43⊕K44
C02⊕K03 C12⊕K13 C22⊕K23 C32⊕K33 C42⊕K43
C01⊕K02 C11⊕K12 C21⊕K22 C31⊕K32 C41⊕K42
C00⊕K01 C10⊕K11 C20⊕K21 C30⊕K31 C40⊕K41
↓ ↓ ↓ ↓ ↓

P0’ P1’ P2’ P3’ P4’

Step 7. Convert into bit:
The resulting characters are then converted into 8 binary bits.

B06 B05 B04 B03 B02 B01 B00 B07 → P0’
B16 B15 B14 B13 B12 B11 B10 B17 → P1’
B26 B25 B24 B23 B22 B21 B20 B27 → P2’
B36 B35 B34 B33 B32 B31 B30 B37 → P3’
B46 B45 B44 B43 B42 B41 B40 B47 → P4’

Step 8. Perform plaintext 1-bit right rotation:
The resulting characters in binary form are rotated one bit
to the right, and the original plaintext is obtained.

B07 B06 B05 B04 B03 B02 B01 B00 → P0
B17 B16 B15 B14 B13 B12 B11 B10 → P1
B27 B26 B25 B24 B23 B22 B21 B20 → P2
B37 B36 B35 B34 B33 B32 B31 B30 → P3
B47 B46 B45 B44 B43 B42 B41 B40 → P4

C. Steganography with Multi-bit LSB
Multi-bit LSB steganography proposed in this research is

performed using several bit insertion models, namely 1-bit, 2-
bit, 3-bit, and 4-bit LSB storage, respectively. Each character,
which has been experiencing encryption process is inserted
into a cover image, bit-per-bit into the RGB components of
the image.

The LSB insertion schemes are used to store each charac-
ter (i.e., 8 bits) of the information into the RGB components
of a pixel. In this case, the more are the number of inserted
bits, the fewer are the pixels required to store the information:
1-bit insertion uses 3 pixels; 2-bit insertion uses less than
3 pixels; 3-bit insertion uses exactly 1 pixel; and 4-bit
insertion uses less than 1 pixel. In addition, unused RGB
color components can be used to store the next character.

To illustrate this process, let the RGB components of three
pixels are (234, 89, 128) for the first pixel, (128, 251, 60)
for the second pixel, and (206, 36, 60) for the third pixel.
Let the character to be inserted is character A, which is 65
(01000001) in ASCII code.

Inserting character A in 1-bit LSB storage:
R 1 1 1 0 1 0 1 0
G 0 1 0 1 1 0 0 1
B 1 0 0 0 0 0 0 0
R 1 0 0 0 0 0 0 0
G 1 1 1 1 1 0 1 0
B 0 0 1 1 1 1 0 0
R 1 1 0 0 1 1 1 0
G 0 0 1 1 1 0 1 1

From this 1-bit insertion scheme, the character A needs three
pixels, with one bit of the B component of the third pixel
will be spared for next insertion.

With 2-bit insertion scheme, the character A will need two
pixels, but two G and B components of the second pixel are
reserved for next insertion.

Inserting character A in 2-bit LSB storage:
R 1 1 1 0 1 0 0 1
G 0 1 0 1 1 0 0 0
B 1 0 0 0 0 0 0 0
R 1 0 0 0 0 0 0 1

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_11

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



If we continue with 3-bit insertion scheme, the character only
need to use exactly one pixel, but still has one bit reserved
for next insertion.

Inserting character A in 3-bit LSB storage:

R 1 1 1 0 1 0 1 0
G 0 1 0 1 1 0 0 0
B 1 0 0 0 0 0 0 1

Lastly, using 4-bit insertion scheme, the character will only
use two R and G components of the first pixel.

Inserting character A in 4-bit LSB storage:

R 1 1 1 0 0 1 0 0
G 0 1 0 1 0 0 0 1

In this scheme, the blue component of the pixel could be
reserved for further insertions.

IV. IMPLEMENTATION OF SYSTEMS AND METHODS

An example image used in this research is one containing
4 × 4 pixels, which can accommodate up to 48 bits. If
converted to characters, the image can accommodate up to
6 characters using 1-bit LSB storage. The following are the
steps for 1-bit plaintext rotation and the 1-bit key rotation.
Step 1. Read Plaintext:

S e c r e t
83 101 99 114 101 116
01010011 01100101 01100011 01110010 01100101 01110100

Step 2. Rotate left one bit:
10100110 11001010 11000110 11100100 11001010 11101000
166 202 198 228 202 232

Step 3. Read Key:
W o r l d
87 111 114 108 100
01010111 01101111 01110010 01101100 01100100

Step 4. Rotate Key right one bit:
10101011 10110111 00111001 00110110 00110010
171 183 57 54 50

Step 5. Generate ciphertext:
10100110 11001010 11000110 11100100 11001010 11101000
10101011 10110111 00111001 00110110 00110010 00100000⊕
00001101 01111101 11111111 11010010 11111000 11001000
13 125 255 210 248 200
‚ Ż ß Ò ø È

The resulted ciphertext is then concealed into an image
using multi-bit LSB storage models, such as that illustrated
in the following. In the test conducted, a 4× 4-pixel image
was used as a cover image; this could accommodate 4×4×3
bits = 48 bits (i.e., six characters) using 1-bit LSB.

The RGB decimal representation for the 4× 4 pixel cover
image is:

Byte-1 R 65 58 187 190

G 87 176 149 241

B 116 249 167 229

Byte-2 R 222 171 203 63

G 223 74 221 68

B 150 134 191 182

Byte-3 R 246 101 32 89

G 205 204 143 53

B 128 84 243 163

Byte-4 R 192 151 36 11

G 125 130 167 60

B 226 101 153 23

In order to use the 4× 4 pixel cover image as a container
for the inserted ciphertext, the RGB components are
converted into binary forms:

Byte-1 R 01000001 00111010 10111011 10111110

G 01010111 11011111 11001101 01111101

B 01110100 11111001 10100111 11100101

Byte-2 R 11011110 10101011 11001011 00111111

G 11011111 01001010 11011101 01000100

B 10010110 10000110 10111111 10110110

Byte-3 R 11110110 01100101 00100000 01011001

G 11001101 11001100 10001111 00110101

B 10000000 01010100 11110011 10100011

Byte-4 R 11000000 10010111 00100100 00001011

G 01111101 10000010 10100111 00111100

B 11100010 01100101 10011001 00010111

In this illustration, the ciphertext to be inserted: ‚ŻßÒøC
contains 48 bits.

Stego-image obtained using 1-bit LSB:

Byte-1 R 64 58 186 191
G 86 177 149 241

B 116 249 166 229

Byte-2 R 223 171 203 63

G 223 75 221 69
B 150 135 191 183

Byte-3 R 247 101 33 89

G 205 204 142 53

B 128 84 243 163

Byte-4 R 193 150 36 10
G 124 130 166 61
B 226 101 152 23

The boldface numbers in the illustration show the bits that
are changed in values as a consequence of the insertions.
As can be seen, there are 21 bits and therefore, using Eq. 3

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_11

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



and 2, we can calculate MSE and PSNR of the stego-image,
respectively.

MSE = 1
16 (7) = 0.4375

PSNR = 10× log10
(

2492

0.4375

)
= 51.5142

By the same manner, we can obtained stego-images for 2-,
3- and 4-bit LSB and calculate the corresponding MSE and
PSNR as illustrated in the following.

Stego-image obtained using 2-bit LSB:
Byte-1 R 64 57 187 191

G 84 177 149 243
B 119 251 167 231

Byte-2 R 223 170 202 60
G 221 75 220 68

B 148 135 189 183
Byte-3 R 247 101 33 89

G 205 204 142 53

B 128 84 243 163

Byte-4 R 193 150 36 10

G 125 130 167 60

B 226 101 152 23

MSE = 1
16 (10.67) = 0.6667

PSNR = 10× log10
(

2492

0.6667

)
= 49.6846

Stego-image obtained using 3-bit LSB:
Byte-1 R 64 63 191 188

G 83 182 151 246
B 113 255 166 231

Byte-2 R 220 170 202 60

G 218 75 220 68

B 144 134 191 182

Byte-3 R 247 101 33 89

G 128 84 243 163

B 205 204 142 53

Byte-4 R 193 150 36 10

G 125 130 167 60

B 226 101 152 23

MSE = 1
16 (18) = 1.125

PSNR = 10× log10
(

2492

1.125

)
= 47.4142

Stego-image obtained using 4-bit LSB:

Byte-1 R 64 61 189 184
G 93 191 146 244
B 119 255 175 227

Byte-2 R 222 171 203 63

G 218 75 220 68

B 150 134 191 182

Byte-3 R 246 101 32 89

G 205 204 142 53

B 128 84 243 163

Byte-4 R 192 151 36 11

G 125 130 167 60

B 226 101 152 23

MSE = 1
16 (19.333) = 1.2083

PSNR = 10× log10
(

2492

1.2083

)
= 47.1022

V. RESULTS AND DISCUSSION

In this section, the process of combining steganography
and cryptography is evaluated. The test uses four .docx files
and three JPEG image files. The four .docx files have the
following sizes and character lengths: 13.4 KB and 1450
characters; 13.8 KB and 2149 characters; 14.0 KB and 1925
characters; and 21 KB and 4746 characters. The three images
have the following resolutions and sizes: 250×250 and 14.7
KB; 141 × 250 and 30.3 KB; and 400 × 250 and 56.2 KB.
Meanwhile, the content of the .docx files were extracted into
plaintext using C# modules, followed by encryption using
the modified Vernam cipher algorithm. The ciphertext results
were inserted in the message using the multi-bit LSB method.

Table III, Table IV, and Table V show the calculation
results of MSE and PSNR as well as percentage of pixel
values usage for each document file inserted into the three
images using 1-, 2-, 3-, and 4-bit LSB schemes.

Both MSE and PSNR values obtained from the three stego
images using all four bit LSB schemes show that the resulting
stego images are good in concealing the secret images. In
this case small MSE values and PSNR values ≥ 40 indicate
promising results.

Important results are also obtained in terms of pixel usage
which show considerable low percentages for each document
inserted. The average of pixel usage percentage for the four
documents are summarized in Table VI. As could be seen, the
average pixel usages are reciprocal to the image resolution,
whereby lower resolution images use higher percentage of
pixel. But this usage is decreasing as the number of bits
inserted are increased. Highest percentage of average pixel
usage is 19.42% with 1-bit LSB insertion in low image
resolution, and lowest percentage of 1.71% with 4-bit LSB
found in high image resolution.

VI. CONCLUSION

The results of this study indicate that the level of data
security can be enhanced by combining steganography meth-
ods with cryptography algorithms. The resolution of the

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_11

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



TABLE III
INSERTING ENCRYPTED .docx1–.docx4 FILES IN IMAGE 1

Image Resolution (WxH): 250x250

Filename (bytes)

.doc1 .doc2 .doc3 .doc4
(1450) (2149) (1925) (4746)

1-bit LSB

MSE 0.031088 0.04464 0.041258 0.101914
PSNR 63.20487 61.63356 61.97565 58.04843
Pixel Usage(%) 6.187 8.213 9.169 20.249

2-bit LSB

MSE 0.081968 0.119098 0.105104 0.267328
PSNR 58.99436 57.37173 57.91461 53.86035
Pixel Usage(%) 3.093 4.584 4.106 10.124

3-bit LSB

MSE 0.24997 0.35535 0.33952 0.791514
PSNR 54.15186 52.62418 52.82214 49.14621
Pixel Usage(%) 2.062 3.056 2.737 6.749

4-bit LSB

MSE 0.82294 1.134906 0.942256 2.638117
PSNR 48.97707 47.5812 48.38911 43.91786
Pixel Usage(%) 1.547 2.292 2.053 5.062

TABLE IV
INSERTING ENCRYPTED .docx1–.docx4 FILES IN IMAGE 2

Image Resolution (WxH): 141x250

Filename (bytes)

.doc1 .doc2 .doc3 .doc4
(1450) (2149) (1925) (4746)

1-bit LSB

MSE 0.056302 0.080406 0.072047 0.179858
PSNR 60.55712 59.00949 59.48623 55.5131
Pixel Usage(%) 10.969 16.257 14.562 35.903

2-bit LSB

MSE 0.13583 0.198458 0.175338 0.455347
PSNR 56.73215 55.08571 55.62364 51.47898
Pixel Usage(%) 5.484 8.128 7.281 17.951

3-bit LSB

MSE 0.40066 0.56712 0.520104 1.278477
PSNR 52.03462 50.52565 50.9015 46.99547
Pixel Usage(%) 3.656 5.419 4.854 11.967

4-bit LSB

MSE 1.116605 1.684614 1.400983 3.914222
PSNR 47.58431 45.7974 46.59808 42.13595
Pixel Usage(%) 2.742 4.064 3.64 8.975

cover image and character length of the encrypted message
considerably affect the MSE and PSNR values. The results
obtained from calculatiing MSE and PSNR values indicate
that the use of 1-bit LSB is superior to that of 2-, 3-, or
4-bit LSB. In addition, according to the results, the use of
4-bit LSB is still feasible because the PSNR value for 4-bit
LSB is above 40 db. Furthermore, the smaller percentage of
pixel usage in 4-bit LSB storage also indicates satisfactory
results even in a relatively low image resolution, that is < 9%
in an image with 141 × 250 relosution. The application of
the multi-bit LSB method in steganographic activities is thus
advantageous, in term of each pixel can hold more message
bits compared with the conventional LSB method.

TABLE V
INSERTING ENCRYPTED .docx1–.docx4 FILES IN IMAGE 3

Image Resolution (WxH): 400x250

Filename (bytes)

.doc1 .doc2 .doc3 .doc4
(1450) (2149) (1925) (4746)

1-bit LSB

MSE 0.01951 0.028296 0.02598 0.063483
PSNR 65.22823 63.61345 63.98441 60.1042
Pixel Usage(%) 3.867 5.73 5.133 12.656

2-bit LSB

MSE 0.051026 0.074667 0.065076 0.168236
PSNR 61.05283 59.39953 59.99655 55.87159
Pixel Usage(%) 1.933 2.865 2.567 6.328

3-bit LSB

MSE 0.151606 0.215456 0.198946 0.47618
PSNR 56.32362 54.7972 55.14343 51.35309
Pixel Usage(%) 1.289 1.91 1.711 4.218

4-bit LSB

MSE 0.446203 0.65474 0.549803 1.50513
PSNR 51.63547 49.97011 50.72872 46.35506
Pixel Usage(%) 0.967 1.432 1.283 3.164

TABLE VI
AVERAGE PERCENTAGE OF PIXEL USAGE FOR .docx1–.docx4

Image resolution
(250× 250) (141× 250) (400× 250)

1-bit LSB 10.95 19.42 6.85

2-bit LSB 5.48 9.71 3.42

3-bit LSB 3.65 6.47 2.28

4-bit LSB 2.74 4.86 1.71

REFERENCES

[1] T. Barnett, S. Jain, U. Andra, and T. Khurana, “Cisco visual net-
working index (vni) complete forecast update,” https://www.cisco.com,
2018, [Online; accessed 19-August-2019].

[2] V. Saxena and J. Gupta, “Collusion attack resistant watermarking
scheme for colored image using dct,” IAENG International Journal
of Computer Science, vol. 34, no. 2, pp. 171–177, 2007.

[3] D. Rachmawati, A. Sharif, and M. A. Abdurrazzaq, “Analysis of mod-
ified least significant bit polynomial function algorithm for securing
digital image,” in Proceeding of the 3rd International Conference on
Computing and Applied Informatics 2018, pp. 1–9.

[4] A. Agusnady, O. S. Sitompul, Tulus, B. S. Sembiring, and T. Qowidho,
“The effect of plaintext length on round trip time with client server
based advanced encryption standard (aes),” in Proceeding of Inter-
national Conference on Computer Science and Applied Mathematic
2018, pp. 1–5.

[5] O. S. Sitompul, Z. Situmorang, F. R. Naibaho, and E. B. Nababan,
“Steganography with highly random linear congruential generator for
security enhancement,” in IEEE Third International Conference on
Informatics and Computing 2018, pp. 1–6.

[6] O. S. Sitompul, Handrizal, N. H. Pasaribu, and E. B. Nababan, “Hybrid
rc4 and affine ciphers to secure short message service on android,” in
IEEE Third International Conference on Informatics and Computing
2018, pp. 1–6.

[7] B. Datta, P. K. Pal, and S. K. Bandyopadhyay, “Multi-bit data hiding in
randomly chosen lsb layers of an audio,” in International Conference
on Information Technology 2016, p. 283–287.

[8] M. Kaur and M. Juneja, “A new lsb embedding for 24-bit pixel using
multi-layered bitwise xor,” in International Conference on Inventive
Computation Technologies 2016, pp. 1–5.

[9] R.-J. Chen, Y.-C. Chen, and S.-J. Horng, “Data hiding using flexible
multi-bit mer,” in International Symposium on Biometrics and Security
Technologies 2013, pp. 24–31.

[10] S. Goel, S. Gupta, and N. Kaushik, “Image steganography – least
significant bit with multiple progressions,” in Proceedings of the

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_11

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 



3rd International Conference on Frontiers of Intelligent Computing:
Theory and Applications 2014, pp. 105–112.

[11] P. Hellekalek and S. Wegenkittl, “Empirical evidence concerning aes,”
ACM Transactions on Modeling and Computer Simulation, vol. 13,
no. 4, pp. 322–333, 2003.

[12] B. S. Champakamala, K. Padmini, and D. K. Radhika, “Least sig-
nificant bit algorithm for image steganography,” Int. J. Adv. Comput.
Technol., vol. 3, no. 4, pp. 34–38, 2014.

[13] S. A. Laskar and K. Hemachandran, “High capacity data hiding using
lsb steganography and encryption,” Int. J. Database Manag. Syst.,
vol. 4, no. 6, pp. 57–68, 2012.

[14] A. Yahya, Steganography Techniques for Digital Images. Springer,
2019.

[15] L. Y. Por, D. Beh, T. F. Ang, and S. Y. Ong, “An enhanced mechanism
for image steganography using sequential colour cycle algorithm,” Int.
Arab J. Inf. Techn., vol. 10, no. 1, pp. 51–60, 2013.

Erna Budhiarti Nababan Completed her PhD on
Science and Management Systems from Universiti
Kebangsaan Malaysia, Selangor in 2010. She is
currently a senior lecturer at Department of Infor-
mation Technology, Universitas Sumatera Utara,
Medan, Indonesia. She is a member of IAENG
since 2017.

Goklas Tomu Simbolon Was formerly a master degree student at Depart-
ment of Computer Science, Universitas Sumatera Utara. He completed his
master’s degree in 2019.

Opim Salim Sitompul Completed his PhD on
Information Science from Universiti Kebangsaan
Malaysia, Selangor in 2005. He is a professor at
Department of Information Technology, Universi-
tas Sumatera Utara, Medan, Indonesia. He is a
member of IAENG since 2017.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_11

Volume 47, Issue 4: December 2020

 
______________________________________________________________________________________ 




