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Abstract—Long Short-Term Memory (LSTM) has been one 

of the most popular methods in time-series forecasting. Within 

the LSTM architecture, there are hyperparameters present that 

need to be optimized in order to achieve the optimum results. In 

order to optimize these hyperparameters, a metaheuristic 

optimization method was used. A metaheuristic algorithm was 

used as a way to reduce both time and computational 

complexity. We used the Search Economics algorithm because 

we found the algorithm quite interesting while being unpopular. 

The evaluation was carried out by using Root Mean Square 

Error (RMSE) as the primary metric used for the optimization. 

The dataset being used in this experiment is the stock price of 

one of the most well-known financial institutes in Indonesia.  

The SE-Optimized LSTM was able to create a prediction that 

did not overfit with RMSE of 538.92, which was great compared 

to the unoptimized LSTM model with RMSE of 661.041 and 

ARIMA model with RMSE of 2809.015. 

 

Index Terms—forecasting, long short-term memory, 

metaheuristic optimization, time-series, search economics 

 

I. INTRODUCTION 

TOCK market price prediction has attracted many eyes 

in the last couple of decades. However, for most 

people, stock trading could not give them a reliable 

source of income. For many people, stock trading is much 

like gambling, especially for those unfamiliar with the way it 

works. They could only try to guess where the price would go 

for the future. Even for those expert traders, they would not 

dare to say that they could always make a profit. It is because 

stocks are unpredictable and have high volatility in nature [1]. 

Many factors could affect the future price of a stock, both 

from outside and inside. Outside factors that could potentially 

affect the stock price are politics, trade wars, and worldwide 

events. On the other hand, inside factors are factors that 

directly affect stockholders and traders, such as the difference 

in disposition [2], character [3], IQ [4], and emotional state 

[5], [6], and [7].  

Because of the unpredictability trait of the stock price, both 

humans and computers could not reliably predict future prices 

of the stock itself. In the computer science field, there are 

methods to predict time-series, which theoretically includes 

stock price prediction. However, most classical prediction 

models could only predict simple time-series models, not 

random-walk time-series models like a stock price. Deep 

learning becomes a viable option to try to make a more 

reliable model of prediction for harder time-series cases. 

Among them, Long Short-Term Memory (LSTM) has been 

given much love from people working in this field. The 

reason for that is because LSTM will often give better results 

compared to other popular time-series prediction methods 

such as Multi-Layer Perceptron (MLP) [8], Support Vector 

Regression (SVR) [9], Bayesian-Optimized RNN [10], and 

Auto-Regressive Integrated Moving Average (ARIMA) in 

[10], [11], and [12]. 

However, LSTM is not an all-powerful method. One thing 

that can drastically change the output from an LSTM model 

is its hyperparameters. Hyperparameters are values that need 

to be assigned manually before the model enters the learning 

state. As these hyperparameters need to be set manually, it is 

a job of data scientists to assign them their correct values. Be 

that as it may, assigning values to these parameters is not as 

easy as it sounds. Data scientists could have a hard time 

assigning values for these parameters as some of them are 

parameters of the LSTM model with no relation to the data 

itself. While data scientists can roughly estimate parameters 

related to the data, it would be hard for them to estimate the 

parameters of the LSTM model.  

The most straightforward way to tune these 

hyperparameters is to test them one by one and compare the 

results manually. However, manually tuning each parameter 

would take way too much time as just training one LSTM 

model would need substantial resources and take quite a long 

time, not to mention to train many of them with each one 

having different parameters. Because of that, heuristic 

optimizations are often used in this kind of situation. In this 

experiment, we have decided to use a heuristic optimization 

algorithm called Search Economics. 

Search Economics is proposed as a new kind of heuristic 

algorithm to minimize the time it takes for an optimization 

algorithm to search for a better answer. The concept of 

investing in areas with potential allows this algorithm to 

minimize redundancy of searching in the same repeatedly. 

Using a standard optimization problem, the Search 

Economics was proven to give better results than the Genetic 

Algorithm as recorded in [13], where this optimization 

algorithm was used to optimize the deployment of wireless 

sensor networks. 

II. LITERATURE REVIEW 

A. Related Works 

Researchers had tried to implement many different 

methods for time-series forecasting in order to improve the 

reliability of time-series forecasting. Research about 
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predicting the Shanghai Composite Index was executed using 

improved C-Fuzzy Decision Tree (CFDT) with the use of a 

stop condition to reduce time complexity [14]. A comparison 

between different methods of time-series forecasting such as 

MLP, Artificial Neural Network (ANN), and hybrid ANN 

which used Generalized Auto-Regressive Conditional 

Heteroskedasticity (GARCH) was carried out in [15] with 

MLP came out as the winner and hybrid ANN as the worst of 

the three. Various structures of MLP combined with the use 

of different training and transfer functions were carried out in 

[16], resulting in a tremendous R2 score of 0.9622.  

In predicting the movement of stock prices in the next 15 

minutes, the comparison between LSTM-based models with 

the baseline models (Random Forest, MLP, Pseudo-random) 

was evaluated. LSTM can exceed the accuracy of the baseline 

method and statistically have a p-value less than 0.05 which 

shows a statistically significant difference between the data 

populations [17]. In the stock prediction for a span of 10 years 

from 2007 to 2017, the RNN method tends to be more volatile 

in fitting the curve model especially at the turning point than 

the LSTM. Also the LSTM degree of deviation is slightly 

smaller than the RNN showing how well the LSTM model 

adjusts the data [18]. Genetic Algorithm was used in [19] to 

optimize weights and biases of a Hybrid Artificial Neural 

Network model with a result of a hit ratio of 81.27%.  

Another popular method in time-series forecasting is 

ARIMA. Auto-Regressive Integrated Moving Average 

(ARIMA) is popular in the field of time-series forecasting 

because of its ability to give better and more reliable results 

than most known methods. Both ARIMA and ANN are often 

compared to one another, and many comparative study cases 

are comparing the two with mixed results and no clear winner 

between the two. A hybrid ARIMA model combined with 

ANN is introduced in [20], which proved that the hybrid 

model gives better results than its parents. Extensive research 

using the ARIMA model for predicting wind speed used for 

generating power is performed in [21]. 

 
TABLE I 

 SUMMARY OF RELATED WORKS 

Ref. Dataset Method Result 

[14] 
Stock 

Price 

CFDT Weighted CFDT 

gives better results Weighted CFDT 

[15] 
Stock 

Price 

MLP 
MLP bested other 

competitors 
Dynamic ANN 

GARCH-ANN 

[16] 
Stock 

Price 
MLP 

High R2 Score of 

0.9622 

[17] 
Stock 

Price 

MLP LSTM exceeds the 

average accuracy 

on various datasets 

and gives a 

positive ratio return 

LSTM 

Pseudo-random 

Random Forest 

[18] 
Stock 

Price 

LSTM 
compared to the 

RNN model, the 

LSTM model has 

the advantage of 

adjusting data 

better 

RNN 

[19] 
Stock 

Price 

ANN GA-ANN gives a 

better result of a hit 

ratio of 81.27% 
GA-ANN 

Other than ANN and ARIMA, there is one popular deep 

learning method for time-series forecasting, which is LSTM. 

As a part of deep learning, LSTM provides better flexibility 

in terms of forecasting. Not only flexible, but LSTM could 

also perform very well when carefully optimized. In the case 

of predicting solar irradiance, LSTM performed much better 

compared to Back-Propagation Neural Networks (BPNN), 

achieving a 42.9% reduction of Root Mean Square Error 

(RMSE) compared to the latter [8]. A comparative study case 

comparing LSTM and Support Vector Regression (SVR) was 

carried out in [9], and LSTM outperformed SVR. Many 

people made comparisons between LSTM and ARIMA, like 

in [10], [11], and [12], with most of them won by LSTM. 

B. Time-Series 

Time-series is a time-ordered list of data points. Based on 

the number of observed variables in a time-series, time-series 

could be divided into two types, univariate and multivariate. 

Univariate means that there is only one observed variable, 

while multivariate means there is more than one observed 

variable in the time-series. No matter whether it is a 

univariate or multivariate time-series, each variable will 

usually be presented in numerical values. 

Looking at the spacing intervals between each data point 

in time-series, we could divide them into two types, 

continuous time-series or discrete time-series. A continuous 

time-series is obtained by sampling at the smallest metrics of 

time possible; in most cases, every one second. On the other 

hand, the sampling of a discrete time-series is taken at 

intervals larger than one second (e.g., every minute, every 

hour, or even every year). However, a time-series may be 

sampled at irregular intervals, meaning that the interval 

between two data points compared to another interval of 

another pair within the same time-series may not be the same 

(e.g., a sample is taken whenever there is a transaction being 

made). 

In order to analyze time-series, usually, decomposition 

takes place. Time-series decomposition could allow for more 

straightforward analysis, especially for those time-series 

which have seasonality. In most cases, a decomposition of a 

time-series will output three components; they are trend, 

seasonality, and remainder. An example of a time-series 

decomposition could be seen in Figure 1. 

 
Fig. 1.  An example of decomposition of time-series. 
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The trend in time-series describes whether the observed 

variables are increasing or decreasing in their direction. A 

trend within time-series is not constrained to be linear. As a 

matter of fact, most cases in real-life will have a non-linear 

trend. The trend is probably the most crucial part of a time-

series analysis as by analyzing the trend, we could get 

valuable information regarding the observed variables such 

as the necessary information to predict the trend going 

forward or detect anomalies within the data. 

Aside from trends, the most noticeable component in time-

series is seasonality. However, not all time-series have 

seasonality. Seasonality in time-series refers to the repetitive 

pattern found on time-series within a fixed period (e.g., 

weekly, monthly, or yearly). Seasonality in time-series is a 

byproduct of a series of real-life events affecting the observed 

variables. An example of a yearly seasonality would be the 

sales of chocolate drastically rise every Valentine’s Day as 

people would tend to buy them to gift it to their significant 

other. 

Lastly, there is an irregular component of a time-series, 

which sometimes is called in different names such as 

remainder, residual, or random is simply a component of 

noise obtained from the decomposition of the time-series 

itself. This noise is obtained after removing all the other 

components from the real data. 

C. Long Short Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is practically a 

Recurrent Neural Network (RNN) with the main concept of 

gates. There are three main gates in LSTM architecture, they 

are input gate, output gate, and forget gate. These three gates 

are responsible for controlling the flow of information over 

time within the central cell. In theory, RNN could store 

information from past inputs. However, in practice, RNN 

could only remember past information in a limited interval 

and could not remember information from the distant past. 

This problem of traditional RNN is further researched in [22] 

and [23], and where it is found that the existence of decaying 

errors is the cause of the problem. 

As the number of layers in the RNN increases, the back-

propagated error keeps getting smaller and smaller until it 

kind of vanish (vanishing gradient), or it keeps getting bigger 

and bigger until it explodes (exploding gradient). This 

problem dramatically affects the learning efficiency of the 

neural network. Because of this persistent problem in 

traditional RNN architecture, in the year of 1997, LSTM was 

introduced as the solution to tackle the problem mentioned 

above [24]. 

D. Search Economic  

Search Economics is a newly proposed metaheuristic 

algorithm introduced in late 2015. Metaheuristic algorithms 

tremendously help in optimizing time-consuming and 

computational-demanding projects. The term heuristic means 

that the algorithm can optimize the problem faster than 

manual optimization even though it may not give the most 

optimal solution. Most metaheuristic optimization uses 

random selection without real knowledge of the surrounding 

potential. On the other hand, Search Economics offers a 

different approach to the selection phase. 

Search Economics calculates all potential solution space 

before investing further into it. It also calculates the number 

of searchers that had been in the same solution space. It means 

that even though two or more solution spaces have the same 

objective value, each solution space may have different 

potential based on how many times searchers have visited it. 

This kind of potential is implemented so that there will be less 

redundancy while searching for a solution. 

There are three main functions in this algorithm, which are: 

1) Resource Arrangement (RA), which distributed every 

searcher into different regions to randomly invest in 

candidate solutions. 

2) Vision Search (VS) is where every searcher will work 

together in finding the best solution. 

3) Marketing Research (MR) is where information about 

each region’s fitness value is saved. 

As in [13], the algorithm of Search Economics can be 

described as follows: 

Resource Arrangement 

1) Divide solution space into ℎ regions. 

2) Initialize 𝑤 random candidate solutions for each region, 

𝑟𝐽. 

3) Find the best solution in each region, 𝑟𝑏
𝑗. 

4) Assign every searcher into different regions (depending 

on the number of searchers and the number of regions, 

each region may have one or more searcher(s) assigned 

into it or none at all.) 

Vision Search 

5) Transit (crossover and mutation between searcher 

investment with candidate solution, 𝑣𝑖
𝑗𝑘. 

6) Measure investment for each region, 𝑇𝑗, in order to 

reduce redundancy of search. 

𝑇𝑗 =  
𝑡𝑏

𝑗

𝑡𝑎
𝑗
 (1) 

7) Measure the potential of the 𝑖-th searcher investing in the 

𝑗-th region, 𝑣𝑖
𝑗, based on the candidate solutions of the 

region, 𝑣𝑖
𝑗𝑘 . 

𝑉𝑖
𝑗 =  

∑ 𝑓(𝑣𝑖
𝑗𝑘)𝑤

𝑘=1

𝑤
 (2) 

8) Calculate the weight of each region’s best solution, 𝑀𝑗, 

using (3). 

𝑀𝑗 =  
𝑓(𝑟𝑏

𝑗
)

∑ 𝑓(𝑚𝑗)ℎ
𝑗=1

 (3) 

9) Evaluate approximately every solution’s quality or 

potential using (4). 

𝑒𝑖
𝑗 = 𝑇𝑗𝑉𝑖

𝑗𝑀𝑗 (4) 

10) The determination operator of the VS will randomly 

choose some solutions from other regions, 𝑣𝑖𝑗, where 𝑖  ≠ 

𝑗 to add into the temporary solutions so that the 𝑖-th 

searcher will less likely to get stuck on global optimum. 

11) 𝑖-th searcher chooses the best solution out of all 

temporary solutions provided. 

Marketing Research 

12) Save the history of each regions’ solutions. 

13) Update every region’s potential. 
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III.  PROPOSED METHOD 

There are five hyperparameters that we optimized in this 

research, namely, sliding window, dropout, LSTM units, 

batch size, and column. For each one of them, we assigned a 

set of values. From these sets of values, Search Economics 

tried to find the best combination of hyperparameters by 

trying random combinations. Search Economics used the 

fitness value of each combination to compare which one is 

better (higher means better). The calculation for the fitness 

value used in this experiment is directly impacted by the 

RMSE of the model as could be seen in (5) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝑅𝑀𝑆𝐸
 (5) 

The best-so-far fitness value was updated every iteration 

whenever there was a better fitness value, and the better 

solution was saved. The iteration was stopped when it 

reached the maximum iteration constraint set at the 

beginning. Other than the maximum iteration constraint, 

other stop conditions may also be used (e.g., the convergence 

of the fitness value). A simple illustration of how the 

proposed SE-LSTM works could be seen in Figure 2 

 

 

Fig. 2.  Simple SE-LSTM illustration. 
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IV. EXPERIMENTAL RESULTS 

A.  Dataset 

In this case, we used a dataset of the stock price of one of 

the most well-known financial institutes in Indonesia. The 

dataset contains daily records of the stock price from the year 

2006 to 2019, except for weekends and holidays. We used 

closing price, opening price, highest price, lowest price, and 

volume of transactions of the day as observed variables. 

Some of the combinations of these five columns were 

included for optimization, so we could know what variables 

are great for this case of stock price prediction and what 

variables we should avoid. Table II describes overall dataset 

values ranging from January 2006 to December 2019. 

 
TABLE II 

DATASET DESCRIPTION 

Features Min Max Mean Standard 

Deviation 
Open  1700 25100 9191.513 5935.624 

High 1700 25475 9285.968 5976.618 

Low 1675 24675 9092.838 5896.598 

Close 1700 25075 9193.526 5936.223 

Volume 0 2.171140e+08 1.862130e+07 1.793164e+07 

B. Data Scaling 

After the data successfully imported, we scaled them using 

the MinMaxScaler function with a range of 0 to 1. The 

function shrunk the range of value of each column based on 

their lowest and highest values. After getting both the lowest 

and the highest value, it scaled the rest of the data in the same 

column appropriately. The process was done for every 

column we used. 

C. Data Splitting 

Scaled data then split into three sets, training set, validation 

set, and test set (holdout set). The proportion we used in 

splitting the dataset into training, validation, and test sets is 

80%, 10%, and 10%, respectively. We used training data to 

train the LSTM model and evaluate the model by using the 

validation set while keeping the test set quarantined. The 

horizon was calculated by multiplying the Holdout value 

(Ho) by the total of rows of the dataset. With the holdout 

value of 0.1 and the total of rows of the dataset being 3473, 

the horizon of the model was 347 days. 

D. Hyperparameters 

For this experiment, we set the epoch of the model as 100, 

while the other five hyperparameters were optimized in the 

later stage. Sets of values for all hyperparameters optimized 

in this experiment could be seen in Table III. 

 
TABLE III 

LIST OF OPTIMIZED HYPERPARAMETERS 

Hyperparameter Range Values Explanation 

Sliding Window 10 to 60 interval of 5 

Dropout 0.05 to 0.50 interval of  0.05 

LSTM Units 25 to 100 interval of 5 

Batch Size 32, 64, 128 - 

Columns 
[Open, Close, High, 

Low, Volume] 

every possible 

combination 

 

E. Environment and Parameter Setting  

Because of the high time-complexity and resource-demand 

of LSTM models, we used the Compute Unified Device 

Architecture (CUDA) platform offered by Nvidia to assist us 

in processing the models by using a CUDA-enabled GPU 

made by Nvidia. 

The configuration for the Search Economics algorithm 

itself could be seen in Table IV. 

 
TABLE IV 

SE PARAMETERS SETTINGS 

Parameter Setting 

Dimension 5 

Number of Searcher 4 

Number of Region 4 

Number of Samples 4 

 

F. Evaluation 

For the evaluation, we used a few performance metrics, 

such as Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), and 

R2 Score. However, we mainly focused on minimizing the 

RMSE of the model. RMSE is a metric used in measuring the 

spread and concentration of the predicted data from the actual 

data. MAE measures the average deviation of the predicted 

data from the actual data. MAPE is just like MAE in 

implementation, aside from the fact that MAPE uses the 

percentage of deviation instead of the value of the deviation 

itself. On the other hand, the R2 Score is very much different 

from error calculation metrics like the RMSE, MAE, and 

MAPE.  

In error calculation metrics, the value ranges from 0 to +∞, 

with a lower value being better than a higher value. However, 

R2 Score value ranges from -∞ to 1, and the closer it is to 1, 

the better it is. R2 Score tells how well a model fits the actual 

data. An R2 Score of 1 means that there is no error or 

deviation, and the model fits the actual data perfectly. An R2 

Score of 0 means that the model fits the actual data the same 

as a horizontal straight line fits the actual data, while an R2 

Score of negative means that the model fits worse than a 

horizontal straight line. 

A comparison was made with two other methods using the 

same training and testing datasets. An LSTM model was built 

without the use of any optimization method. The other 

method being used, ARIMA, was built with the help of 

auto_arima function which decided the values for p, d, and q. 

The auto_arima function decided to use the configuration 

ARIMA(1,1,1), meaning that 𝑝 = 1, 𝑑 = 1, and 𝑞 = 1. 

However, the ARIMA model could only be univariate, 

compared to the other two which was multivariate. This 

restriction was the core of the method itself, so it is not 

something that can be modified easily. 

G. Experiment Result 

The point of convergence in optimizing this LSTM model 

by using Search Economics was achieved at the 45th 

iteration, as could be seen in Fig. 5. There was no further 

improvement attained from the 46th iteration to the 100th 

iteration, thus ending the optimization process.  
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Fig. 3.  The convergence of the SE-LSTM model. 
 

By the end of the optimization, an output file containing 

the best configuration of hyperparameters was produced 

along with two other files. One of them describes a list of the 

best-so-far RMSE in each iteration of optimization. This 

allows the draw of Figure 3. Meanwhile, the other one 

describes a list of the predicted values performed on the 

holdout set which enables us to see how well the prediction 

produced compared to the actual data itself drawn in a graph 

as can be seen in Figure 4. 

The final configuration of the hyperparameters obtained 

from the optimization process could be seen in Table V. 

 
TABLE V 

BEST HYPERPARAMETERS CONFIGURATION 

Hyperparameter Value 

Sliding Window 60 

Dropout 0.25 

LSTM Units 50 

Batch Size 32 

Columns [‘Close’, ‘Volume’] 

 
Using the configuration given in Table V, the prediction 

was performed on the quarantined holdout set with a Ho value 

of 0.1 and a horizon of 347. The performance of the model 

yield excellent results with no overfitting problem, as can be 

seen in Figure 4. 

 
Fig. 4.  The prediction result of the best SE-LSTM model. 

 

 The SE-LSTM model performed better than both the 

LSTM model with no optimization involved and the auto 

ARIMA model. The non-optimized LSTM was modeled 

manually with the experience the researchers have. The 

model produced good enough results close to the SE-

optimized LSTM, the graph can be seen in Figure 5. 

 
Fig. 5.  The prediction result of the LSTM model. 

 

 However, the ARIMA model turns out to be inferior in 

which the model produced much worse results compared to 

the other two LSTM models.  Although, the researchers have 

anticipated it to perform worse, the researchers did not think 

that it will be that much worse. Figure 6 shows the results 

given by the ARIMA model. 

 
Fig. 6.  The prediction result of the ARIMA(1,1,1) model. 

 
Table VI lists the final results of the experiment in different 

performance metrics. The SE-LSTM gave the best results of 

all methods used. Meanwhile, the ARIMA model performed 

much worse than the other two methods used. 

 
TABLE VI 

END RESULTS IN DIFFERENT METRICS 

Methods 
Performance Metrics 

RMSE MAE MAPE R2 Score 

SE-LSTM 538.914 402.977 1.437% 0.961 

LSTM 661.041 510.662 1.841% 0.927 

ARIMA(1,1,1) 2809.015 2402.041 9.867% -0.127 

 

V. CONCLUSION 

This experiment was implemented using the combination 

of the LSTM deep learning model and a novel metaheuristic 

optimization algorithm, Search Economics. The SE-LSTM as 
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the best model acquired gives RMSE around 538.914, MAE 

around 402.977, MAPE around 1.437%, and R2 Score around 

0.961. There was no overfitting found when comparing the 

prediction to the actual data, which is a good thing. The SE-

LSTM provided better results when compared to an non-

optimized LSTM model and the ARIMA model using 

auto_arima function. From what was given as the results, it 

was proven that ARIMA is not suitable to predict random 

walk time-series such as stock prices. The ARIMA produced 

results much worse when compared to the other two models. 
Even though we already used a metaheuristic optimization 

algorithm, optimizing an LSTM model still requires a lot of 

resources and time. There is simply no way around it, as all 

deep learning methods need massive computational power. 

However, compared to manually optimizing things, using 

heuristic optimization algorithms surely provides much faster 

execution. While deciding which algorithms to use, we found 

a new novel heuristic optimization algorithm called Search 

Economics. It turns out that the algorithm was doing a great 

job at optimizing our LSTM model. The results however is 

not that much of a difference when compared to an LSTM 

model designed by a slightly experienced data scientist. 
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