
Stock Price Prediction Using LSTM and Search

Economics Optimization

Abba Suganda Girsang, Fernando Lioexander, and Daniel Tanjung

Abstract—Long Short-Term Memory (LSTM) has been one

of the most popular methods in time-series forecasting. Within

the LSTM architecture, there are hyperparameters present that

need to be optimized in order to achieve the optimum results. In

order to optimize these hyperparameters, a metaheuristic

optimization method was used. A metaheuristic algorithm was

used as a way to reduce both time and computational

complexity. We used the Search Economics algorithm because

we found the algorithm quite interesting while being unpopular.

The evaluation was carried out by using Root Mean Square

Error (RMSE) as the primary metric used for the optimization.

The dataset being used in this experiment is the stock price of

one of the most well-known financial institutes in Indonesia.

The SE-Optimized LSTM was able to create a prediction that

did not overfit with RMSE of 538.92, which was great compared

to the unoptimized LSTM model with RMSE of 661.041 and

ARIMA model with RMSE of 2809.015.

Index Terms—forecasting, long short-term memory,

metaheuristic optimization, time-series, search economics

I. INTRODUCTION

TOCK market price prediction has attracted many eyes

in the last couple of decades. However, for most

people, stock trading could not give them a reliable

source of income. For many people, stock trading is much

like gambling, especially for those unfamiliar with the way it

works. They could only try to guess where the price would go

for the future. Even for those expert traders, they would not

dare to say that they could always make a profit. It is because

stocks are unpredictable and have high volatility in nature [1].

Many factors could affect the future price of a stock, both

from outside and inside. Outside factors that could potentially

affect the stock price are politics, trade wars, and worldwide

events. On the other hand, inside factors are factors that

directly affect stockholders and traders, such as the difference

in disposition [2], character [3], IQ [4], and emotional state

[5], [6], and [7].

Because of the unpredictability trait of the stock price, both

humans and computers could not reliably predict future prices

of the stock itself. In the computer science field, there are

methods to predict time-series, which theoretically includes

stock price prediction. However, most classical prediction

models could only predict simple time-series models, not

random-walk time-series models like a stock price. Deep

learning becomes a viable option to try to make a more

reliable model of prediction for harder time-series cases.

Among them, Long Short-Term Memory (LSTM) has been

given much love from people working in this field. The

reason for that is because LSTM will often give better results

compared to other popular time-series prediction methods

such as Multi-Layer Perceptron (MLP) [8], Support Vector

Regression (SVR) [9], Bayesian-Optimized RNN [10], and

Auto-Regressive Integrated Moving Average (ARIMA) in

[10], [11], and [12].

However, LSTM is not an all-powerful method. One thing

that can drastically change the output from an LSTM model

is its hyperparameters. Hyperparameters are values that need

to be assigned manually before the model enters the learning

state. As these hyperparameters need to be set manually, it is

a job of data scientists to assign them their correct values. Be

that as it may, assigning values to these parameters is not as

easy as it sounds. Data scientists could have a hard time

assigning values for these parameters as some of them are

parameters of the LSTM model with no relation to the data

itself. While data scientists can roughly estimate parameters

related to the data, it would be hard for them to estimate the

parameters of the LSTM model.

The most straightforward way to tune these

hyperparameters is to test them one by one and compare the

results manually. However, manually tuning each parameter

would take way too much time as just training one LSTM

model would need substantial resources and take quite a long

time, not to mention to train many of them with each one

having different parameters. Because of that, heuristic

optimizations are often used in this kind of situation. In this

experiment, we have decided to use a heuristic optimization

algorithm called Search Economics.

Search Economics is proposed as a new kind of heuristic

algorithm to minimize the time it takes for an optimization

algorithm to search for a better answer. The concept of

investing in areas with potential allows this algorithm to

minimize redundancy of searching in the same repeatedly.

Using a standard optimization problem, the Search

Economics was proven to give better results than the Genetic

Algorithm as recorded in [13], where this optimization

algorithm was used to optimize the deployment of wireless

sensor networks.

II. LITERATURE REVIEW

A. Related Works

Researchers had tried to implement many different

methods for time-series forecasting in order to improve the

reliability of time-series forecasting. Research about

S

Manuscript received February 27, 2020; revised June 20, 2020.

Abba Suganda Girsang is with the Computer Science Department,

BINUS Graduate Program-Master of Computer Science, Bina Nusantara

University, Jakarta, Indonesia 11480 (e-mail: agirsang@binus.edu).

Fernando Lioexander is with the Computer Science Department, BINUS

Graduate Program-Master of Computer Science, Bina Nusantara

University, Jakarta, Indonesia 11480 (e-mail:

fernando.lioexander@binus.ac.id).

Daniel Tanjung is with the Computer Science Department, BINUS

Graduate Program-Master of Computer Science, Bina Nusantara

University, Jakarta, Indonesia 11480 (e-mail: daniel.tanjung@binus.ac.id).

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_17

Volume 47, Issue 4: December 2020

__

predicting the Shanghai Composite Index was executed using

improved C-Fuzzy Decision Tree (CFDT) with the use of a

stop condition to reduce time complexity [14]. A comparison

between different methods of time-series forecasting such as

MLP, Artificial Neural Network (ANN), and hybrid ANN

which used Generalized Auto-Regressive Conditional

Heteroskedasticity (GARCH) was carried out in [15] with

MLP came out as the winner and hybrid ANN as the worst of

the three. Various structures of MLP combined with the use

of different training and transfer functions were carried out in

[16], resulting in a tremendous R2 score of 0.9622.

In predicting the movement of stock prices in the next 15

minutes, the comparison between LSTM-based models with

the baseline models (Random Forest, MLP, Pseudo-random)

was evaluated. LSTM can exceed the accuracy of the baseline

method and statistically have a p-value less than 0.05 which

shows a statistically significant difference between the data

populations [17]. In the stock prediction for a span of 10 years

from 2007 to 2017, the RNN method tends to be more volatile

in fitting the curve model especially at the turning point than

the LSTM. Also the LSTM degree of deviation is slightly

smaller than the RNN showing how well the LSTM model

adjusts the data [18]. Genetic Algorithm was used in [19] to

optimize weights and biases of a Hybrid Artificial Neural

Network model with a result of a hit ratio of 81.27%.

Another popular method in time-series forecasting is

ARIMA. Auto-Regressive Integrated Moving Average

(ARIMA) is popular in the field of time-series forecasting

because of its ability to give better and more reliable results

than most known methods. Both ARIMA and ANN are often

compared to one another, and many comparative study cases

are comparing the two with mixed results and no clear winner

between the two. A hybrid ARIMA model combined with

ANN is introduced in [20], which proved that the hybrid

model gives better results than its parents. Extensive research

using the ARIMA model for predicting wind speed used for

generating power is performed in [21].

TABLE I

 SUMMARY OF RELATED WORKS

Ref. Dataset Method Result

[14]
Stock

Price

CFDT Weighted CFDT

gives better results Weighted CFDT

[15]
Stock

Price

MLP
MLP bested other

competitors
Dynamic ANN

GARCH-ANN

[16]
Stock

Price
MLP

High R2 Score of

0.9622

[17]
Stock

Price

MLP LSTM exceeds the

average accuracy

on various datasets

and gives a

positive ratio return

LSTM

Pseudo-random

Random Forest

[18]
Stock

Price

LSTM
compared to the

RNN model, the

LSTM model has

the advantage of

adjusting data

better

RNN

[19]
Stock

Price

ANN GA-ANN gives a

better result of a hit

ratio of 81.27%
GA-ANN

Other than ANN and ARIMA, there is one popular deep

learning method for time-series forecasting, which is LSTM.

As a part of deep learning, LSTM provides better flexibility

in terms of forecasting. Not only flexible, but LSTM could

also perform very well when carefully optimized. In the case

of predicting solar irradiance, LSTM performed much better

compared to Back-Propagation Neural Networks (BPNN),

achieving a 42.9% reduction of Root Mean Square Error

(RMSE) compared to the latter [8]. A comparative study case

comparing LSTM and Support Vector Regression (SVR) was

carried out in [9], and LSTM outperformed SVR. Many

people made comparisons between LSTM and ARIMA, like

in [10], [11], and [12], with most of them won by LSTM.

B. Time-Series

Time-series is a time-ordered list of data points. Based on

the number of observed variables in a time-series, time-series

could be divided into two types, univariate and multivariate.

Univariate means that there is only one observed variable,

while multivariate means there is more than one observed

variable in the time-series. No matter whether it is a

univariate or multivariate time-series, each variable will

usually be presented in numerical values.

Looking at the spacing intervals between each data point

in time-series, we could divide them into two types,

continuous time-series or discrete time-series. A continuous

time-series is obtained by sampling at the smallest metrics of

time possible; in most cases, every one second. On the other

hand, the sampling of a discrete time-series is taken at

intervals larger than one second (e.g., every minute, every

hour, or even every year). However, a time-series may be

sampled at irregular intervals, meaning that the interval

between two data points compared to another interval of

another pair within the same time-series may not be the same

(e.g., a sample is taken whenever there is a transaction being

made).

In order to analyze time-series, usually, decomposition

takes place. Time-series decomposition could allow for more

straightforward analysis, especially for those time-series

which have seasonality. In most cases, a decomposition of a

time-series will output three components; they are trend,

seasonality, and remainder. An example of a time-series

decomposition could be seen in Figure 1.

Fig. 1. An example of decomposition of time-series.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_17

Volume 47, Issue 4: December 2020

__

The trend in time-series describes whether the observed

variables are increasing or decreasing in their direction. A

trend within time-series is not constrained to be linear. As a

matter of fact, most cases in real-life will have a non-linear

trend. The trend is probably the most crucial part of a time-

series analysis as by analyzing the trend, we could get

valuable information regarding the observed variables such

as the necessary information to predict the trend going

forward or detect anomalies within the data.

Aside from trends, the most noticeable component in time-

series is seasonality. However, not all time-series have

seasonality. Seasonality in time-series refers to the repetitive

pattern found on time-series within a fixed period (e.g.,

weekly, monthly, or yearly). Seasonality in time-series is a

byproduct of a series of real-life events affecting the observed

variables. An example of a yearly seasonality would be the

sales of chocolate drastically rise every Valentine’s Day as

people would tend to buy them to gift it to their significant

other.

Lastly, there is an irregular component of a time-series,

which sometimes is called in different names such as

remainder, residual, or random is simply a component of

noise obtained from the decomposition of the time-series

itself. This noise is obtained after removing all the other

components from the real data.

C. Long Short Term Memory (LSTM)

Long Short-Term Memory (LSTM) is practically a

Recurrent Neural Network (RNN) with the main concept of

gates. There are three main gates in LSTM architecture, they

are input gate, output gate, and forget gate. These three gates

are responsible for controlling the flow of information over

time within the central cell. In theory, RNN could store

information from past inputs. However, in practice, RNN

could only remember past information in a limited interval

and could not remember information from the distant past.

This problem of traditional RNN is further researched in [22]

and [23], and where it is found that the existence of decaying

errors is the cause of the problem.

As the number of layers in the RNN increases, the back-

propagated error keeps getting smaller and smaller until it

kind of vanish (vanishing gradient), or it keeps getting bigger

and bigger until it explodes (exploding gradient). This

problem dramatically affects the learning efficiency of the

neural network. Because of this persistent problem in

traditional RNN architecture, in the year of 1997, LSTM was

introduced as the solution to tackle the problem mentioned

above [24].

D. Search Economic

Search Economics is a newly proposed metaheuristic

algorithm introduced in late 2015. Metaheuristic algorithms

tremendously help in optimizing time-consuming and

computational-demanding projects. The term heuristic means

that the algorithm can optimize the problem faster than

manual optimization even though it may not give the most

optimal solution. Most metaheuristic optimization uses

random selection without real knowledge of the surrounding

potential. On the other hand, Search Economics offers a

different approach to the selection phase.

Search Economics calculates all potential solution space

before investing further into it. It also calculates the number

of searchers that had been in the same solution space. It means

that even though two or more solution spaces have the same

objective value, each solution space may have different

potential based on how many times searchers have visited it.

This kind of potential is implemented so that there will be less

redundancy while searching for a solution.

There are three main functions in this algorithm, which are:

1) Resource Arrangement (RA), which distributed every

searcher into different regions to randomly invest in

candidate solutions.

2) Vision Search (VS) is where every searcher will work

together in finding the best solution.

3) Marketing Research (MR) is where information about

each region’s fitness value is saved.

As in [13], the algorithm of Search Economics can be

described as follows:

Resource Arrangement

1) Divide solution space into ℎ regions.

2) Initialize 𝑤 random candidate solutions for each region,

𝑟𝐽.

3) Find the best solution in each region, 𝑟𝑏
𝑗.

4) Assign every searcher into different regions (depending

on the number of searchers and the number of regions,

each region may have one or more searcher(s) assigned

into it or none at all.)

Vision Search

5) Transit (crossover and mutation between searcher

investment with candidate solution, 𝑣𝑖
𝑗𝑘.

6) Measure investment for each region, 𝑇𝑗, in order to

reduce redundancy of search.

𝑇𝑗 =
𝑡𝑏

𝑗

𝑡𝑎
𝑗
 (1)

7) Measure the potential of the 𝑖-th searcher investing in the

𝑗-th region, 𝑣𝑖
𝑗, based on the candidate solutions of the

region, 𝑣𝑖
𝑗𝑘 .

𝑉𝑖
𝑗 =

∑ 𝑓(𝑣𝑖
𝑗𝑘)𝑤

𝑘=1

𝑤
 (2)

8) Calculate the weight of each region’s best solution, 𝑀𝑗,

using (3).

𝑀𝑗 =
𝑓(𝑟𝑏

𝑗
)

∑ 𝑓(𝑚𝑗)ℎ
𝑗=1

 (3)

9) Evaluate approximately every solution’s quality or

potential using (4).

𝑒𝑖
𝑗 = 𝑇𝑗𝑉𝑖

𝑗𝑀𝑗 (4)

10) The determination operator of the VS will randomly

choose some solutions from other regions, 𝑣𝑖𝑗, where 𝑖 ≠

𝑗 to add into the temporary solutions so that the 𝑖-th

searcher will less likely to get stuck on global optimum.

11) 𝑖-th searcher chooses the best solution out of all

temporary solutions provided.

Marketing Research

12) Save the history of each regions’ solutions.

13) Update every region’s potential.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_17

Volume 47, Issue 4: December 2020

__

III. PROPOSED METHOD

There are five hyperparameters that we optimized in this

research, namely, sliding window, dropout, LSTM units,

batch size, and column. For each one of them, we assigned a

set of values. From these sets of values, Search Economics

tried to find the best combination of hyperparameters by

trying random combinations. Search Economics used the

fitness value of each combination to compare which one is

better (higher means better). The calculation for the fitness

value used in this experiment is directly impacted by the

RMSE of the model as could be seen in (5)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑅𝑀𝑆𝐸
 (5)

The best-so-far fitness value was updated every iteration

whenever there was a better fitness value, and the better

solution was saved. The iteration was stopped when it

reached the maximum iteration constraint set at the

beginning. Other than the maximum iteration constraint,

other stop conditions may also be used (e.g., the convergence

of the fitness value). A simple illustration of how the

proposed SE-LSTM works could be seen in Figure 2

Fig. 2. Simple SE-LSTM illustration.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_17

Volume 47, Issue 4: December 2020

__

IV. EXPERIMENTAL RESULTS

A. Dataset

In this case, we used a dataset of the stock price of one of

the most well-known financial institutes in Indonesia. The

dataset contains daily records of the stock price from the year

2006 to 2019, except for weekends and holidays. We used

closing price, opening price, highest price, lowest price, and

volume of transactions of the day as observed variables.

Some of the combinations of these five columns were

included for optimization, so we could know what variables

are great for this case of stock price prediction and what

variables we should avoid. Table II describes overall dataset

values ranging from January 2006 to December 2019.

TABLE II

DATASET DESCRIPTION

Features Min Max Mean Standard

Deviation
Open 1700 25100 9191.513 5935.624

High 1700 25475 9285.968 5976.618

Low 1675 24675 9092.838 5896.598

Close 1700 25075 9193.526 5936.223

Volume 0 2.171140e+08 1.862130e+07 1.793164e+07

B. Data Scaling

After the data successfully imported, we scaled them using

the MinMaxScaler function with a range of 0 to 1. The

function shrunk the range of value of each column based on

their lowest and highest values. After getting both the lowest

and the highest value, it scaled the rest of the data in the same

column appropriately. The process was done for every

column we used.

C. Data Splitting

Scaled data then split into three sets, training set, validation

set, and test set (holdout set). The proportion we used in

splitting the dataset into training, validation, and test sets is

80%, 10%, and 10%, respectively. We used training data to

train the LSTM model and evaluate the model by using the

validation set while keeping the test set quarantined. The

horizon was calculated by multiplying the Holdout value

(Ho) by the total of rows of the dataset. With the holdout

value of 0.1 and the total of rows of the dataset being 3473,

the horizon of the model was 347 days.

D. Hyperparameters

For this experiment, we set the epoch of the model as 100,

while the other five hyperparameters were optimized in the

later stage. Sets of values for all hyperparameters optimized

in this experiment could be seen in Table III.

TABLE III

LIST OF OPTIMIZED HYPERPARAMETERS

Hyperparameter Range Values Explanation

Sliding Window 10 to 60 interval of 5

Dropout 0.05 to 0.50 interval of 0.05

LSTM Units 25 to 100 interval of 5

Batch Size 32, 64, 128 -

Columns
[Open, Close, High,

Low, Volume]

every possible

combination

E. Environment and Parameter Setting

Because of the high time-complexity and resource-demand

of LSTM models, we used the Compute Unified Device

Architecture (CUDA) platform offered by Nvidia to assist us

in processing the models by using a CUDA-enabled GPU

made by Nvidia.

The configuration for the Search Economics algorithm

itself could be seen in Table IV.

TABLE IV

SE PARAMETERS SETTINGS

Parameter Setting

Dimension 5

Number of Searcher 4

Number of Region 4

Number of Samples 4

F. Evaluation

For the evaluation, we used a few performance metrics,

such as Root Mean Square Error (RMSE), Mean Absolute

Error (MAE), Mean Absolute Percentage Error (MAPE), and

R2 Score. However, we mainly focused on minimizing the

RMSE of the model. RMSE is a metric used in measuring the

spread and concentration of the predicted data from the actual

data. MAE measures the average deviation of the predicted

data from the actual data. MAPE is just like MAE in

implementation, aside from the fact that MAPE uses the

percentage of deviation instead of the value of the deviation

itself. On the other hand, the R2 Score is very much different

from error calculation metrics like the RMSE, MAE, and

MAPE.

In error calculation metrics, the value ranges from 0 to +∞,

with a lower value being better than a higher value. However,

R2 Score value ranges from -∞ to 1, and the closer it is to 1,

the better it is. R2 Score tells how well a model fits the actual

data. An R2 Score of 1 means that there is no error or

deviation, and the model fits the actual data perfectly. An R2

Score of 0 means that the model fits the actual data the same

as a horizontal straight line fits the actual data, while an R2

Score of negative means that the model fits worse than a

horizontal straight line.

A comparison was made with two other methods using the

same training and testing datasets. An LSTM model was built

without the use of any optimization method. The other

method being used, ARIMA, was built with the help of

auto_arima function which decided the values for p, d, and q.

The auto_arima function decided to use the configuration

ARIMA(1,1,1), meaning that 𝑝 = 1, 𝑑 = 1, and 𝑞 = 1.

However, the ARIMA model could only be univariate,

compared to the other two which was multivariate. This

restriction was the core of the method itself, so it is not

something that can be modified easily.

G. Experiment Result

The point of convergence in optimizing this LSTM model

by using Search Economics was achieved at the 45th

iteration, as could be seen in Fig. 5. There was no further

improvement attained from the 46th iteration to the 100th

iteration, thus ending the optimization process.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_17

Volume 47, Issue 4: December 2020

__

Fig. 3. The convergence of the SE-LSTM model.

By the end of the optimization, an output file containing

the best configuration of hyperparameters was produced

along with two other files. One of them describes a list of the

best-so-far RMSE in each iteration of optimization. This

allows the draw of Figure 3. Meanwhile, the other one

describes a list of the predicted values performed on the

holdout set which enables us to see how well the prediction

produced compared to the actual data itself drawn in a graph

as can be seen in Figure 4.

The final configuration of the hyperparameters obtained

from the optimization process could be seen in Table V.

TABLE V

BEST HYPERPARAMETERS CONFIGURATION

Hyperparameter Value

Sliding Window 60

Dropout 0.25

LSTM Units 50

Batch Size 32

Columns [‘Close’, ‘Volume’]

Using the configuration given in Table V, the prediction

was performed on the quarantined holdout set with a Ho value

of 0.1 and a horizon of 347. The performance of the model

yield excellent results with no overfitting problem, as can be

seen in Figure 4.

Fig. 4. The prediction result of the best SE-LSTM model.

 The SE-LSTM model performed better than both the

LSTM model with no optimization involved and the auto

ARIMA model. The non-optimized LSTM was modeled

manually with the experience the researchers have. The

model produced good enough results close to the SE-

optimized LSTM, the graph can be seen in Figure 5.

Fig. 5. The prediction result of the LSTM model.

 However, the ARIMA model turns out to be inferior in

which the model produced much worse results compared to

the other two LSTM models. Although, the researchers have

anticipated it to perform worse, the researchers did not think

that it will be that much worse. Figure 6 shows the results

given by the ARIMA model.

Fig. 6. The prediction result of the ARIMA(1,1,1) model.

Table VI lists the final results of the experiment in different

performance metrics. The SE-LSTM gave the best results of

all methods used. Meanwhile, the ARIMA model performed

much worse than the other two methods used.

TABLE VI

END RESULTS IN DIFFERENT METRICS

Methods
Performance Metrics

RMSE MAE MAPE R2 Score

SE-LSTM 538.914 402.977 1.437% 0.961

LSTM 661.041 510.662 1.841% 0.927

ARIMA(1,1,1) 2809.015 2402.041 9.867% -0.127

V. CONCLUSION

This experiment was implemented using the combination

of the LSTM deep learning model and a novel metaheuristic

optimization algorithm, Search Economics. The SE-LSTM as

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_17

Volume 47, Issue 4: December 2020

__

the best model acquired gives RMSE around 538.914, MAE

around 402.977, MAPE around 1.437%, and R2 Score around

0.961. There was no overfitting found when comparing the

prediction to the actual data, which is a good thing. The SE-

LSTM provided better results when compared to an non-

optimized LSTM model and the ARIMA model using

auto_arima function. From what was given as the results, it

was proven that ARIMA is not suitable to predict random

walk time-series such as stock prices. The ARIMA produced

results much worse when compared to the other two models.
Even though we already used a metaheuristic optimization

algorithm, optimizing an LSTM model still requires a lot of

resources and time. There is simply no way around it, as all

deep learning methods need massive computational power.

However, compared to manually optimizing things, using

heuristic optimization algorithms surely provides much faster

execution. While deciding which algorithms to use, we found

a new novel heuristic optimization algorithm called Search

Economics. It turns out that the algorithm was doing a great

job at optimizing our LSTM model. The results however is

not that much of a difference when compared to an LSTM

model designed by a slightly experienced data scientist.

REFERENCES

[1] Y.-F. Huang and R. Startz, “Improved recession forecasts considering

stock market volatility,” SSRN Electron. J., 2018, doi:

10.2139/ssrn.3297949.

[2] B. Shiv, G. Loewenstein, A. Bechara, H. Damasio, and A. R. Damasio,

“Investment behavior and the negative side of emotion,” Psychol. Sci.,

2005, doi: 10.1111/j.0956-7976.2005.01553.x.

[3] J. S. Lerner and D. Keltner, “Fear, anger, and risk,” J. Pers. Soc.

Psychol., 2001, doi: 10.1037/0022-3514.81.1.146.

[4] M. Grinblatt, M. Keloharju, and J. Linnainmaa, “IQ and stock market

participation,” J. Finance, 2011, doi: 10.1111/j.1540-

6261.2011.01701.x.

[5] E. Gilbert and K. Karahalios, “Widespread worry and the stock

market,” in ICWSM 2010 - Proceedings of the 4th International AAAI

Conference on Weblogs and Social Media, 2010.

[6] R. Tumarkin and R. F. Whitelaw, “News or noise? Internet postings

and stock prices,” Financ. Anal. J., 2001, doi: 10.2469/faj.v57.n3.2449.

[7] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock

market,” J. Comput. Sci., 2011, doi: 10.1016/j.jocs.2010.12.007.

[8] X. Qing and Y. Niu, “Hourly day-ahead solar irradiance prediction

using weather forecasts by LSTM,” Energy, 2018, doi:

10.1016/j.energy.2018.01.177.

[9] G. Chniti, H. Bakir, and H. Zaher, “E-commerce time series forecasting

using LSTM neural network and support vector regression,” in ACM

International Conference Proceeding Series, 2017, doi:

10.1145/3175684.3175695.

[10] S. McNally, J. Roche, and S. Caton, “Predicting the Price of Bitcoin

Using Machine Learning,” in Proceedings - 26th Euromicro

International Conference on Parallel, Distributed, and Network-Based

Processing, PDP 2018, 2018, doi: 10.1109/PDP2018.2018.00060.

[11] A. Saxena and T. R. Sukumar, “Predicting bitcoin price using LSTM

and compare its predictability with ARIMA model,” Int. Journa Pure

Appl. Math., 2018.

[12] S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A comparison of

ARIMA and LSTM in forecasting time series,” in Proceedings - 17th

IEEE International Conference on Machine Learning and

Applications, ICMLA 2018, 2019, doi: 10.1109/ICMLA.2018.00227.

[13] C. W. Tsai, “An effective WSN deployment algorithm via search

economics,” Comput. Networks, 2016, doi:

10.1016/j.comnet.2016.01.005.

[14] W. Qiu, X. Liu, and L. Wang, “Forecasting shanghai composite index

based on fuzzy time series and improved C-fuzzy decision trees,”

Expert Syst. Appl., 2012, doi: 10.1016/j.eswa.2012.01.051.

[15] E. Guresen, G. Kayakutlu, and T. U. Daim, “Using artificial neural

network models in stock market index prediction,” Expert Syst. Appl.,

2011, doi: 10.1016/j.eswa.2011.02.068.

[16] A. H. Moghaddam, M. H. Moghaddam, and M. Esfandyari, “Stock

market index prediction using artificial neural network,” J. Econ.

Financ. Adm. Sci., 2016, doi: 10.1016/j.jefas.2016.07.002.

[17] M. Qiu and Y. Song, “Predicting the direction of stock market index

movement using an optimized artificial neural network model,” PLoS

One, 2016, doi: 10.1371/journal.pone.0155133.

[18] D. M. Q. Nelson, A. C. M. Pereira, and R. A. D. Oliveira, “Stock

markets price movement prediction with LSTM neural networks,”

2017 International Joint Conference on Neural Networks (IJCNN),

2017.

[19] Q. Jiang, C. Tang, C. Chen, X. Wang, and Q. Huang, “Stock Price

Forecast Based on LSTM Neural Network,” Proceedings of the Twelfth

International Conference on Management Science and Engineering

Management Lecture Notes on Multidisciplinary Industrial

Engineering, pp. 393–408, 2018.

[20] P. G. Zhang, “Time series forecasting using a hybrid ARIMA and

neural network model,” Neurocomputing, 2003, doi: 10.1016/S0925-

2312(01)00702-0.

[21] P. Chen, T. Pedersen, B. Bak-Jensen, and Z. Chen, “ARIMA-based

time series model of stochastic wind power generation,” IEEE Trans.

Power Syst., 2010, doi: 10.1109/TPWRS.2009.2033277.

[22] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term

dependencies with gradient descent is difficult,” IEEE Trans. Neural

Networks, 1994, doi: 10.1109/72.279181.

[23] J. F. Kolen and S. C. Kremer, “Gradient flow in recurrent nets: the

difficulty of learning long-term dependencies,” in A Field Guide to

Dynamical Recurrent Networks, 2010.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., 1997, doi: 10.1162/neco.1997.9.8.1735.

IAENG International Journal of Computer Science, 47:4, IJCS_47_4_17

Volume 47, Issue 4: December 2020

__

