
 

Abstract—In practice of school bus route planning, the bus 

fleet usually consists of a number of buses with different 

capacities, purchase costs and operation costs. However, the 

heterogeneous fleet school bus routing problem (HSBRP), 

especially for the problem with a limited fleet, has not been 

sufficiently investigated so far. This study deals with the 

HSBRP with unlimited fleet as well as limited fleet. The 

objective is to design a set of routes in such a way that the sum 

of fixed and variable costs is minimized. A metaheuristic 

algorithm for the HSBRP is proposed by hybridizing iterated 

local search (ILS) heuristic with a set partitioning (SP) 

procedure. The historical routes identified by ILS local search 

are globally selected by solving a set partitioning problem. The 

experimental results show that the proposed algorithm is quite 

effective and efficient. Furthermore, when the algorithm is 

applied to the routes plan of several real schools in china, it can 

obtain better school bus route planning solution and reduce the 

transportation costs. 

 
Index Terms—heterogeneous fleet, iterated local search, set 

partitioning, real case, school bus routing problem 

I. INTRODUCTION 

HE school bus routing problem (SBRP), aims to plan an 

efficient schedule for a fleet of school buses where each 

bus picks up students at several bus stops and delivers them 

to their designated schools while meeting various 

constraints[1]. SBRP is a real-world transportation system 

problem that is important and challenging work for the 

school and education authorities. As a class of NP-hard 

problems in combinatorial optimization, SBRP has been 

constantly studied. Detailed descriptions on SBRP and a 

comprehensive survey of the related literature can be found 

in [2, 3]. 

In most SBRP literature, a fleet of homogeneous buses is 

considered. However, in practice of school bus route 

 
 

Manuscript received November 8, 2019. This research has been partially 

supported by National Natural Science Foundation of China (Grant 

No.41801310) and Science and Technology Development Plan Project of 

Henan Province (Grant No.202102210160). 

Yan-e Hou is with College of Computer and Information Engineering, 

Henan University, Kaifeng, Henan 475004, China (e-mail: 

houyane@henu.edu.cn)  

Lanxue Dang is with College of Computer and Information Engineering, 

Henan University, Kaifeng, Henan 475004, China (corresponding author, 

e-mail: danglx@foxmail.com) 

Yunfeng Kong is with College of Environment and Planning, Henan 

University, Kaifeng, Henan 475004, China (email: yfkong@henu.edu.cn) 

Zheye Wang is with the Department of Geography, Kent State 

University, Kent, OH 44240, USA (email: zwang31@kent.edu) 

Qingjie Zhao is with College of Computer and Information Engineering, 

Henan University, Kaifeng, Henan 475004, China (e-mail: 

735593435@qq.com) 

planning, the bus fleet always consists of a number of buses 

with different capacities, purchase costs and operation costs. 

More specifically, the number of each type of bus may be 

limited and fleet composition is known in advance. Hence, 

planning the routes for a heterogeneous fleet of buses is 

challenging but essential for bus operation companies. These 

practical problems make the researchers pay more attention 

on the extension of SBRP i.e., heterogeneous school bus 

routing problem (HSBRP). 

The HSBRP is also a variant of heterogeneous vehicle 

routing problem (HVRP). In fact, the HSBRP tends to be a 

variant of HVRP with open routes [4, 5], because each bus 

does not necessarily return to the depot after servicing the 

students. Compared with the classical HVRP, the HSBRP 

has an additional constraint of the maximum student riding 

time.  

In order to provide safety and cost efficient transportation, 

the riding time for any student shall not exceed a predefined 

maximum riding time. In addition, the bus service time at 

each bus stop depends on the number of students to be 

serviced at the stop [6]. Like the classification of HVRP [7, 

8], the heterogeneous buses of HSBRP may be unlimited or 

limited. However, to the best of our knowledge, the HSBRP 

has received very limited attention, especially for the limited 

heterogeneous buses. 

The aim of this paper is to deal with the HSBRP with 

unlimited fleet as well as limited fleet. The objective is to 

minimize the sum of fixed and variable costs. A hybrid 

metaheuristic algorithm (ILS-SP) is proposed based on an 

iterated local search (ILS) heuristic and a set partitioning 

procedure (SP). The intermediate routes identified by ILS are 

recorded in a route pool. The historical routes are 

recombined and selected by solving a set partitioning 

problem. This hybrid algorithm is to solve both the fleet size 

and mix school bus routing problem (FSMSBRP) and the 

heterogeneous fixed fleet school bus routing problem 

(HFSBRP). The performance of the proposed algorithm is 

tested on 20 benchmark instances. Finally, we also apply the 

proposed algorithm into a real case. 

The remainder of this paper is organized as following. 

Section II reviews the related works in the literature. Section 

III defines the HSBRP. Section IV describes the proposed 

hybrid algorithm for the HSBRP in details. Computational 

results and a real case study are presented in Section V. 

Section VI offers some concluding remarks. 

II. RELATED WORKS 

The classification of SBRP based on fleet mix has been 
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described in many existing studies [9-14]. In these researches, 

the solving methods including exact methods, heuristic 

methods, and metaheuristics are used.  

For the school bus routing and scheduling problem with 

heterogeneous bus fleet, the mathematical formulations and 

exact algorithms are developed in [9]. The bus flow, single 

commodity flow, two-commodity flow, and 

multi-commodity flow mathematical models are solved by a 

branch-and-cut exact algorithm. However, only very small 

instances with heterogeneous fleet could be solved with the 

exact method.  

There are only a few heuristic algorithms were proposed to 

solve the heterogeneous fleet problem. For a rural problem 

with heterogeneous buses, a simple taboo search algorithm 

combined with 1-exchange operator is presented in [10]. For 

a complex rural SBRP with multiple attributes such as 

mixed-fleet, multi-depot, site-dependent and split-delivery, a 

heuristic algorithm including six heuristic methods such as 

Student-interchange, Sharing, Reduction, Combine and 

Swap buses are used iteratively to reduce the travel cost[11]. 

There is an adaptive location based heuristic (ALBH) 

algorithm to solve the school transportation problems for 399 

cities in Brazil [12]. In the algorithm in [12], the buses with 

biggest capacity are assigned to the routes at first. After 

building a route solution, the smaller buses could be adjusted 

more appropriately. All of these algorithms in [10-12] can 

manage the heterogeneous buses, but do not guarantee 

high-quality solutions.  

In order to get better solutions, the metaheuristic algorithms 

are used in [13, 14]. Four metaheuristc algorithms are 

proposed in [13] to solve the mixed load capacitated rural 

SBRP with heterogeneous fleets but without considering the 

maximum riding time constraint. Then, the same problem 

with the multi-objectives is studied in [14]. Though there are 

some metaheuristic algorithms applied to solving the HSBRP, 

it is also necessary for the researcher to explore more and 

better metaheuristic algorithms to solve the HSBRP.  

Since the fleets are usually heterogeneous in most 

practical distribution and transportation problems, the HVRP 

and its variants have received much attention in last 30 years 

[15]. Two major classes of HVRP problems are the fleet size 

and mix vehicle routing problem (FSMVRP) [7] and the 

heterogeneous fixed fleet vehicle routing problem (HFVRP) 

[8]. Like VRP, the HVRP and its variant problems are also 

NP-hard problems. Due to the intrinsic difficulty of the 

family of HVRP problems, most solution approaches in 

literature are the heuristic and metaheuristic algorithms such 

as tabu search [16,17], memetic algorithm[18], multi-start 

adaptive memory programming and path relinking 

heuristic[19], hybrid population heuristic[20], iterated local 

search[21,22], and unified hybrid genetic search 

metaheuristic [23]. In summary, significant progress has 

been made on the HVRP and its variants. A comprehensive 

comparison of recent metaheuristics shows that the standard 

versions of HVRP have been solved to near optimality by 

heuristics, and the algorithmic research on the standard 

problems has reached maturity [15]. However, these 

metaheuristic algorithms are successfully applied to solve 

VRPs, but they have not attracted much attention to solve the 

school bus routing problems [2]. 

In some literatures, the metaheuristic algorithm combined 

with set partitioning procedure methods are used to improve 

the VRP solutions, such as tabu with SP [24], genetic 

algorithm with SP [25], ILS with SP [22] and so on. The set 

partitioning procedure is introduced a post-optimization 

technique for solving vehicle routing problems [24]. This 

technique consists of saving all partial solutions identified 

during the tabu search algorithm, and improving the heuristic 

solution by solving a set partitioning problem. The genetic 

algorithm with set portioning procedure is proposed in [25] 

to solve the VRP with time windows. For both FSMVRP and 

HFVRP problems, an ILS-based heuristic algorithm is 

provided to generate columns in a set partitioning 

formulation, and the competitive results and new best-known 

solutions are obtained on benchmark instances [22]. It shows 

that the metaheuristic hybrid with set partitioning procedure 

is effective to solve VRP problems. For SBRP, a hybrid 

algorithm combined ILS with SP is used to solve the 

bi-objective single school SBRP with homogeneous fleets 

[26]. The experiment results show that the set partitioning 

procedure can effectively improve the solutions. It indicates 

that this hybrid metaheuristic algorithm has application 

potentials in solving SBRP and its variants. 

III. PROBLEM DESCRIPTION AND FORMULATION 

The HSBRP can be defined on a graph with a set of nodes 

and a set of edges. Let ( , )V EG   be a complete weighted 

graph, where  0,1,2,3... , 1V n n   is the node set, and 

  , , , |A i j i j V i j  
 
is the edge set. Node 0 refers to the 

bus depot; node 1n  refers to the school; and a node set 

 1, 2,3,...,C n  denotes the student stops. Each stop i has a 

known number of students 
iq to be served and a service 

time
it .For convenience, depot and school node have no 

demand and service time, that is 0(0, {0, 1})
ii

q t i n   . 

Each arc  ,i j  is associated with a traveling distance 
ij

d  and 

a traveling time
ij

t . A fleet of school buses is located at the 

depot, and the set of bus types is denoted as {1, 2,3... }M K . 

Each school bus of type k  has a carrying capacity
k

Q , a fixed 

cost 
k

f  and a variable cost per unit distance
k

v . The number 

of school buses of type k  is denoted as
kh . 

The objective of HSBRP is to determine a set of bus routes 

with minimum fixed cost and variable cost while satisfying 

the following constraints. (1) Each bus leaves from the depot, 

visits to several student stops and travels to the school. (2) 

Every stop must be visited exactly once. (3) The number of 

students served by a bus cannot exceed its capacity. (4) The 

riding time for any student in the bus shall not exceed the 

predefined maximum riding time T . (5) The number of 

buses used of type k  cannot exceed the limit of
kh . If the 

number of buses in the last constraints is unlimited 

( ,k k Mh    ), the HSBRP is denoted as FSMSBRP; 

otherwise, it is denoted as HFSBRP. 

A mathematical formulation for the HSBRP is based on 

three types of decision variables. The variable 
ijk

x  indicates 

that if a bus of type k  travels from stop i  to j , then 1
ijk

x  , 
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otherwise, 0
ijk

x  . The variable 
ik

y  donates the cumulative 

number of students in a bus of type k  when the bus leaves 

from stop i  (
0 0ky  ). The variable 

ikz  denotes the 

cumulative travelling time of a bus of type k  when it arrives 

to stop i  which is calculated from the school to the depot in 

reverse order (
( 1)

0
n k

z


 ). A mixed integer programming 

(MIP) formulation for the HSBRP is shown as follows: 

min 
\{n 1} \{0, }

k ojk k ij ijk

j C k M i V j V i k M

f x v d x
     

     
(1) 

s.t. 
\{i,n 1}

1, ,
ijk

j V k M

x i C k M
  

      
(2) 

 
/{n 1} /{0}

0, ,
ipk pjk

i V j V

x x p C k M
  

       
(3) 

 , / { 1}  
ik k

y Q i V n k M    ，  (4) 

 
1
(1 ), \ {n 1}

\{0, },  

ik j jk ijk
y q y M x i V

j V i k M

      

 

，

 (5) 

 , / {0},
ik

z T i V k M     (6) 

 
 2
1 , \{n 1}

\{ },  

jk ij i ik ijk
z t t z M x i V

j V i k M

       

 

，

 
(7) 

 0

\{0}

 
ik k

i V

x h k M


   ，
 (8) 

 {0,1}, \ {n 1}, \ {0, },  
ijk

x i V j V i k M     
 (9) 

 {0,1,2...}, ,  
ik

y i V k M   
 (10) 

 {0,1, 2...}, ,  
ik

z i V k M   
 (11) 

The objective function (1) is to minimize the sum of fixed 

and variable costs. Constraints (2) ensure that each bus stop 

must be visited exactly once. Constraints (3) make sure that if 

a bus of type k  visits the stop p , it must leave from the stop. 

Constraints (4) guarantee that the total number of students in 

the bus of type k  must not exceed its capacity. Constraints 

(5) express the accumulation of students in a bus. If 1
ijk

x  , 

then ( )ik j ijk jky q x y
 
; otherwise ( )ik j ijk jky q x y

.
The 

non-linear constraints can be transformed to linear 

inequalities (5) by using a big 

number
1 1
( 2 )

k
M M Q .Constraints (6) guarantee that the 

riding time of each student in the bus is never exceeded the 

maximum riding time T . Constraints (7) express the 

accumulation of bus travelling time:
 
( )jk ij i ijk ikz t t x z    . 

It can also be transformed to linear inequalities by 

introducing a big number
2 2
( 2 )M M T . Constraints (8) 

impose that each type of buses used cannot exceed its 

maximum number. For the FSMSBRP, constraints (8) are 

redundant. Constraints (9), (10) and (11) are the constraints 

on the decision variables.
 

IV. HYBRID METAHEURISTIC ALGORITHM 

A. Algorithm Framework 

The proposed hybrid algorithm (ILS-SP) for HSBRP 

integrates an iterated local search (ILS) heuristic with a set 

partitioning (SP) procedure. ILS has been successfully 

applied to various VRP problems. Its performance depends 

mainly on the choice of the local search, the perturbations 

and the acceptance criterion. The ILS in our algorithm 

consists of two methods for generating of an initial solution, 

eight inter and intra-route local search operators, three 

perturbation operators and a sequence of acceptance rules. In 

addition, the intermediate routes in the locally optimal 

solution identified by ILS are recorded in a route pool. After 

iterations of local search, a SP model will be build based on 

the routes in the route pool. A MIP solver then solves the 

model. The algorithm framework of ILS-SP is described in 

Algorithm 1. 

 

Algorithm 1: ILS-SP (Maxiter, Piter) 

(1) Generate an initial feasible solution S0;  

(2) RoutePool=Null, Sbest=S=S0, 

Update_route_pool(RoutePool, S); 

(3) For (i=0; i<Maxiter; i++) 

(4)   For each local search operator op randomly selected 

(5)        S=Localsearch(op,S,Sbest);  

(6)        Update_route_pool(RoutePool, S); 

(7)  If (Sbest has not been updated in Piter consecutive 

iterations) 

(8)        S=Perturbation(S, Sbest);  

(9)        Update_route_pool(RoutePool, S); 

(10) sp=Build_sp_model(RoutePool);  

(11) S*=MIPSolver(sp); 

(12) Output Sbest and S*. 

 

The procedure Localsearch(op, S, Sbest) uses operator op to 

explore the neighborhood space of the current solution S. A 

neighborhood solution is accepted or rejected according to 

the acceptance rules. Once a neighborhood solution is better 

than the best solution Sbest, the best solution will be updated. 

The procedure Update_route_pool(RoutePool,S) records all 

the routes of solution S into RoutePool. The procedure 

Build_sp_model (RoutePool) builds a SP model based on the 

routes in RoutePool. The procedure MIPSolver(sp) solves 

the set partitioning model sp. 

B. Initial Solution Construction 

ILS starts with an initial feasible solution. For the 

proposed algorithm, a giant tour method is used to construct 

the initial solution for the FSMSBRP. Since the available 

buses are limited and each route must satisfies the constraint 

of maximum riding time, finding a feasible solution for the 

HFSBRP would be quite difficult. Therefore, we adopt an 

improved cheapest insertion method to find an initial 

solution for the HSBRP. The algorithm is described in the 

following. 

(1) Initialize the list of stops U and an empty solution
0S . 

(2) For each bus, create a route that starts from the depot 

and ends at the school. The type of bus is assigned to its 

route. The number of routes equals to the total number of 

available buses v . 

(3) Randomly select v  stops from U insert them to the 

current routes, and then remove them from U. Note that the 

stop insertion must not violate the bus capacity. If a stop 
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cannot be inserted into any route, go to Step (1). 

(4) For each unvisited stop in U, find the stop u U with 

the cheapest insertion cost to
0S , and then insert u to 

0S  as 

well as removing it from U. In case of an unvisited stop 

cannot be inserted into any route, go to Step (1). When all the 

stops are inserted into existing routes, an initial solution is 

constructed. 

To decrease the number of trails in this algorithm, we also 

adopt a node sorting and selecting strategy in Step (3). The 

stops are first sorted by their demands in descending order. 

The routes are also sorted by their bus capacities in 

descending order. Then, for each route in the first half of the 

route list, a stop randomly selected from the top three 

unvisited stops in the stop list is inserted into it. This will 

insert most large stops into the routes with large capacities, 

and thus increases the opportunity of finding a feasible 

solution. 

C. Neighborhood Structures 

In the local search process of the proposed algorithm, 

multiple neighborhood operators with random neighborhood 

selection are performed. Both inter-route and intra-route 

neighborhood operators are used to improve the solution. In 

each iteration of the local search, the inter-route operators are 

randomly applied to the current solution. When a new 

neighborhood solution is accepted by an inter-route operator, 

the intra-route operators will be then performed in sequence. 

The inter-route neighborhoods used in the proposed 

algorithm includes Shift(1,0), Shift(2,0), Swap(1,1), 

Swap(2,2) and 2-opt. These neighborhoods are described as 

follows. 

(1)Shift(1,0).A student stop is removed from a route and  

then inserted to another route. In Fig 1 (a), the student stop 2 

is removed from the top route and then inserted to the bottom 

route. 

(2)Shift(2,0).Two adjacent student stops are moved from 

the same route to another route. In Fig 1 (b), two student 

stops 2 and 3 are moved from the top route to the bottom 

route. 

(3)Swap(1,1).Two student stops on the two different 

routes are exchanged to obtain two new routes. In Fig 1(c), 

the student stop 2 and 7 on the two different routes are 

exchanged, so the two new routes are obtained. 

(4)Swap(2,2).Two continuous student stops on the two 

different routes are exchanged. In Fig 1 (d), a pair of student 

stops 2 and 3 is exchanged with another pair of student stops 

6 and 7. 

(5)2-opt. 2-opt deletes two non-adjacent edges and then 

links the remaining segments. After 2-opt, two new routes 

are obtained. In Fig 1 (e), the edges e1, e2, e3, e4 are deleted 

from two different routes respectively. Two new edges e5 and 

e7 are added to get the top route, and two another edges e6 

and e8 are added to get the bottom route. 

The intra-route neighborhoods are used in the same route, 

which include Relocate, Route Reverse and 2-opt*. These 

intra-route neighborhoods are described in the following. 

(1)Relocate. Relocate removes a student stop and then 

inserts it into another position of the same route. In Fig 2 (a), 

student stop 1 is removed and then inserted after student stop 

3. 

(2)Route Reverse. This operator reverses a route segment 

and reinserts it into the same position (Fig 2). In Fig 2 (b), the 

student stops from 1 to 4 are reversed and then reinserted into 

the same position. A new route is obtained by the operator. 

(3)2-opt*. When 2-opt is performed in the same route 

(donated as 2-opt*), two non-adjacent edges are deleted and 

the student stops between these edges are all reversed. In Fig 

2(c), the edges e1 and e2 are firstly deleted, and then the 

student stops from 2 to 5 between these two edges are 

reversed. Finally, two new edges e3 and e4 are inserted to 

obtain a new route. 

D. Fleet Type Adjustment Strategy 

In local search, adjusting the bus type for a route is 

necessary for two reasons. For a possible node move, if the 

number of the students in a route exceeds its capacity, the 

route should use a bus with enough capacity. Otherwise, if a 

low-cost bus could serve a route, assigning a low-cost bus to 

the route will reduce the route cost. Consequently, in each 

inter-route operator, the bus type for each related route could 

be changed either to keep the solution feasible or to reduce 

the routing cost. 

Let the route r  using bus type of k and the bus capacity is 

k
Q . The total cost of the route r  is 

k

r
C , the number of the 

students in this route is Q . The set of bus types is denoted as 

{1, 2,3... }M m  ,which is ordered by capacity of bus type 

ascending. The fleet type adjustment strategy is defined as 

follow. 

(1) If 
k

Q Q , then leave it alone. 

(2) If 
k

Q Q , then it tries to find a low-cost bus to server 

this route. For each bus type in the set of bus 

types{1, 2,..., 1}k  , seek the bus type j  that is satisfy with 

j
Q Q and making 

k j

r r
C C  with the minimum value. When 

it cannot find the bus type that meets the above constraints, or 

k  is the smallest bus type in M , it will do nothing. 

 (3) If 
k

Q Q , then it means the number of students in the 

route exceed the bus capacity constraints, it needs to find a 

new bus to server this route. For each bus type in the set of 

bus types  1, 2,...,k k m  , search the bus type j  that is 

satisfy with j
Q Q and making 

j k

r r
C C  with the minimum 

value. When it cannot find the bus type that meets the above 

constraints, or k  is the biggest bus type in M , it will do 

nothing. 

In the above fleet type adjustment strategies, strategy (2)  
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Depot Relocated stopStopSchool Related edge

1 2 3 4

75 6 8

1 3 4

75 6 82

(a) shif(1,0)

1 2 3 4

75 6 8

1 4

75 6 82

(b) shif(2,0)

3

1 2 3

75 6 8

(c) swap(1,1)

4 1 7 3 4

25 6 8

1 2 3

75 6 8

(d) swap(2,2)

4 1 6 7 4

35 2 8

1 2 3

75 6 8

(e) 2-opt

4 1 2 3 4

75 6 8

e1 e2

e3 e4

e5

e6

e7

e8

 

Fig 1.  Examples of inter-route neighborhoods 

Depot Relocated stopStopSchool Related edge

(a) Relocate (b) Route reverse

1 2 3 4

12 3 4

1 2 3 4

1234

(c) 2-opt*

1 2 3 4 5 6

1 235 4 6e3 e4

e1 e2

 

Fig 2.  Examples of intra-route neighborhoods 

 

tries to find the low-cost bus to reduce the total cost. While 

for strategy (3), it seeks the feasible solution through fleet 

type adjustment. Although it may cause the higher cost of the 

route, it brings the diversity of search and improves the 

probability of finding a better solution. It is possible to 

reduce the total cost of all the routes by adjusting fleet type 

again in the subsequent local search. 

After the adjusting bus type for a route, it is necessary to 

determine whether the cost change caused by the fleet bus 

adjustment meets the acceptance rules of the solution. For 

HFSBRP, it is also essential to determine whether the limit 

on the number of vehicles of each type is met. 

E. Acceptance Rules 

The optimization objective defined in this paper is to 

minimize the sum of fixed and variable costs. The solution 

cost is related to the number of buses required and the 

combination of the bus types. Since the fixed cost per bus is 

often significantly higher than the travel cost per distance 

unit, the total cost for HSBRP solution could be saved by 

reducing the number of bus routes. However, minimizing the 

traveling distance may lead the search to solutions with a 

small traveling distance but it is difficult to remove routes 

effectively. In order to improve the performance of our 

algorithm for deleting as many unnecessary routes as 

possible, we introduce a supplementary function, described 

in (12), to evaluate the possible node moves in each 

inter-route operator. 

* *

( ) min{ }

min{ }

,

,

m p

k

i j

i l j

Eval i, j Load Load

Load Load

Q Q

Q Q

   

 
             (12) 

For routes i  and j  evaluated by an inter-route operator, 

Loadi and Loadj denote the total loads of the two routes 

respectively. A bus of type m and a bus of type p serve the 

two routes. For a possible node move, the total loads of the 

two routes are changed to Loadi* and Loadj*, and the bus 

types are adjusted to k  and l respectively. If ( , ) 0Eval i j  , 

the node move will increase the bus utilization for either 

route i  or route j .This function could encourage the search 

to delete some routes gradually. 

Based on the discussion above, the acceptance rules for 

neighborhood solutions in our algorithm are designed as the 

following. For operators such as Shift(1,0) and Shift(2,0), if 

one route can be deleted, the neighborhood solution will be 

accepted. For all inter-route operators, if ( , ) 0Eval i j  , the 

neighborhood solution will also be accepted; otherwise, the 

cost saving in traveling distance will be considered. In 

summary, for a feasible neighborhood solution, we evaluate 

the number of routes, the supplementary function ( , )Eval i j  
and the total cost in sequence. In order to escape the local 

optimum, some worsening neighborhood solutions could be 

accepted according to the record-to-record travel (RRT) 

acceptance criterion [27]. 

F. Perturbation Mechanism 

The success of ILS also depends on the perturbation 

operators and the perturbation strength. The simplest 

possibility to improve the performance of local search is to 

repeat the search from another starting point. To address this 

issue, we utilize three perturbation operators in ILS 

heuristic: multi-point shift, multi-point swap and 

ruin-and-recreate.  

The first operator selects   stops randomly and shifts 

them to other positions in the same or different routes. The 

second operator also randomly selects   stops at first; then 

for each selected point, tries to swap it with one of its 
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neighborhood points. These two perturbation operators are 

implemented by performing Shift(1,0) and Swap(1,0) 

neighborhood operators multiple times. 

The ruin-and-recreate procedure destroys the current 

solution by removing   stops and then uses a repair method 

to recreate a new solution [27]. The degree of ruin is 

evaluated by the number of stops to be removed. In the ruin 

method, a seed node is randomly selected at first. A list with 

2   neighborhood nodes of the seed is then constructed. 

Then, the seed node and 1   nodes randomly selected 

from the list are removed from the solution. The lowest 

insertion algorithm is used to recreate the solution. 

G. Set Partitioning Procedure 

In the proposed algorithm, the final step is to improve the 

solution by a set partitioning procedure. ILS heuristics have 

been successfully applied to solving various routing 

problems. Various local search operators, perturbation 

methods and acceptance rules can be applied to ILS to 

design novel algorithms. However, all the algorithms based 

local search are short-sighted, since only a small 

neighborhood space can be explored by local search 

operators. In addition, most of routes explored by the local 

search operators are discarded when better routes are found. 

The set partitioning procedure in our ILS-SP algorithm aims 

to utilize the historical routes identified in local search and 

tries to optimize the HSBRP solution from a global point of 

view. 

As described in the proposed algorithm, the route pool 

consists of many routes recorded in the local search. A SP 

model is build based on the routes in the route pool. Since 

the SP model is weakly NP-hard, the problem with 

thousands of routes can be solved efficiently by a MIP 

solver.  

The formulation for the HSBRP based on the set 

partitioning problem is defined as following. Let R  be the 

set of all possible routes for HSBRP and 
*R  be a subset 

of *( )R R R . Let 
k

R  be the subset of routes using bus type 

of k  and *

k M k
R R


 U . Each route )(

k
r r R  has an 

associated cost rc  and a binary variable rx . Let 
iR  be the 

subset of the routes covering stop *( , )ii i C R R  . A set 

partitioning formulation for the HSBRP is given as follows: 

min 
*

r r

r R

xc

  (13) 

s.t. 
1,

i

r

r R

i Cx


    
(14) 

 
,

k

r k

r R

n k Mx


    
(15) 

 
*{0,1},rx r R    (16) 

This SP model tries to select an optimal HSBRP solution 

from the possible routes. The objective function (13) 

minimizes the sum of the route costs. Constraints (14) 

guarantee that each stop must be covered exactly once. 

Constraints (15) impose the upper bound on the number of 

buses for each bus type. In the case of FSMSBRP, the 

constraints (15) can be eliminated. Constraints (16) define the 

binary decision variables. 

V. COMPUTATIONAL RESULTS AND REAL CASE  

A. Benchmark Instances 

The benchmark instances for HSBRP, as shown in 

TABLE I, are created based on benchmark instances for 

multi-school SBRP, which were proposed by [29]. The 

original instances are classified into two groups: random 

spatial distribution of schools and bus stops (RSRB) and 

clustered distribution (CSCB). A set of small instances 

(S01-S08), each with at most 13 bus stops, are selected from 

instances RSRB02 and CSCB02. The second set of instances 

(C01-C06) with 17~75 bus stops is derived from instance 

CSCB01. The third set of instances (R01-R06) with 38~51 

bus stops is derived from the instance RSRB01. Instead of 

the homogeneous fleet defined in the original instances, a 

heterogeneous fleet with two or three types of buses is 

carefully designed for each new instance. 

In TABLE I, the columns, N and TD, represent the 

number of stops and the total number of students to be 

served respectively. For each bus type k, its capacity, fixed 

cost, variable cost per mile and available number are listed in 

columns 
k

Q ,
k

f ,
kv and

kh ( ,k A B and C ). 

B. Comparison of Exact Algorithm and ILS-SP 

The newly designed instances for HSBRP were solved by 

ILS-SP algorithm and CPLEX respectively. In each 

instance, the distance between any two nodes was calculated 

by Manhattan distance. The average speed of school bus was 

assumed to be 29.333333 feet per second (20 miles per 

hour). The bus service time ti at student stop was an integer 

number estimated by the formula 19+2.6*qi, where qi is the 

number of students at the stop i . The maximum riding time 

(T) of a student in a bus was set to 2700 seconds.  

The ILS-SP algorithm described in Section IV was 

implemented by C# programming on a personal computer 

with an Intel(R) Core 2 3.06GHz CPU and 4GB RAM 

running 32-bit Windows 7 operating system. The parameters 

for ILS-SP algorithm were estimated based on several 

experiments. The parameters Maxiter  and piter  were set 

to 500 and 10 respectively. The deviation used in the 

acceptance criteria was set to 0.00001. For the perturbation 

procedure, the number of perturbed stops was defined as 

20% of the student stops. The SP model was solved by IBM 

ILOG CPLEX 12.6. The parameters for CPLEX solver were 

set to their default values, except that the maximum 

computation time was set to 60 seconds and the MIPGap was 

set to 10-10. The ILS-SP algorithm was executed ten times 

over each instance.  

In order to evaluate the performance of our algorithm, we 

also tried to solve the benchmark instances by exact method. 

The optimal or sub-optimal obtained from some instances 

were used as the baseline data for comparisons  
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with the performance of the proposed algorithm. According 

to the MIP formulation (1)-(11) for the HSBRP described in 

Section III, we built the MIP models for all HSBRP 

instances. In constraints (5) and (8), let M1=200 and 

M2=20000 respectively. The models were solved by CPLEX 

12.6.The parameters for CPLEX solver were set to its default 

values, except that the maximum computation time was set to 

7200 seconds and the MIPGap was set to 10-10. 

TABLE II and TABLE III show the solution results 

obtained by ILS-SP and CPLEX for HSBRP instances with 

unlimited and limited fleet respectively. Columns, CPLEX 

and ILS-SP, denote the solution costs from CPLEX and 

ILS-SP algorithm respectively. The columns, Cobj and TC 

represent the best objective value and the computation times 

of CPLEX. The number with asterisk (*) indicates that it is 

an optimal solution verified by CPLEX. The columns, Cbest, 

Cavg and Cdev, represent the best, average and percentage 

deviation of costs among the 10 solutions, respectively. The 

numbers in bold indicated that it is equal or better than 

CPLEX. The column, Fleet and CUR, denote the best fleet 

composition and its capacity utilization rate. The column TI 

gives the average computation time in seconds. 

There are several findings from TABLE II and TABLE 

III. (1) The small instances (S01~S08) can be solved by 

CPLEX with optimal solutions in 0.14~144.6 seconds. The 

instance C06 with 17 stops is also solved with optimal 

solution in 2 hours. (2) Compared with ILS-SP, for instances 

C01~C05 and R01~R06, feasible solutions for the 

TABLE II 

COMPUTATIONAL RESULTS ON FSMSBRP PROBLEM 

Instance 
 CPLEX ILS-SP 

Cobj Tc/s Cbest Cavg Cdev Fleet CUR TI/s 

S01 5062.57* 0.17 5062.57* 5062.57* 0.00% 1A2B0C 96.15% 0.04 

S02 6537.06* 4.23 6537.06* 6537.06* 0.00% 2A2B0C 83.00% 0.17 

S03 3090.16* 0.91 3090.16* 3090.47 0.01% 0A3B0C 81.67% 0.11 

S04 6469.90* 31.36 6469.90* 6469.90* 0.00% 1A1B2C 95.50% 0.15 

S05 3567.46* 0.28 3567.46* 3567.53 0.01% 2A1B0C 72.50% 0.06 

S06 6261.82* 144.6 6261.82* 6262.37 0.01% 1A2B2C 90.67% 0.17 

S07 6122.95* 0.28 6122.95* 6122.95* 0.00% 1A2B0C 80.00% 0.05 

S08 4894.26* 0.17 4894.26* 4894.26* 0.00% 2A1B0C 89.73% 0.04 

C01 50956.36 7201 39702.44 39705.32 0.01% 4A2B10C 94.76% 54.11 

C02 33758.32 7252 31123.66 31123.82 0.01% 1A5B5C 96.29% 1.91 

C03 21983.99 7204 21268.22 21268.53 0.00% 2A5B2C 98.40% 0.91 

C04 18298.82 7248 17582.47 17582.71 0.00% 1A4B3C 98.05% 0.73 

C05 73431.26 7510 57192.93 57197.77 0.01% 0A13B5C 98.76% 62.57 

C06 18776.70* 7157 18776.70* 18776.90 0.01% 2A1B4C 98.82% 0.27 

R01 25327.03 7299 21998.65 22040.57 0.19% 0A3B6C 99.82% 4.43 

R02 34004.71 7204 30202.44 30203.87 0.00% 1A1B7C 96.03% 2.01 

R03 48725.23 7205 41618.62 41625.13 0.01% 1A0B11C 98.02% 66.1 

R04 26432.46 7205 26028.24 26031.15 0.01% 3A3B4C 91.83% 1.75 

R05 35846.40 7363 29806.23 29806.89 0.00% 0A7B2C 98.21% 2.47 

R06 32555.19 7318 27374.87 27423.03 0.17% 0A0B9C 94.81% 15.27 

Avg 23105.13 4367 20234.08 20239.64 0.02% - 92.65% 10.67 

 

 

 

 

 

 

 

TABLE I 

THE BENCHMARK INSTANCES FOR HSBRP 

Instance N TD 
Bus type A Bus type B Bus type C 

QA hA hA hA QB fB hB hB QC fC vC hC 

S01 5 50 12 1000 0.6 1 20 2000 0.9 2 - - - - 

S02 10 83 20 1200 1.2 1 30 2000 1.5 2 40 3000 1.8 1 

S03 9 49 10 800 0.6 1 20 1000 1.2 2 30 1500 1.5 1 

S04 12 212 40 1200 1.2 2 50 1500 1.5 1 66 1800 1.8 2 

S05 7 29 10 1000 0.6 2 20 1500 1.2 2 - - - - 

S06 13 136 10 500 0.6 1 30 1200 1.2 3 40 1600 1.5 2 

S07 7 80 20 1200 1.2 1 40 2400 1.5 2 - - - - 

S08 6 131 40 1500 1.2 2 66 1800 1.5 1 - - - - 

C01 70 887 27 1000 1.0 5 54 2500 1.5 12 72 3000 1.7 9 

C02 35 674 40 2200 1.2 4 60 2700 1.3 6 72 3000 1.6 4 

C03 30 492 30 1200 1.0 3 60 2500 1.3 3 70 3000 1.4 4 

C04 23 402 30 1000 1.1 2 50 2200 1.3 5 60 2500 1.4 2 

C05 75 1116 40 2500 1.2 4 60 3000 1.4 16 70 3500 1.5 6 

C06 17 336 30 2000 1.1 2 40 2500 1.3 3 60 3000 1.5 4 

R01 38 569 40 2000 1.1 1 50 2200 1.3 5 70 2500 1.4 6 

R02 40 557 30 2400 1.0 2 50 3000 1.2 5 70 3500 1.5 6 

R03 51 794 40 2500 1.2 2 50 3000 1.5 6 70 3500 1.7 9 

R04 35 427 30 1800 1.0 5 45 2500 1.2 5 60 3200 1.5 3 

R05 42 550 40 2600 1.0 5 60 3200 1.3 6 70 3500 1.6 2 

R06 44 512 30 1800 1.0 4 40 2500 1.2 3 60 3000 1.4 6 
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FSMSBRP can be obtained by CPLEX with MIPGap 

between 1.53%~22.21% in 2 hours. Meanwhile, for 

instances C01~C06 and R01~R06, just only 3 feasible 

solutions for the HFSBRP can be found by CPLEX with 

MIPGap between 0.00%~7.52%. (3) Compared with the 

optimal solutions on small instances (S01~S08 and C06), the 

ILS-SP can find the optimal solutions. This confirms the 

excellent performance of the ILS-SP algorithm for solving 

HSBRP. Compared with the feasible solutions on other 

instances, the ILS-SP can find equivalent or much better 

solutions. (4) The variances among 10 solutions of ILS-SP 

algorithm for each instance are quite small. All the 

percentage deviations, except the FSMSBRP instance R01 

and R06 and the HFSBRP instance R01, are less than 0.10%. 

The bus capacity utilization rates ranges between 91.83% 

and 99.82% for instances C01~06 and R01~R06, which are 

high enough for most of vehicle routing problems. (5) The 

ILS-SP algorithm solved most the problem instances 

efficiently. For FSMSBRP and HSBRP, the average 

computation times of ILS-SP are just only 10.67 seconds and 

11.79 seconds respectively. 

C. Performance of Set Partitioning Procedure 

This section evaluates the performance improvement by 

set partitioning. The set partitioning procedure introduced in 

the proposed algorithm is expected to improve solution 

quality by using the historic routes explored by ILS. TABLE 

IV compares the SP results with the ILS results on problem 

instances. Column ILS denotes the best solution cost 

obtained by ILS. Column ILS-SP denotes the best solution 

cost obtained by ILS with additional SP procedure. The 

average computation times for ILS and ILS-SP are shown in 

columns T1 and T2, respectively. The column Gap indicates 

the cost savings from the set partitioning compared with ILS. 

TABLE IV shows that a better or equivalent solution can 

be generated by solving a set partitioning model for every 

instance. For the FMSSBRP instances, an average of 0.81% 

solution cost can be reduced, and the costs on instances C01, 

C03, C04, C05, R01, and R03 are all reduced significantly. 

For the HFSBRP instances, 1.33% of solution cost can be 

reduced, and the costs on instances C01, C05, R01, R02 and 

R06 are reduced significantly. At the same time, additional 

computation time is needed for updating the route pool, 

building the SP model and solving the model. The large part 

of the increasing time is consumed by the MIP solver, 

especially for instances C01, C05, R03 and R06. 

D. Influence of the local search strategy on ILS-SP 

In order to verify the effectiveness of ILS-SP algorithm, 

We also developed four versions of local search strategies for 

ILS: random sequence of local search (RLS) as described in 

Section IV, fixed sequence of local search (FLS), basic 

variable neighborhood decent (BVND) and random variable 

neighborhood decent (RVND). They all have the same 

parameters values and other settings expect with the different 

local search strategies. Each new algorithm was executed ten 

times over each instance. For every local search strategies for 

ILS, we computed the average of best solution costs on all 

the instances obtained from each algorithm. The results of 

FSMSBRP and HFSBRP are shown in Fig 3 and Fig 4 

respectively. 

As shown from Fig 3 and Fig 4, the set partitioning 

procedure coupled with ILS is capable of improving the 

solutions quality significantly. For FSMSBRP, the four ILS 

algorithms with set partitioning procedure can be improved 

between 0.64% and 1.19%. The ILS algorithm with FLS and 

BVND local search strategies are improved by 1.19% and 

1.18% respectively. While for HFSBRP, the four ILS 

algorithms with set partitioning procedure are all improved 

bigger than 1.11%. This could be explained by the fact that 

the locally optimal routes explored by the ILS local search 

are globally recombined and selected by set partitioning. 

While the performance of ILS depends much on its heuristic 

components, the set partitioning procedure is able to generate 

robust solutions by using the routes identified by the 

commonly used LS heuristic. 

 

Fig 3. Solution costs from four ILS heuristics with and without set 

partitioning for FSMSBRP 

 

Fig 4. Solution costs from four ILS heuristics with and without set 

partitioning for HFSBRP 

In additional, we also find that the four different local 

search strategies for ILS affect the quality of the ILS 

algorithm, especially for the HFSBRP. It is shown that the 

RLS and RVND search strategies could find the better 

solutions than FLS and BVND search strategies for the ILS 

algorithm. But for the ILS-SP, it has an advantage in that its 

performance does not highly depend on the local search 

strategy in ILS.  

Further, we also calculate the number of best solutions of 

these two types of HFSBRP on different instances. For small 

instances S01~S08, four ILS algorithms with and without set 

partitioning can obtain all the best solutions quickly. For all 

the instances, the four algorithms find the number of best 

solutions is shown in Fig 5.  
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There are some findings from the Fig 5. Four ILS 

algorithms combined with set partitioning procedure can all 

find more optional or best solutions than those without set 

partitioning procedure. For R01~R06 and C01~C06 

instances, the ILS heuristics with FLS and BVND local 

search strategies cannot find any best solutions on 

FSMSBRP and HFSBRP. But for four ILS with set 

partitioning procedure, ILS algorithms coupled with 

different local search strategies have little or no effect on 

FSMSBRP and HFSBRP. These results again prove the 

advantage of the set partitioning procedure. 

 

Fig 5. Number of best solutions obtained by four ILS heuristics with and 

without set partitioning for FSMSBRP and HFSBRP 

E. A Case Study 

We use the proposed algorithm to solve the routing 

planning of several schools in Wuxi City, Jiangsu province 

of China. Wuxi City is located in the south of Jiangsu 

province, which is the main traffic center in the Yangtze 

River Delta. The Huishan District of Wuxi was set up in 

2001, with an area of 325 square kilometers and 580 

thousand permanent residents. There are a provincial 

Economic Development Zone, five streets (Bridge Street, 

Chang’an street, Qian Qiao street, Qian Zhou street, Yuqi 

Street) and two built towns (Luoshe Town, Yangshan town) 

in the Huishan District of Wuxi. A Jinjiang primary and 

secondary school delivery service center was specially built 

to provide the school bus services for primary schools, 

secondary schools and kindergartens. The service center are 

equipped with three types of standardized school buses, 

which it has 27 seats, 54 seats and 57 seats respectively. 
We prepared 4 primary schools(donated as PS01~PS04) 

of Huishan District to carry out case study, including 

QianQiao center primary school, Yangshi primary school, 

Yangshan center primary school and Luoshe zhangzhen 

primary school. The steps of the case study are described in 

the following. 

Firstly, we build the road network data set and obtain the 

time and distance cost unit between stations in ArcGIS 10.2. 

The average speed of each road section is simulated 

according to the speed limit of the road. The speed of the 

high-speed road and expressway is set to 60 kilometers per 

hour. The nation road and main road are set to 40 kilometers 

per hour. The other road speeds are set to 30 kilometers per 

hour. The network analysis tool in ArcGIS 10.2 is used to 

calculate the time cost and distance cost matrix between the 

depot station, the student stops and the school. The time and 

distance cost unit between these stations are set to minutes 

and meter respectively. 

Secondly, it is assumed that the earliest time of school bus 

departure from the school is 6:30, the lasted time of school 

bus arriving the school is 7:50, and the maximum driving 

time of each school bus is limited to 40 minutes (2400 

seconds). The service time of each student stop is also 

estimated by the number of students, which is same with the 

service time defined in section V. 

Thirdly, we defined the types of school buses and the costs 

of them. There are three types of school buses donated as 

type A, type B and type C respectively. In order to facilitate 

planning, the fixed cost of these school buses just take the 

purchase cost into account, and the unit distance cost per day 

is the same, the unit of distance is kilometer (km). The fixed 

cost of 27 seats, 54 seats and 57 seats are set to 300,000 

RMB, 480,000 RMB and 500,000 RMB, and the fuel 

consumption cost per kilometer are 1.2 RMB, 2.2 RMB and 

2.5 RMB respectively. There are also a driver and a teacher 

in the school bus, so the capacity of three types of school 

buses is 25 seats, 52 seats and 55 seats. The number of three 

types of school buses is unlimited.  

Finally, we used the proposed algorithm and the VRP tool 

in ArcGIS 10.2 to plan the school buses routing solution of 

four schools respectively. 

As shown from TABLE V, the ILS-SP algorithm finds the 

better solutions as well as the average capacity utilization 

rate than ArcGIS 10.2 VRP tool. The ILS-SP algorithm 

reduces the total cost by 3.07% in average. For PS03, the 

ILS-SP algorithm can get the best fleet composition, reducing 

the total cost by 6.08%; but for PS04, it use less the school 

buses, improving by 6.18%. The routing planning results 

shows that our proposed algorithm is effective. 

VI. CONCLUSIONS 

This paper proposes a hybrid metaheuristic algorithm 

(ILS-SP) for the heterogeneous fleet school bus routing 

problem (HSBRP). We implemented the algorithm by 

combining an iterated local search (ILS) heuristic and a set 

partitioning (SP) procedure. We evaluated the performance 

of the algorithm on a set of benchmark instances. The 

experimental results on the FSMSBRP and the HFSBRP 

show that the proposed algorithm is quite effective and 

efficient. Further, we also use the algorithm to solve the 

school bus routing planning of several schools in Wuxi City 

of China, and the result shows that the algorithm is effective. 

The success of hybriding ILS with set partitioning could be 

explained by the fact that the locally optimal routes identified 

by ILS local search are globally selected by set partitioning. 

We also found that the set partitioning approach to the 

HSBRP has an advantage in that its performance does not 

highly depend on the local search strategy. Compared with 

the competitive but sophisticated metaheuristics for solving 

the HVRP and its variants, the local search based set 

partitioning method is relatively easy to be implemented. 
As for future work, we intent to improve our ILS-SP 

algorithm to solve large-sized instances, as well as other 

SBRP variants that include additional attributes such as 

multiple depots and multiple schools. 
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TABLE V 

RESULTS OBTAINED BY ILS-SP AND ARCGIS 10.2 VRP TOOL  

#schools #stops #studs 
ILS-SP ArcGIS 10.2 VRP Tool 

Gap 
TC Fleet CRU TC Fleet CRU 

PS01 5 90 960075.61 0A2B0C 86.53% 960075.61 0A2B0C 86.53% 0.00% 

PS02 20 237 2260123.78 1A2B2C 99.15% 2260127.82 1A2B2C 99.15% 0.00% 

PS03 27 296 2780172.02 1A1B4C 99.66% 2960178.99 0A2B4C 91.36% 6.08% 

PS04 45 790 7280576.81 0A11B4C 99.75% 7760543.94 0A12B4C 93.60% 6.18% 

Avg 24.25 353.25 3320237.06 - 96.27% 3485231.59 - 92.66% 3.07% 

 

 

TABLE IV 

ILS AND ILS-SP RESULTS ON HSBRP INSTANCES 

Instance 
FSMSBRP HFSBRP 

ILS ILS-SP T1 T2 Gap ILS ILS-SP  T1 T2 Gap 

S01 5062.57 5062.57 0.04 0.04 0.00% 5062.57 5062.57 0.03 0.05 0.00% 

S02 6537.06 6537.06 0.16 0.17 0.00% 7135.77 7135.77 0.08 0.10 0.00% 

S03 3090.16 3090.16 0.10 0.11 0.00% 3386.93 3386.93 0.06 0.08 0.00% 

S04 6469.90 6469.90 0.11 0.15 0.00% 6469.90 6469.90 0.12 0.15 0.00% 

S05 3567.46 3567.46 0.04 0.06 0.00% 3567.46 3567.46 0.05 0.07 0.00% 

S06 6261.82 6261.82 0.14 0.17 0.00% 6261.82 6261.82 0.16 0.19 0.00% 

S07 6122.95 6122.95 0.05 0.05 0.00% 6122.95 6122.95 0.05 0.06 0.00% 

S08 4896.26 4894.26 0.03 0.04 0.04% 4894.26 4894.26 0.04 0.05 0.00% 

C01 40734.57 39702.44 9.84 54.11 2.53% 40732.60 39727.47 10.5 41.98 2.47% 

C02 31242.31 31123.66 1.53 1.91 0.38% 32539.79 32533.43 2.99 3.04 0.02% 

C03 21576.36 21268.22 0.73 0.91 1.43% 22276.43 22272.00 1.51 4.90 0.02% 

C04 17887.65 17582.47 0.44 0.73 1.71% 18297.01 18297.01 0.98 1.05 0.00% 

C05 57740.79 57192.93 11.4 62.57 0.95% 57724.26 57201.12 12.7 67.88 0.91% 

C06 18780.91 18776.70 0.25 0.27 0.02% 18780.61 18776.70 0.55 0.34 0.02% 

R01 22289.01 21998.65 2.45 4.43 1.30% 23435.75 21998.65 3.31 9.98 6.13% 

R02 30208.88 30202.44 1.34 2.01 0.02% 32104.50 30299.61 2.33 2.64 5.62% 

R03 42166.38 41618.62 5.07 66.10 1.30% 43156.24 43129.10 5.75 63.07 0.06% 

R04 26038.12 26028.24 1.52 1.75 0.04% 26434.09 26432.46 2.09 2.26 0.01% 

R05 29838.68 29806.23 2.21 2.47 0.11% 31228.18 31198.45 4.11 5.32 0.10% 

R06 27492.74 27374.87 3.47 15.27 0.43% 28809.85 28082.87 3.7 32.67 2.52% 

Avg 20400.23 20234.08 2.05 10.67 0.81% 20921.05 20642.53 2.56 11.79 1.33% 

 

TABLE III 

COMPUTATIONAL RESULTS ON HFSBRP PROBLEM 

Instance 
CPLEX ILS-SP 

Cobj Tc/s Cbest Cavg Cdev Fleet CUR TI/s 

S01 5062.57* 0.16 5062.57* 5062.57* 0.00% 1A2B0C 96.15% 0.05 

S02 7135.77* 4.16 7135.77* 7135.77* 0.00% 0A2B1C 83.00% 0.10 

S03 3386.92* 1.08 3386.92* 3387.14 0.01% 1A1B1C 81.67% 0.08 

S04 6469.90* 13.18 6469.90* 6470.35 0.01% 1A1B2C 95.50% 0.15 

S05 3567.46* 0.14 3567.46* 3567.98 0.01% 2A1B0C 72.50% 0.07 

S06 6261.82* 112.1 6261.82* 6262.84 0.02% 1A2B2C 90.67% 0.19 

S07 6122.95* 0.22 6122.95* 6122.95* 0.00% 1A2B0C 80.00% 0.06 

S08 4894.26* 0.17 4894.26* 4894.26* 0.00% 2A1B0C 89.73% 0.05 

C01 Infeasible 7203 39727.47 39730.58 0.01% 5A4B8C 96.72% 41.98 

C02 35178.81 7279 32533.43 32533.97 0.00% 3A5B4C 95.20% 3.04 

C03 Infeasible 7203 22272.00 22273.98 0.01% 2A3B4C 94.62% 4.90 

C04 18297.01 7202 18297.01 18297.01 0.00% 2A5B2C 93.49% 1.05 

C05 Infeasible 7228 57201.12 57201.91 0.00% 0A13B5C 98.76% 67.88 

C06 18776.70* 2895 18776.70* 18778.43 0.01% 2A1B4C 98.82% 0.34 

R01 Infeasible 7204 21998.65 22140.11 1.91% 0A3B6C 99.82% 9.98 

R02 Infeasible 7205 30299.61 30300.80 0.00% 0A3B6C 97.72% 2.64 

R03 Infeasible 7204 43129.10 43144.07 0.03% 2A2B9C 98.02% 63.07 

R04 Infeasible 7205 26432.46 26436.45 0.02% 5A3B3C 91.83% 2.26 

R05 Infeasible 7204 31198.45 31199.81 0.00% 3A5B2C 98.21% 5.32 

R06 Infeasible 7204 28082.87 28083.58 0.00% 4A1B6C 98.46% 32.67 

Avg  - 4118 20642.53 20651.23 0.10% - 92.54% 11.79 
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