
 

  

Abstract— This work presents a new RGB-D acquisition 

system to capture a comprehensive dynamic facial dataset that 

can be used for visual speech recognition. The RGB-D facial 

dataset acquisition system uses a Kinect to record detailed 

facial features of a person. The dynamic facial dataset is 

comprised of the facial data of 20 individuals saying 20 

common English words or phrases. The acquisition system 

employs Kinect facial tracking, which records a large number 

of dynamic facial features. These features include: facial 

points, facial outline, RGB data, depth data, mapping between 

RGB and depth data, facial animation units, facial shape units, 

and finally 2D and 3D face representations of the face along 

with the 3D head orientation. The effectiveness of acquired 

RGB-D dynamic facial dataset is demonstrated by presenting a 

new visual speech recognition method that employs three-

dimensional spatiotemporal data of different facial feature 

points. A number of visual speech recognition methods from 

the literature are also tested on the new dataset and they obtain 

a comparable or favorable visual speech recognition results. 

The results demonstrate the effectiveness of the proposed 

RGB-D dynamic facial dataset and show that it can be 

effectively employed in a visual speech recognition system.   

 
Index Terms—RGB-D, Kinect, Facial Dataset, Visual Speech 

Recognition, Facial Tracking. 

 

I. INTRODUCTION 

PEECH recognition from dynamic image data is an 

active area of interest in Computer Vision and Human 

Computer Interaction. It is particularly useful for the 

scenarios where lip reading must be employed, and the 

audio data is not available. It has several applications, 

ranging from surveillance to interacting with the computing 

devices in noisy environments. Given the diversity and 

usefulness of its applications, it is important to explore and 

improve the existing visual speech recognition algorithms. 

In general, a speech recognition system should be able to 

identify spoken words from image or speech data. Zheng et 

al. [1] presented a thorough review of lip-reading 

recognition methods and their review demonstrates that is a 

very active area of research. Neumeyer et al. [2] presented 

an automatic scoring method to rank the pronunciation 

quality. They created a database of various speeches and 

 
Manuscript received September 23, 2019; revised August 19, 2020. 

N. Ahmed and M. Lataifeh are with the Department of Computer 
Science, University of Sharjah, Sharjah, 27272, UAE. E-mail: 

nahmed@sharjah.ac.ae and mlataifeh@sharjah.ac.ae. I. Junejo is with 

College of Technological Innovation, Zayed University, UAE. Email: 
Imran.Junejo@zu.ac.ae. 

used statistical models for the scoring. Turk et al. [3] used  

continuous-mixture hidden Markov models for the speech 

recognition tasks. 

For the visual speech recognition, traditionally, the data is 

obtained using an RGB (color) video camera. Image 

processing techniques are used to segment the face, and 

mouth areas. Afterward, the important feature points from 

the face or mouth area are used to classify speech segments 

using different techniques, e.g., histogram of oriented 

gradients (HOG)[4][5], hidden Markov models [6], spatio-

temporal descriptors [7], optimization [8], random forest [9], 

artificial neural network [10], k-nearest neighbors 

(KNN)[11][12], optical flow[13], and learning algorithms 

[14][15][16][17]. 

Zhao et al. [7] presented a local spatio-temporal 

descriptor to represent isolated phrases of speech only using 

the visual data. The spatio-temporal binary local descriptors 

were then used for speaker-dependent and speaker-

independent visual speech recognition. Chen et al. [8] 

explored an eigenspace-based fast speaker adaptation 

approach. The approach was used to improve the maximum 

likelihood linear regression technique for the adaptations. 

Their method works especially well for speeches of more 

than 10 seconds in length. 

Pei et al. [9] used unsupervised random forest manifold 

alignment to estimate affinity of patch trajectories in the 

video data. They employed manifolds alignment technique 

for matching between query and reference video clips. In 

contrast, Bagai et al. [10] employed a neural network and 

train it on the horizontal and vertical distance between the 

lips for each word. They created a database of the lips data 

and their recognition accuracy was 52%.  

Pao et al. [11], used weighted KNN-based classifiers to 

recognize 10 digits, from 0 to 9 in Mandarin. They 

employed traditional KNN, weighted KNN, and weighted 

D-KNN. They also created a new audio-visual database in 

English and Mandarin. Their method resulted in an accuracy 

of around 72% correct recognition. Shaikh et al. [13] 

computed optical flow of the lips motion and extracted 

feature vectors to train support vector machines. They also 

only targeted individual words from the video data for the 

visual speech recognition. 

Noda et al. [14] presented a deep learning-based visual 

speech recognition system. They apply a convolution neural 

network for visual feature extraction. The training was done 

on the dynamic data of the mouth area that was associated 

with a phoneme label. Similar to our method, they focused 
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on the recognition of isolated words. Assael et al. [15] 

presented LipNet that could decode the text from the 

movement of speaker’s mouth. They proposed an end-to-

end network that used spatio-temporal convolutions, a 

recurrent network, and employed a connectionist temporal 

classification loss function. 

Recently, Lu et al. [16] used a deep convolution neural 

network, combined with a recurrent neural network for 

automatic lip reading. They employed a visual geometry 

group network to extract lip image features. Petridis et al. 

[17] presented an end-to-end deep learning based approach 

for visual speech recognition. They tested their method on a 

number of datasets, and it resulted in a high classification 

accuracy for the OuluVS2 dataset. The OuluVS2 dataset is 

closer to our proposed dataset but it is only in the RGB 

domain. In their work, they first started by creating a 

difference image between two consecutive frames. The 

model consists of two streams of extracted features from the 

original images and the difference images. Each stream 

consists of two parts: an encoder and a  Bidirectional Long 

Short-Term Memory (BLSTM) neural network. Finally, a 

softmax layer is used as the output layer. The entire system 

is trained end-to-end, so the feature extraction and 

classification layers are trained jointly.  

Visual speech recognition has a number of applications in 

addition to the basic recognition of simple words. It has 

been employed to distinguish words from different 

languages [18], or in automatic translation from speech to 

sign language [19]. Furthermore, based on a number of 

different visual features extraction techniques [20], new 

areas are benefiting from facial datasets. These include: 

gesture based interactions [21], cultural tourism [22], and 

emotion recognitions [23][24]. Another promising area of 

application is speech therapy [25][26], in which geometric 

features of the spoken language are employed to correctly 

guide a patient to not only speak properly but also move the 

mouth muscles in a correct manner.  

Additional medical applications have also been reported 

in identifying facial structure deformation associated with 

some disorders as in the case of Obstructive Sleep Apnea 

Syndrome [27]. These approaches are also accelerating 

recent advances in autism disorder screening utilizing gaze 

[28] or facial expressions [29]. Nonetheless, the mere 

availability of similar datasets as described here is of critical 

importance for benchmarking amongst similar work, and for 

new adopters to have it contextualized into new domains 

traditionally linked to language and human behaviors [30] as 

far as creating new form of lie-detectors [31]. 

Therefore, a wider application continued to be witnessed 

with a wave of interest in using RGB-D cameras to capture 

the facial data [32][33][34][35][36]. Nowadays, the most 

commonly employed RGB-D camera is Kinect from 

Microsoft. Kinect is an off-the-shelf, low cost sensor, which 

not only captures high resolution color information, but also 

the depth information [37][38]. The depth data can be used 

generate 3D point clouds and is used in many innovative 

applications [39][40][41]. In addition, Kinect also provides a 

body posture and face tracking SDK [42] that can be 

directly used to localize the face and the important facial 

feature points [35]. Schatz et al. [43] presented  detailed 

performance of the sensor with the provided SDK.  

Kinect face tracking has been employed in a number of 

applications for visual speech recognition. Rekik et al. 

[32][33] employed RGB-D facial data processing for mouth 

region tracking and extraction. Afterward, they employed 

spatial and temporal descriptors, histogram of oriented 

gradients (HOG) and motion boundary histograms (MBH). 

Finally, Support Vector Machine (SVM) was employed for 

the visual speech classification. 

Yargic et al. [36] employed Kinect face tracking SDK to 

record the facial data and its feature points. They computed 

the angles between the lip points in the 3D coordinates as 

features to classify the words. Afterward, KNN classifier 

was used to classify the words with Manhattan and 

Euclidean distances to find the best feature vectors. In 

addition, they did not capture a comprehensive dataset that 

can be used for training and validation of their method. 

In this work, we present a comprehensive RGB-D facial 

dataset comprising of 20 individuals, with unique 20 English 

language words or phrases. The dataset is acquired using 

Kinect facial tracking SDK, and a large number of dynamic 

facial features are acquired. These features include: facial 

points, facial outline, RGB data, depth data, mapping 

between RGB and depth data, facial animation units, facial 

shape units, and finally 2D and 3D face representations of 

the face along with the 3D head orientation. To the best of 

our knowledge, there is no other dynamic RGB-D facial 

dataset available that provides such a comprehensive RGB-

D data, which can be used to train algorithms in a number of 

areas. The proposed dataset can be employed in a number of 

applications including visual speech recognition. We 

demonstrate the effectiveness of our dataset by applying a 

number of different algorithms for visual speech recognition 

and compare our results with the earlier methods. 

In the first step, we apply a modified KNN algorithm 

based on the work of Yargic et al. [36] for the visual speech 

recognition. As explained earlier, they created feature 

vectors using different distance measures (Manhattan and 

Euclidean) between the lips feature points to represent a 

word.  Their work only used the angles between the lip 

points and does not consider the temporal trajectory of the 

mouth data that we employ to improve the feature vectors. 

In addition, they only considered four feature points, 

whereas we consider all the 18 points and their temporal 

trajectory to improve the feature vectors. The results of the 

modified method and the comparison with this work will be 

discussed in Section IV. 

Secondly, we apply the modified Pao et al. [11] weighted 

D-KNN method and compare our results. In addition, we 

also apply an optical flow-based mechanism similar to 

Shaikh et al. [13] and compare our results. For the next 

comparison, we train a neural network, similar to Bagai et al 

[10] and compared the results with the originally proposed 

method. For these three methods, the main difference to 

these works and ours is that we were able to utilize the depth 

data as an additional measure in the tracking algorithm, 

whereas these three methods relied on the RGB data. The 

depth data provides us with a notion of three space position 

and consequently we can obtain the motion vectors in three 

dimensions. As will be shown in the next section that Kinect 

provides a mapping between the depth and RGB data. This 

mapping allows us to link the tracking information between 
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both data streams and obtain a comprehensive representation 

of the visual speech data. 

We also compare our results to Rekik et al. [32][33] and 

show that they outperform these methods in the Speaker 

Independent (SI) setting by more than 2%. We also tested 

the new end-to-end deep learning approach presented by 

Petridis et al. [17] on our dataset. As shown in the results 

that the results quality was high, and the classification 

accuracy was 87.1%. The comparative results along with a 

detailed discussion will be presented in  

Section IV. 

Our results show that not only we are able to acquire a 

highly effective and comprehensive dynamic RGB-D facial 

dataset, but also validates its effectiveness by employing it 

in an important application of visual speech recognition. The 

acquired dataset is versatile, and a number of visual speech 

recognition algorithms can be applied on the data. 

In the following sections, we will first discuss the data 

acquisition setup in Section II. Afterward, we will present 

all the details of the dataset in Section III. Different 

algorithms applied for the visual speech recognition are 

presented in Section IV. Finally, the paper concludes in 

Section V. 

II. DATA ACQUISITION 

We acquire the RGB-D dynamic facial dataset using 

Microsoft Kinect. We used Kinect face tracking SDK [42] 

that can track the facial outline and its feature points at 15 

frames per second. In addition, Kinect also captures both the 

RGB (color) and depth information of the human actor at 

the same frame rate. An example of the real-time 

visualization of the RGB, depth and facial tracking data 

from Kinect can be seen in Fig. 1a, 1b, and 1c. 

The resolution of RGB and depth data from Kinect is 

640x480 pixels. The maximum supported frame rate is 30 

frames per second. The overhead of face tracking SDK 

reduces the frame rate to 15 frames per second. This is not 

ideal but is still real-time. For the acquisition, we connect 

Kinect to a PC comprising of Intel i7 running Windows 10 

with 16 GB of RAM. Kinect implicitly provides the 

mapping between RGB and depth data, along with the 

mapping of the depth data to a three-space coordinate 

system. As the face is tracked in the RGB space, mapping 

the mouth area to the RGB data is trivial as shown in  

Fig. 1d. The RGB to depth mapping also allows to map the 

tracked mouth region to the depth data, as shown in Fig. 1e. 

Finally, these mappings can also be used to generate a 3D 

point cloud with RGB mapping. An example of the 3D point 

cloud can be seen in Fig. 1f. 

For each recording session, we record a person saying 20 

different English words or phrases. The details of the dataset 

can be seen in the next section. On average, each recording 

takes around 80 seconds, resulting in 1200 frames. At each 

frame, we record facial points, facial outline, RGB data, 

depth data, mapping between RGB and depth data, facial 

animation units, facial shape units, and finally 2D and 3D 

face representations of the face along with the 3D head 

orientation. To minimize the overhead of writing the data on 

the disk, we dynamically store all the data in the memory 

and write it to the disk at the end of the acquisition. The 

details of the dataset are discussed in the next section. 

 

III. DATASET 

As explained in the previous section, we acquire all the 

data using the Kinect face tracking SDK. The details of 

RGB and depth data are given in the previous section, below 

we describe the details of the facial parts of the dataset. The 

dataset is comprised of 20 individuals, each saying 20 words 

or phrases of English language in a single session.  The 20 

words or phrases are: Hello, Excuse me, I am sorry, Thank 

you, Goodbye, See you, Nice to meet you, You are 

welcome, How are you?, Have a good time, Who is calling?, 

Time is up, I agree, I love this game, So far so good, 

Anything else, What’s up?, So do I, Be careful, and Bottoms 

up. 

We record the 20 people saying these words or phrases 

using the Kinect face tracking SDK and capture the 

following facial features at each frame: 

 

1) One hundred feature points, shown in Fig. 2a. 87 

points are shown in the figure, while 13 are not shown. 

 

2) 3D Head pose angles: Yaw, Pitch and Roll, as shown 

in Fig. 2b. 

 

3) A 3D mesh representation of the face, as shown in Fig. 

1c. Eleven shape units that capture head height, eyebrows 

vertical position, eyes vertical position, eyes width, eyes 

height, eye separation distance, nose vertical position, 

mouth vertical position, mouth width, eyes vertical 

difference, and chin width. 

 

4) Animation units that capture animation states of 

various facial muscles. These include upper lip raised or 

lowered, jaw raised or lowered, lip stretchiness, inner 

brow raised or lowered, lip corner depression, outer brow 

raised or lowered.    

 

As can be seen from this description that our dataset is 

Fig. 1. (a) RGB image, (b) Depth image, (c) Tracked face with facial 

features, (d) tracked mouth area overlapping the RGB image,  
(e) tracked mouth area overlapping the depth image, and (f) 3D point 
cloud. 
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extremely comprehensive and provides the maximum 

possible RGB-D dynamic facial information required for a 

number of algorithms. It is to be noted that all the facial 

features are tracked in the RGB space, but since we have the 

RGB to depth mapping, we can easily find the three-space 

position of each facial feature point (Fig. 1e). 

The RGB, depth, and facial data can easily be employed 

for the facial recognition in both RGB space and three-

space. The shape and animation units combined with the 

facial features and 3D head pose angles can be used for 

emotion recognition. Finally, the facial features in two-space 

or three-space can be used to localize the mouth region and 

can be used for the visual speech recognition. In the 

following section we present a new method for visual 

speech recognition that is adapted from Yargic et al. [36], in 

addition we also test a number of visual speech recognition 

methods to show the versatility of our data set. Our results 

show the effectiveness of the captured dataset and 

robustness of the modified method. 

 

 

IV. VISUAL SPEECH RECOGNITION 

For the visual speech recognition, we adapt the KNN-

based algorithm of Yargic et al. [36]. Kinect face tracking 

SDK captures 18 points in the mouth region. 10 points for 

the outer lips and 8 points for the inner lips (Fig. 2a). We 

segment the 20 words during the acquisition process, 

therefore there is no need for a post-acquisition 

segmentation. To this end, we know the number of frames 

 for each word segment , where . 

For each word segment , let the outer lip three-space 

points to be defined as  and the inner lip points as . 

Where , , and . In their work, 

Yargic et al. [36], only considered four corner feature points 

on the outer lips to define two angles that are used to detect 

how much the mouth is opened. Their feature vector is 

comprised of 0s and 1s for each frame representing if the 

lips are passive or active at that frame. In our work, we do 

not discard any of the mouth feature points, rather we 

consider the three-dimensional trajectory of each  and . 

For two consecutive frames, starting from the second frame, 

we compute 18 motion vectors in three-space using the 10 

outer points: -  and eight inner points: -

. These 18 three-space vectors are projected on the 

 planes. On each plane, the projected vectors 

have a specific orientation within a unit circle. The 

orientation with the maximum angle is assigned to each 

vector, and based on the maximum orientation we assign it a 

specific quadrant number from 1 to 8 (Fig. 3), or 0 if the 

motion is very small and the length of the vector is close to 

zero. Thus, at each frame we obtain an 18-dimensioanl 

feature vector , where each coordinate of that vector is a 

value from 0 to 8, e.g. [2 1 4 1 3 6 8 1 2 4 3 0 5 1 7 7 0 1]. 

 

 

 

 

For each word segment , we obtain , using the data 

from 10 subjects. For the other 10 subjects,  are used with 

KNN to classify the words. Compared to the accuracy 

results of 73.42% from Yargic et al. [36] using Manhattan 

distances, our method results in the 76.54% of correct 

classifications. In addition, we also compared the methods 

using Geodesic distances, and compared to the accuracy of 

74.12% from Yargic et al. [36] our method results in the 

78.42% of correct classifications. 

The above results show that not only the modified 

algorithm is more effective compared to the original work, 

but in addition, our dataset can be used to for visual speech 

recognition. Therefore, to further validate the effectiveness 

of the dataset, we tested it using five more visual speech 

recognition algorithms. 

The first method we directly applied was from Pao et al. 

[11]. They studied three different KNN methods. In our 

work, we directly employed weighted D-KNN and were 

able to obtain 82.0% accuracy compared to 79.3% with the 

D-KNN classifier weighted by the Fibonacci sequence. 

The second direct application was for the optical flow-

based method by Shaikh et al. [13]. We identified the 

motion of the feature points using the optical flow in both 

RGB and depth images. This resulted in a modified 

algorithm compared to the original work that only relied on 

the color data. Thus, for each feature point we ended up with 

two motion trajectories. Both of these motion vectors were 

then used for the training and recognition. Compared to the 

original work, our method slightly exceeds in the 

recognition of 1.5% at around 86%. 

For the next comparison, we also used a neural network 

for the visual speech recognition, similar to Bagai et al [10]. 

Again, we made use of both RGB and depth data. Their 

recognition rate was on a lower side at 52%. Compared to it, 

our results are moderately higher at around 65%.  

We also compared the methods proposed by Rekik et al. 

[32][33]. We only opted for the Speaker Independent (SI) 

setting to make sure that there is no bias due to the inclusion 

of the same speaker for both training and testing. In their 

work, they obtained the best performance with the 

combination of three HOGc + HOGd + MBH descriptors, 

Fig. 3. Vector classification based on its projection in the coordinate 

frame. 

Fig. 2. (a) Facial features point tracked using Kinect face tracking SDK, 

and (b) 3D head orientation. 
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giving the accuracy of 64.2%. In contrast, on our dataset the 

accuracy of this method was 66.3%.  

Finally, we tested the very recent work by Petridis et al. 

[17] that employed end-to-end deep learning for visual 

speech recognition. As a comparison, we tested their method 

on 20 subjects from OuluVS2 database. The network was 

trained on 10 subjects and tested on the other 10. Similarly, 

we also tested their method on our dataset with the same 

structure of 10 subjects for training and 10 for testing. Their 

method resulted in high classification accuracy. For the 

OuluVS2 dataset their method resulted in 86.3% accuracy, 

and for our dataset the accuracy was 87.1%. This shows that 

our dataset is well suited to be employed in a deep learning 

architecture. A comparison of  all tested method on their 

original dataset compared to our dataset can be seen in  

Fig. 4. 

Our method has a couple of limitations. The number of 

participants in our study are medium. In order to expand the 

data, we need varied participants and a large number of 

participants. As this is the initial work and recording 20 

different words with Kinect face tracking is a time-

consuming task, we had to rely on 20 volunteers. In future, 

we would like to rectify this by increasing the number of 

participants. We would also like to keep a good balance 

between the male and female participants. In addition, we 

would like to increase the diversity in terms of the age, so 

that all the age groups are covered. 

Similarly, we are currently relying on Kinect v1 for the 

capture of facial data. Kinect v2 has advantages in terms of 

the quality of the data and the higher capture rate. Therefore, 

in future, we would like to employ Kinect v2 to capture 

even more comprehensive dataset and augment the current 

data with higher quality features and data captured at higher 

frame rate. 

Despite the limitations, we have shown the an RGB-D 

sensor can be used to capture a comprehensive facial 

dataset. The dataset can be employed successfully for visual 

speech recognition, and having depth data allows for better 

recognition results compared to the earlier methods. 

 

 

 

V. CONCLUSION 

This work presented a new RGB-D acquisition system to 

capture a comprehensive dynamic facial dataset that can be 

used for visual speech recognition. The RGB-D facial 

dataset acquisition system uses a Kinect to record detailed 

facial features of a person. The dynamic facial dataset is 

comprised of the facial data of 20 individuals saying 20 

common English words or phrases. The acquisition system 

employs Kinect facial tracking, which records a large 

number of dynamic facial features. These features include: 

facial points, facial outline, RGB data, depth data, mapping 

between RGB and depth data, facial animation units, facial 

shape units, and finally 2D and 3D face representations of 

the face along with the 3D head orientation. 

The comprehensive dynamic facial dataset can be 

employed in a number of applications including visual 

speech recognition. The effectiveness of acquired RGB-D 

dynamic facial dataset is demonstrated by presenting a new 

visual speech recognition method that employs three-

dimensional spatiotemporal data of different facial feature 

points in the mouth region. The feature points are tracked 

over the word segment and their motion trajectory is used to 

create a novel representation of lips motion resulting in an 

18 dimensional feature vector for each frame. We used 

KNN to classify the words and demonstrate the 

effectiveness of our method by 76.54% of correct 

classification. In addition, we also tested five more visual 

speech recognition methods on our dataset. These methods 

used weighted D-KNN, optical flow, neural network, HOGc 

+ HOGd + MBH descriptors, and deep learning for visual 

speech recognition. We obtain comparable or better results 

when these methods were tested on our dataset.  

The results demonstrate our comprehensive RGB-D 

dynamic facial dataset can be effectively employed in a 

visual speech recognition system. It also shows that having 

additional depth and three-space information greatly helps 

the visual speech recognition algorithms. In future, we 

would like to extend our work and employ the new dataset 

for facial and emotion recognition. 
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