
 

 

Abstract—The whale optimization algorithm (WOA) is a 

metaheuristic search algorithm for solving the problem of 

function optimization. However, in the later stage of iterations, 

WOA suffers from premature convergence because the search 

agents are attracted by the elite vector. In this paper, a hybrid 

WOA based on complementary differential evolution, called 

CDEWOA, is proposed. First, a novel uniform initialization 

strategy is employed to enhance the diversity of initial 

population. Second, the differential evolution with a 

complementary mutation operator is embedded in the WOA to 

improve search accuracy and speed. Third, the introduction of a 

local peak avoidance strategy enables CDEWOA to jump out 

local optimum. Finally, the proposed CDEWOA is tested with 

14 mathematical optimization problems. The test results 

illustrate that CDEWOA has better performance than IWOA, 

WOA, CDE, DE, and PSO in terms of convergence speed and 

convergence accuracy. 

 
Index Terms—whale optimization algorithm, differential 

evolution, complementary mutation operator, uniform 

initialization strategy 

 

I. INTRODUCTION 

ANY practical problems in engineering and other fields 

are modeled as problems of function optimization . The 

optimal solution of an engineering problem under certain 

constraints is often the minimum or maximum value of the 

index function. Traditional function optimization problems 

are generally deterministic problems with fixed structures and 

parameters. One can obtain analytical solutions by solving 

equations or approximate solutions by derivative-based 

algorithm. However, it is difficult for traditional optimization 

algorithms to obtain the optimal solution of a complex 

function, due to many local optimums, a complex search 

space, and model uncertainty, especially for high-dimensional 
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problems. Some researchers have solved those complex 

high-dimension problems by mimicking the unique behaviors 

of some animals, plants, or physical phenomena, and have 

obtained better solutions even without any characteristics of 

the objective function. These metaheuristic algorithms 

include the genetic algorithm (GA) [1], differential evolution 

(DE) algorithm [2], simulated annealing (SA) algorithm [3], 

central force optimization (CFO) algorithm [4], particle 

swarm optimization (PSO) algorithm [5], ant colony 

optimization (ACO) algorithm [6], gravitational search-based 

PSO algorithm [7], improved flower pollination algorithm [8], 

and the meme grouping strategy based krill herd algorithm 

[9]. 

The novel metaheuristic algorithm called the whale 

optimization algorithm (WOA), was proposed by Griffith et 

al. in 2016 [10]. Due to advantages such as simple definition, 

few control parameters, and a wide range of applications, 

WOA has attracted widespread attention from researchers. 

However, it also inherits the drawbacks of metaheuristic 

algorithms. WOA is easy to fall into local minimum, and the 

convergence accuracy is not ideal.  

Researchers have tried to find a better parameter update 

method for WOA to improve its performance. By changing 

the convergence factor from linear decreasing to adaptive 

variation, researchers proposed adaptive whale optimization 

(AWOA) [11]. AWOA balances exploration and exploitation 

of WOA and obtains better performance. Sun et al. combined 

the nonlinear dynamic strategy based on a cosine function, 

Lévy-flight strategy, and quadratic interpolation method to 

present a modified WOA that offered superior performance 

on large-scale global optimization problems [12]. Kaur et al. 

introduced chaos theory into the optimization process of 

WOA and proposed the chaotic whale optimization algorithm 

(CWOA) [13]. Various chaotic maps are considered in the 

CWOA to balance exploration and exploitation, and the 

results of simulation prove that the chaotic maps (especially 

the tTent Map) are able to improve the performance of WOA. 

The advantages of several optimization algorithms are 

combined to form a hybrid optimization algorithm. To 

enhance the exploitation performance of WOA, Korashy et al. 

used the leadership hierarchy of the gray wolf optimizer 

(GWO) to find the best optimum solution of WOA and 

proposed the hybrid WOA/GWO algorithm [14]. To enhance 

the exploitation, Mafarja et al. used the SA algorithm to form 

two hybrid models: the low-level teamwork hybrid (LTH) and 

the high-level hybrid (HRH). In the LTH model, the SA 
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algorithm is used as a component of WOA to ensure the local 

optimum. In the HRH model, the SA algorithm is employed in 

a pipeline mode to preserve the diversity of the algorithm [15]. 

Abdel-Basset et al. incorporated WOA with 

Nawaz-Enscore-Ham (NEH) and proposed the hybrid whale 

algorithm (HWA) to improve the performance of WOA [16]. 

To enhance local optimum avoidance ability, a modified 

differential evolution operator with strong exploration 

capability is embedded in WOA with the aid of a lifespan 

mechanism. Further, an asynchronous model is employed to 

accelerate WOA’s convergence [17]. Bozorgi et al. combined 

exploitation of WOA with exploration of DE to present the 

improved whale optimization algorithm (IWOA) [18]. 

The main aim of this paper is to solve the problems of weak 

diversity and precocity of WOA, and its highlights are listed 

below. 

Complementary differential evolution based WOA 

(CDEWOA) uses a novel uniform initialization strategy to 

increase the probability of finding a good solution during the 

exploration phase. The strategy consists of two steps: 

uniformly sampling the search space to obtain candidate 

initial solution sets and randomly permuting the candidate 

solutions to generate the initial search agents. 

On the basis of circular encircling and spiral attacking the 

prey, CDEWOA embeds the complementary differential 

evolution strategy into WOA to increase the probability of 

obtaining an optimal value. 

CDEWOA introduces a mechanism to detect whether the 

algorithm is trapped in the local optimum. On determining 

that CDEWOA falls into the local peak, the corresponding 

escaping strategy is performed immediately to recover the 

global search capability of CDEWOA. 

The rest of the paper is structured as follows. Section II 

introduces the principle of the WOA and analyzes the defects 

of the algorithm. Section III describes the principle of 

CDEWOA. Section IV describes the use of 14 benchmark 

functions to validate the performance of CDEWOA by 

comparing it with IWOA, WOA, complementary differential 

evolution (CDE), DE, and PSO. Section V summarizes the 

main findings of this study. 

II. WHALE OPTIMIZATION ALGORITHM 

WOA is inspired by the intelligent hunting method of 

whales. The predation process of whales can be said to consist 

of three stages: searching for the prey, encircling the prey, and 

bubble-net attacking of the prey. 

A. Searching for the Prey 

The process of searching for the prey can be denoted as 

 

( ) ( )rand t t  D C X X                           (1) 

( 1) ( )randt t   X X A D                         (2) 

 

where ( )rand tX  is a random vector selected from the current 

population, ( )tX represents the current position vector to be 

updated, A and C  are the coefficient vectors, and  is an 

element-by-element multiplication. All of the variables and 

coefficients are updated as the iteration increases. A  and C  

can be calculated as follows: 

 

 =2a a A r                                        (3) 

 2 C r                                          (4) 

max

2
2

t
a

T
                                       (5) 

 

where the convergence factor a  can be calculated by (5), its 

value linearly decreases from 2 to 0 as the iteration increases, 

and r  is a random vector in [0,1]. 

B. Encircling the Prey 

When a search agent finds the prey, the other search agents 

can move closer to the prey. As the location of the prey is not 

known a priori, WOA assumes the current best location as the 

location of the prey. Therefore, the behavior of encircling the 

prey can be modeled as 

 
*( ) ( )t t  D C X X                       (6) 

*( 1) ( )t t   X X A D                     (7) 

 

where *( )tX  represents the location of the current best 

individual, ( )tX represents the current position vector to be 

updated, and A and C  are the coefficient vectors. The 

whales disperse and explore the search space when 1A ; 

otherwise, the whales approach the prey. 

C. Bubble-net Attacking of the Prey 

Another unique behavior of whales is that of bubble-net 

attacking of the prey, as shown in Fig. 1. 

 

 
 

Fig. 1.  Predation behavior of whales  

 

From Fig. 1, it can be seen that whales drive the prey 

upward from the bottom with spiral spitting, thereby forcing 

the prey to the surface of the spiral center where it will 

eventually be swallowed. The above behavior can be 

expressed as 

 
' *( ) ( )t t D X X                           (8) 

 ' *( 1) cos(2 ) ( )blt e l t    X D X               (9) 
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where '
D  indicates the distance from the current individual to 

the best individual, b  is a constant for defining the shape of 

the logarithmic spiral, l  represents a variable that varies 

randomly in the range of [–1,1], *( )tX indicates the location 

of current best individual, and ( 1)t X represents the next 

position of the search agent. 

As the whale’s bubble-net attacks the prey while encircling 

the prey, we can assume that there is a 50% probability of 

choosing whether to encircle or attack the prey. This behavior 

of whales can be expressed as 

 

' *

*

cos(2 ) ( ) if 0.5
( 1)

( ) if 0.5

ble l t p
t

t p

    
  

  

D X
X

X A D
      (10) 

 

where p  is a random number of [0, 1]. 

D.  Limitations of WOA 

In WOA, the linearly reduced random vector A  is used to 

balance the capabilities of global search and local search. In 

the first half of the iterations, A  tends to meet 1A , and 

WOA has strong global search ability. In the latter half of the 

iterations, A  tends to meet 1A , and the algorithm has 

strong local search ability. Meanwhile, it can be known from 

(10) that the search agent only updates its position according 

to the elite individual, so that the diversity of the population 

drops rapidly, and the possibility of falling into the local 

minimum increases. Moreover, once WOA falls into the local 

optimum, it lacks an effective mechanism to jump out the 

local peak. 

III. CDEWOA 

The population-based optimization algorithm primarily 

consists of two processes: exploration and exploitation. A 

better balance between exploration and exploitation will 

improve the performance of WOA. By improving 

convergence speed of WOA and preventing it from falling 

into local optimum for WOA, we have made corresponding 

improvements in three areas: uniform population 

initialization strategy, complementary differential evolution 

strategy, and jumping out local optimum strategy. 

A. Uniform Population Initialization Strategy 

As a uniform population initialization has a positive effect 

on solving optimization problems, the chaotic mapping 

function has been used in population initialization [19]. 

Although chaotic mapping can enhance the initial diversity, it 

requires a certain number of iterative operations, and it is 

difficult for the iterative result to guarantee the uniformity 

distribution. Therefore, this paper introduces a novel 

population initialization strategy. 

Assuming that the number of search agents is N  and the 

search space is M  dimensions, the uniform initialization 

process can be described as follows: 

First, we uniformly take N points in each dimension of 

search space as a candidate solution set for the initialization 

position. Then, the thj  sample in the thi  dimension search 

space can be expressed as 

 

(0)  + ( 0.5)( )j L U L

i i i iX X j - X X / N                   (11) 

 

where 1,2, ,i M , 1,2, ,j N , (0)j

iX  presents the 

thj  uniform sample of the thi dimension variable, and U

iX  

and L

iX  are the upper bound and lower bound, respectively, 

for the thj dimension variable. 

Second, the initialization candidate solution set is 

randomly permuted, and can be written as 

 

(0) randperm( (0))i iX X                             (12) 

 

where 1 2(0) [ (0), (0), , (0)]N

i i i iX X XX . 

Lastly, we can obtain the uniform initialization search 

agent by 

 
T

1 2(0) [ (0), (0), , (0)]j j j j

MX X XX              (13) 

 

where (0)j
X is the thj initialization individual. 
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Fig. 2.  Example of uniform population initialization. 

 

Fig. 2 provides an example of taking four samples 

uniformly from a two-dimensional (2D) search space, where 

the range of the first-dimension search space is [0, 8] and the 

range of the second-dimension search space is [1, 9]. 

According to (11), we can obtain the uniform sample as 

 

1(0) [1,3,5,7]X                              (14) 

2 (0) [2,4,6,8]X                             (15) 

 

Then, randomly arranging 
1(0)X  and 

2 (0)X  obtains 

 

1(0) [1,5,7,3]X                              (16) 

2 (0) [2,6,8,4]X                             (17) 

 

Finally, we take the initial search agent as 
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1 2 3 4(0) [ (0), (0), (0), (0)]

1 5 7 3

2 6 8 4

X X X X

 
  
 

X

          (18) 

 

As the candidate solution set for the initialization position 

comes from uniform sampling for each dimension of input 

space, this “relatively uniform” initialization permits the 

initial search agents to be more evenly distributed throughout 

the search space. As a result, it can increase the initial 

diversity of the population and obtain better exploration 

ability. 

B. Complementary Differential Evolution Strategy 

 

Motivation 

“Learning from each other” is a simple and effective way to 

improve the performance of a metaheuristic algorithm. The 

differential evolution (DE) algorithm is an efficient global 

optimization algorithm. DE is highly able to perform global 

searching in the early stage, and avoids falling into local 

optimum. This ability can remedy the problem of premature 

convergence in WOA. Therefore, an improved DE algorithm 

based on a complementary DE strategy is employed to 

alleviate the problem of premature convergence in WOA. 

 

Principle of Complementary Differential Evolution 

Like the genetic algorithm, the DE algorithm uses mutation, 

crossover and selection to find the optimum of functions. 

According to different mutation methods, DE can be divided 

into 

DE/rand/1 

 
1 2 3( ) ( ) ( ( ) ( ))rand r r rt t F t t   H X X X        (19) 

 

DE/best/1/ 

 
* 1 2( ) ( ) ( ( ) ( ))best r rt t F t t   H X X X           (20) 

 

DE/current-to-best/1 

 
*

1 2

( ) ( ) ( ( ) ( ))

( ( ) ( ))

current

r r

t t F t t

F t t

   

  

H X X X

X X
            (21) 

 

where 1( )r tX , 2( )r tX , and 3( )r tX  are three individuals 

randomly selected from the population, 1 2 3r r r  , 

(0,1)F  represents the scaling factor used to control the 

influence of differential vectors, and *( )tX  represents the 

position of the current best individual. 

The different mutation strategies have different effects on 

the performance of DE when solving global optimization 

problems. DE/best/1 and DE/current-to-best/1 have faster 

convergence speed and better performance when solving 

single-peak problems. The ability of local search is stronger 

than global search, so it is easy to fall into local optimum and 

lead to precocity when solving multi-peak problems. In 

contrast, although DE/rand/1 has a slow convergence rate, its 

strong global search ability can effectively prevent premature 

convergence. To balance exploration and exploitation, we 

combine the DE/best/1 and DE/rand/1 through a weight factor 

to form a novel donor vector, which is called the 

complementary differential mutation. That is, 

 

( ) ( ) (1 ) ( )rand bestt w t w t   H H H                 (22) 

max=( -1)/w t T                              (23) 

 

where 
maxT  indicates the maximum number of iterations. 

After generating the donor vector, introducing the 

crossover operator can enhance the diversity of population. 

The crossover operation can be written as 

 

if 0,1 or rnbr( )

if 0,1 a( nd rn

( ) ( )
( )

( br() ))

j

j

j

H t rand CR j i
V t

X t rand CR j i

 
 


 (24) 

 

where ( )jH t , ( )jX t , and ( )jV t  are the jth element of the 

donor vector ( )tH , the current individual ( )tX , and the trail 

vector ( )tV , respectively; [0,1]CR  is the crossover rate, 

and rnbr( ) [1, 2, , ]i D is a randomly chosen index that 

ensures that ( )tV  obtains at least one parameter from ( )tH . 

Decide which of ( )tX and ( )tV  to enter the next 

generation, according to the value of the fitness. That is, 

 

( ) if ( ( ) (

s

( )
(

)
1

el e
)

(

DE
t f t f X t

t
t


  

X

VV
X      (25) 

 

Pseudocode of Complementary Differential Evolution 

Strategy 

The pseudocode of complementary differential evolution 

strategy is shown in Fig. 3. 

 

Algorithm 1 Complementary differential evolution strategy 

Initialize scaling factor F , crossover rate CR  

Calculate complementary mutation factor w  by (23) 

Generate a donor vector by (22) 

Use crossover operator to generate the trail vector by (24) 

Use greedy selection to generate current search agent by (25) 

 

Fig. 3.  Framework of CDE strategy. 

 

Improved Attacking Strategy 

So far, we have described three ways to update the whale’s 

position: encircling the prey, bubble-net attacking of the prey, 

and CDE strategy. To take full advantage of each update 

method, we assign equal probability to these update methods. 

That is, 

 

' *

*

if 0.66

( 1) cos(2 ) ( ) if 0.33 0.66

( ) if 0.33

l

DE

b

p

t e l t p

t p



 


      


  

X D X

X

X

A D

(26) 

 

where p  is a random number of [0,1]. 

C. Jumping out Local Optimum Strategy 

Using the CDE strategy can prevent WOA from falling into 
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a local optimum to a certain extent, but once WOA is trapped 

in the local optimum, it is still difficult to escape from the 

local peak. Therefore, it is necessary to introduce a 

mechanism to detect whether the algorithm is trapped in the 

local optimum. Once we find WOA to fall into the local peak, 

the corresponding escaping strategy is performed 

immediately to recover the global search capability of WOA. 

The strategy for detecting to fall into local peak can be 

described as 
 

*true if ( )
_

false else

t

u t s

f u
Is local


 


 

 




         (27) 

 

Algorithm 2 CDEWOA 

Use uniform initialization strategy to initialize whale population 

Initialize scaling factor F , and crossover rate CR  

Calculate the fitness of each search agent, and update the best agent *
X  

while (t < Maximum iterations) 

for each search agent 

Update a , A , C , l , and ()p rand  

if 0.33p   

if 1A  

Update the position of current search agent by (2) 

else if 1A  

Update the position of current search agent by (7) 

end if 

else if 0.33 0.66p   

Update the position of current search agent by (9) 

else if 0.66p   

Update the position of current search agent by (25) 

end if 

Calculate 
*( )

t

S

u t S

f u
 

    

if 
S    

Update the position of current search agent by Eq. (28) 

end if 

Check if the position of the current search agent goes beyond search 

space and amend it 

Calculate the fitness of each search agent, and update the best agent *
X  

end for 

1t t   

end while 

return *
X  

 

Fig. 4.  Framework of CDEWOA. 

 

where    * * *( ) ( ) ( 1)f u f u f u   X X is the variable 

quantity of optimum at the thu iteration, *( )uX is the 

optimum at the thu iteration, and is a constant. When the 

accumulation of variable quantity of optimum in successive 

s  generations is less than , WOA is considered to fall into 

the local optimum, and a jumping out strategy is executed. In 

this paper, the DE/current-to-best/1 mutation strategy is used 

to jump out the local optimum. This process can be expressed 

as 

*

1 2

( ) if =false

( 1) ( ) ( ( ) ( )) else

( ( ) ( ))

-

r r

t Is local

t t F t t

F t t




    
   

X

X X X X

X X

  (28) 

 

D. Pseudocode of CDEWOA 

The pseudocode of CDEWOA is shown in Fig. 4. 

IV. SIMULATION AND ANALYSIS 

To prove the effectiveness of the CDEWOA proposed in 

this paper, we tested its performance using 14 benchmark 

functions. Table I shows the unimodal benchmark functions 

F1-F6, which can test the search ability and the convergence 

rate of the metaheuristic algorithm. 
 

TABLE I 

DESCRIPTION OF UNIMODAL BENCHMARK FUNCTIONS 

Functions V_no Range Fmin 

2

1 1
( )

n

ii
F x x


  30 [–100,100] 0 

2 1 1
( )

nn

i ii i
F x x x

 
    30 [–10,10] 0 

2

3 1 1
( ) ( )

n i

ji j
F x x

 
   30 [–100,100] 0 

 4( ) max ,1i iF x x i n    30 [–100,100] 0 

1 2 2 2

5 11
( ) 100( ) ( 1)

n

i i ii
F x x x x




       30 [–30,30] 0 

  2

6 1
( ) ( 0.5 )

n

ii
F x x


   30 [–100,100] 0 

 

Table II shows functions F7–F11, which are multimodal 

benchmark functions. As these functions own many local 

optimums, they are better for testing the ability of escaping 

from local optimums.  
 

TABLE II 

DESCRIPTION OF MULTIMODAL BENCHMARK FUNCTIONS 

Functions V_no Range Fmin 

2

7 1
( ) 10cos(2 ) 10

n

i ii
F x x x


       30 [–5.12,5.12] 0 

2

8 1 1

1 1
( ) 20exp( 20 ) exp( cos(2 )) 20

n n

i ii i
F x x x e

n n


 
         30 [–32,32] 0 

2

9 1 1

1
( ) cos( ) 1

4000

nn i
ii i

x
F x x

i 
      30 [–600,600] 0 

 1 2 2 2

10 1 1
( ) 10sin( 1) ( 1) 1 10sin ( 1) ( 1) ( ,10,100,4),

( ) ,
1

1 , ( , , , ) 0,
4

( ) ,

n n

i i n ii i

i i

i
i i i

i i

F x y y y y u x
n

k x a m x a
x

y u x a k m a x a

k x a m x a


 



 
         

 
 

     
    

 

  30 [–50,50] 0 

 2 2 2 2 2

11 1 1
( ) 0.1 sin ( 1) 1 sin (3 1) ( 1) 1 sin (2 ) ( ,5,100,4)

n n

i i n n ii i
F x x x x x u x 

 
                 30 [–100,100] 0 
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TABLE III 

DESCRIPTION OF FIXED-DIMENSION MULTIMODAL BENCHMARK FUNCTIONS 

Functions V_no Range Fmin 

25 1

12 21 6

1

1 1
( ) ( )

500 ( )
j

i ijj

F x
j x a







 
 




 where 
32 16 0 16 32

32 32 32 32 32

 
 

    
a  

32 16 0 16 32 32 16 0 16 32 32 16 0 16 32 32 16 0 16 32

16 16 16 16 16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32

        


     
 

2 [–65,65] 1 

2
2

11 1 2
13 21

3 4

( )
( ) i i

ii
i i

x b b x
F x a

b b x x

 
  

  
 , [4, 2,1,1/ 2,1/ 4,1/ 6,1/ 8,1/10,1/12,1/14,1/16]b , 

[[0.1957, 0.1947, 0.1735, 0.16, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246]]a  

4 [–5,5] 0.00030 

2 2 2

14 1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

( ) 1 ( 1) (19 14 3 14 6 3 )

30 (2 3 ) (18 32 12 48 36 27 )

F x x x x x x x x x

x x x x x x x x

          

          

  2 [–2,2] 3 

 

The difference between the fixed dimensional multimodal 

function and the multimodal function is the ability to define 

the desired number of design variables. Table III shows 

functions F12–F14, which are fixed dimensional multimodal 

functions. Although the fixed dimensional multimodal 

function does not allow us to modify the number of design 

variables, it provides a different search space than the 

multimodal function. 

We compared the performance of CDEWOA with that of 

IWOA [18], WOA [10], CDE [20], DE [2], and PSO [5] 

based on the 14 benchmark functions. Each algorithm was run 

50 times independently. The general control parameters of 

algorithms such as the maximum number of iterations (
maxT ) 

and the population size ( M ), were set to the same value, that 

is, 
max 500T   and 30M  . The simulation environment was 

MATLAB R2016a running on a 64-bit Windows 10 computer 

with 8 GB of RAM. The other control parameters are shown 

in Table IV. 

 
TABLE IV 

PARAMETER SETTINGS OF THE ALGORITHM 

Algorithm Parameter setting 

PSO 
max max min max( ) ( ) /w t w t w w T    , max 0.9w  , 

min 0.2w  , 1 2 2c c   

DE 
0 0.5F  , 0.9CR  , 

0 2F F   , 

max maxexp(1 / ( 1 ))T T t      

CDE 
0 0.5F  , 0.9CR  , 0 2F F   , 

max maxexp(1 / ( 1 ))T T t     , max1 0.8 /w t T    

WOA 
 max2 1 /a t T  , 1b  , 2( 1)* 1l a rand   , 

2 max1 /a t T    

IWOA 
 max2 1 /a t T  , 1b  , 2( 1) 1l a rand    , 

2 max1 /a t T   , [0.2, 0.8]F  , 0.9CR   

CDEWOA 

 max2 1 /a t T  , 1b  , 2( 1) 1l a rand    , 

2 max1 /a t T   , 0.5F  , 0.9CR  , max=( -1)/w t T , 

0.1   

 

Tables V and VI display the simulation results obtained by 

each algorithm, where Ave  and Std  represent the average 

and standard deviation of the best fitness, respectively, and 

Best  represents the best optimal fitness. 

 

As can be seen from Table V, CDEWOA is very 

competitive in optimizing the unimodal function, compared 

with the IWOA, WOA, CDE, DE, and PSO. It is the best 

optimizer for functions F1, F2, F5 and F6. Although its 

performance in functions F3 and F4 is slightly lower than that 

of DE and CDE, CDEWOA still can obtain relatively ideal 

results. These results also confirm that CDEWOA has better 

exploitation capability. 

From Table VI, we can also see that CDEWOA shows 

excellent optimization performance for optimizing the 

multimodal functions and fixed dimensional multimodal 

functions. CDEWOA obtains the best average optimal value 

on functions F7, F9, F10, F11, F12, F13, and F14. At the same 

time, except for function F12, the best optimal values 

obtained by CDEWOA are better than those obtained by the 

IWOA, WOA, CDE, DE, and PSO. As the multi-peak 

functions are mainly used to detect the global search 

capability of the metaheuristic algorithm, it can be seen that, 

by introducing complementary difference evolution strategy 

and jumping out local optimal optimum strategy, the global 

search capability of the CDEWOA algorithm can be 

improved and the diversity of the population can be increased. 

The convergence curves of CDEWOA, IWOA, WOA, 

CDE, DE and PSO for 14 benchmark functions are shown in 

Fig. 5. The CDEWOA algorithm shows three different 

convergence behaviors. 

First, compared with the DE, CDE, and PSO, the 

convergence speed and convergence accuracy of the three 

WOA-based algorithms (WOA, IWOA, and CDEWOA) are 

relatively high. This is mainly because at the initial stage of 

iterations, these three algorithms complete the exploration by 

moving around the prey positions randomly selected. 

However, in the later stage of iterations, the WOA-based 

algorithms adopt circular encircling or spiral attacking 

strategies to enhance the exploitation of algorithms. Put 

another way, the CDE, DE, and PSO use the same equation to 

update the position of search agents, which increases the 

possibility of falling into a local minimum; however, the 

WOA-based algorithms separately consider the exploration 

and exploitation of algorithms and use the different update 

strategies, both of which help them improve their 

convergence performance.  
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TABLE V  

SIMULATION RESULTS FOR F1-F6 

Algorithms F1 F2 F3 F4 F5 F6 

CDEWOA 

Ave 3.14E-85 6.69E-50 2.40E-05 1.71E-13 1.56E+01 0 

Std 2.01E-85 3.70E-49 6.53E-06 9.74E-13 3.09E+00 0 

Best 1.28E-90 6.66E-63 2.92E-07 5.56E-25 1.21E+00 0 

IWOA 

Ave 1.60E-78 3.09E-48 5.16E-05 3.90E-10 2.76E+01 0 

Std 6.99E-78 1.88E-48 4.97E-06 6.81E-11 1.96E+01 0 

Best 9.47E-84 4.01E-51 5.80E-06 6.35E-13 2.07E+01 0 

WOA 

Ave 2.43E-73 4.39E-49 4.68E-04 4.46E-08 2.80E+01 0 

Std 1.65E-72 2.96E-48 1.68E-04 2.65E-08 4.70E+00 0 

Best 5.41E-85 5.25E-59 1.15E-04 4.02E-12 2.70E+01 0 

CDE 

Ave 1.34E-84 3.05E-45 2.58E-56 1.28E-37 2.82E+01 0 

Std 7.60E-84 4.73E-45 1.82E-55 3.01E-37 3.82E+00 0 

Best 8.64E-90 2.32E-47 1.11E-66 5.06E-40 2.72E+01 0 

DE 

Ave 6.39E-66 1.27E-36 6.68E-35 2.49E-28 2.89E+01 0 

Std 1.38E-65 1.99E-37 3.32E-34 3.34E-28 6.01E+00 0 

Best 8.81E-69 7.51E-39 6.39E-41 4.48E-30 2.87E+01 0 

PSO 

Ave 2.86E-23 2.48E+00 4.59E-05 1.98E-08 5.15E+01 1.95E+01 

Std 9.52E-22 5.37E+00 1.83E-05 3.81E-09 2.95E+01 2.26E+00 

Best 9.38E-22 1.28E+00 9.78E-06 1.21E-13 6.91E+01 1.31E+00 

 

TABLE VI  

SIMULATION RESULTS FOR F7-F14 

Algorithms F7 F8 F9 F10 F11 F12 F13 F14 

CDEWOA 

Ave 5.02E-20 2.17E-15 0 6.43E-06 3.02E-01 1.59E+00 2.96E-04 3.00E+00 

Std 7.58E-21 1.77E-15 0 5.95E-07 3.39E-02 1.98E-01 1.69E-05 2.28E-15 

Best 1.62E-21 8.88E-16 0 7.31E-08 9.98E-02 1.39E+00 3.00E-04 3.00E+00 

IWOA 

Ave 7.65E-06 1.20E-14 2.31E-03 6.66E-03 7.40E-01 2.58E+00 7.86E-04 8.28E+00 

Std 1.31E-06 5.02E-15 6.67E-04 2.46E-03 4.70E-01 3.32 E-01 1.45E-04 3.78E+00 

Best 2.69E-07 4.44E-15 0 1.09E-03 9.98E-02 1.07E+00 2.99E-04 3.00E+00 

WOA 

Ave 3.91E-03 4.51E-15 0 3.24E-02 3.09 E-01 6.08E+00 6.46E-04 3.00E+00 

Std 2.59E-04 2.54E-15 0 5.13E-03 2.29 E-02 4.72E-01 2.46E-04 7.62E-05 

Best 6.04E-04 8.88E-16 0 1.95E-03 9.98E-02 3.09E+00 3.00E-04 3.00E+00 

CDE 

Ave 2.15E-03 1.88E-15 0 6.96E-03 3.95 E+00 5.91E+00 3.08E-04 3.00E+00 

Std 1.33E-04 1.61E-15 0 5.67E-03 3.39 E+00 1.11E+00 8.52E-05 3.82E-10 

Best 2.96E-06 8.88E-16 0 4.61E-04 9.98E-02 3.07E+00 3.00E-04 3.00E+00 

DE 

Ave 5.94E+00 4.01E-15 0 9.88E-01 5.01E+00 6.02E+00 5.60E-03 8.69E+00 

Std 0.36E+00 2.17E-15 0 1.65E-01 2.43 E+00 5.64E-01 5.96E-03 3.62E+00 

Best 4.86E+00 8.88E-16 0 6.37E-02 1.00 E+00 4.80E+00 2.77E-04 3.00E+00 

PSO 

Ave 2.84E-05 1.14E-03 2.82E-03 6.75E-03 1.95 E+00 8.02E+00 9.47E-04 3.00E+00 

Std 9.67E-06 9.50E-04 8.16E-04 1.49E-03 1.97 E+00 1.14 E+00 2.85E-04 6.49E-15 

Best 1.08E-06 8.84E-05 0 8.03E-04 9.98 E-02 3.07E+00 2.96E-04 3.00E+00 
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Fig. 5.  Convergence curves of functions F1-F14 

 

Second, in the exploration phase, the convergence speed of 

CDEWOA is faster than that of IWOA and WOA, especially 

for functions F4, F5, F7, F8, F9, F11, F13 and F14. On the 

one hand, it is because the uniform initialization strategy used 

in CDEWOA improves the probability of finding a good 

solution in the exploration stage. On the other hand, during 

the exploration phase, CDEWOA extended the 

complementary differential evolution strategy to circular 

encircling and spiral attacking prey. The combination of 

multiple search methods is also conducive to finding more 

effective solutions. 

Finally, in the exploitation phase, the convergence 

accuracy of the CDEWOA algorithm tends to increase as the 

iteration increases. This behavior is evident in functions F2, 

F3, F4, F6, F7, F9, F10, F11, and F13. This is mainly due to 

the jumping out local optimal optimum strategy proposed for 

CDEWOA that enables it to escape the local extreme value 

and increases its local search ability. 

V. CONCLUSION 

Uniform rather than random initialization enhances the 

initial diversity of the population to some extent. A 

complementary differential mutation operator can help 

CDEWOA to maintain a good diversity of populations in the 

search process. The strategy of jumping out local optimum 

decreases the probability of falling into precocity when 

solving multi-peak problems. Simulation results show that the 

performance of CDEWOA proposed in this paper is better 

than that of other algorithms, such as IWOA, WOA, CDE, DE, 

and PSO. 
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