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Noises
Chao Wei, Zhikan Han, Yan Wei, Yingying Zhou, Liting Cao, Ci Yan

Abstract—This paper is concerned with parameter estimation
for discretely observed stochastic differential equations driven
by small Lévy noises. The contrast function is given to obtain the
least squares estimator and explicit formula of the estimation
error is given. The consistency and asymptotic distribution of
the estimator are derived by using Cauchy-Schwarz inequal-
ity, Gronwall’s inequality, Markov inequality and dominated
convergence. The parameter estimation theory of stochastic
differential equation driven by Brownian motion is extended
to Lévy noises.

Index Terms—Parameter estimation, small Lévy noises, con-
sistency, asymptotic distribution.

I. INTRODUCTION

Itô type stochastic differential equations are widely used
in the modeling of stochastic phenomena in the fields of
physics, chemistry, medicine( [1]–[3]). Recently, they are
applied to describe the dynamics of a financial asset, such as
Vasicek( [4]), Cox-Ingersoll-Ross( [5], [6]), Chan-Karloyi-
Longstaff-Sanders ( [7]) and Hull-White model ( [8]). How-
ever, part or all of the parameters in stochastic model are
always unknown. In the past few decades, some methods
have been put forward to estimate the parameters for Itô
type stochastic differential equations, such as maximum
likelihood estimation( [9], [10]), least squares estimation(
[11], [12]) and Bayes estimation( [13]–[15]). But, in fact,
non-Gaussian noise can more accurately reflect the practical
random perturbation. Lévy noise, as a kind of important non-
Gaussian noise, has attracted wide attention in the research
and practice in the fields of engineering, economy and society
and has been studied by some authors such as Bertoin(
[16]) and Applebaum( [17]). From a practical point of view
in parametric inference, it is more realistic and interesting
to consider parameter estimation for stochastic differential
equations with small Lévy noises. Recently, a number of
literatures have been devoted to the parameter estimation for
the models driven by small Lévy noises. When the coefficient
of the Lévy jump term is constant, drift parameter estimation
has been investigated ( [18], [19]).

In the past few decades, parameter estimation for nonlin-
ear stochastic differential equations with small Lévy noises
has been studied. For example, Long( [20]) discussed the
consistency and rate of convergence of the least squares
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estimator of the drift parameter from discrete observations.
Clément( [21]) proved the local asymptotic mixed normality
property of drift parameter estimator from high frequency
observations on the fixed time interval [0,1], computed the
asymptotic Fisher information and found that the rate in the
local asymptotic mixed normality property depends on the
behavior of the Lévy measure near zero. Chevallier( [22])
estimated the parameter following a two-step procedure. The
EM-algorithm was extended to a class of jump-diffusion
regime-switching models, simulations were proposed, along-
side an empirical application dedicated to the study of
financial and commodity time series.

Although parameter estimation for nonlinear stochastic
differential equations with small Lévy noises has been inves-
tigated by some authors, the diffusion coefficient is constant
and the explicit formula of the estimation error has not been
given. In this paper, we consider the parameter estimation
problem for a class of nonlinear stochastic differential e-
quations with small Lévy noises from discrete observations.
The contrast function is given to obtain the least squares
estimator and the explicit formula of the estimation error is
derived. The consistency and asymptotic distribution of the
estimator are analyzed by using Cauchy-Schwarz inequality,
Gronwall’s inequality, Markov inequality and dominated
convergence. The Hyperbolic diffusion is introduced as an
example to demonstrate the effectiveness of the methods used
in this paper.

This paper is organized as follows. In Section 2, nonlinear
stochastic differential equations driven by small Lévy noises
is introduced, the contrast function is given and explicit
formula of the least squares estimator is obtained. In Sec-
tion 3, The consistency and asymptotic distribution of the
estimator are discussed. An example is given in Section 4.
The conclusion is given in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let (Ω,F ,P) be a basic probability space equipped
with a right continuous and increasing family of σ-algebras
({Ft}t≥0). Let (Lt, t ≥ 0) be an ({Ft})-adapted Lévy
noises with decomposition

Lt = Bt +

∫ t

0

∫
|z|>1

zN(ds, dz) +

∫ t

0

∫
|z|≤1

zÑ(ds, dz),

(1)
where (Bt, t ≥ 0) is a standard Brownian motion, N(ds, dz)
is a Poisson random measure independent of (Bt, t ≥
0) with characteristic measure dtν(dz), and Ñ(ds, dz) =
N(ds, dz) − ν(dz) is a martingale measure. We assume
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that ν(dz) is a Lévy measure on R\0 satisfying
∫

(|z|2 ∧
1)ν(dz) <∞.

In this paper, we study the drift parameter estimation for
the following stochastic differential equation driven by small
Lévy noises:{

dXt =αf(Xt)dt+ εg(Xt)dLt, t ∈ [0, 1]

X0 =x0,
(2)

where α is an unknown parameter. Without loss of generality,
it is assumed that ε ∈ (0, 1].

Consider the following contrast function

ρn,ε(α) =
n∑
i=1

|Xti −Xti−1
− αf(Xti−1

)∆ti−1|2

ε2g2(Xti−1
)∆ti−1

, (3)

where ∆ti−1 = ti − ti−1 = 1
n .

It is easy to obtain the estimators

α̂n,ε =

∑n
i=1

(Xti
−Xti−1

)f(Xti−1
)

g2(Xti−1
)∑n

i=1

f2(Xti−1
)

g2(Xti−1
)∆ti−1

. (4)

Before giving the main results, we introduce some assump-
tions below.

Let X0 = (X0
t , t ≥ 0) be the solution to the underlying

ordinary differential equation under the true value of the
parameter:

dX0
t = α0f(X0

t )dt, X0
0 = x0.

Assumption 1: |f(x)|+ |g(x)| ≤ K1(1+ |x|) and |f(x)−
f(y)| + |g(x) − g(y)| ≤ K2|x − y| where K1 and K2 are
positive constants and x, y ∈ R, f(x) and g(x) are twice
differentiable with respect to x.

Assumption 2: α0 is the true valve of the parameter.
Assumption 3: inf0≤t≤1 |g(Xt)| > 0.
Assumption 4: |f ′(x)|+ |g′(x)| ≤ K3(1+ |x|)λ where K3

is a positive constant and λ > 0.
In the next sections, the consistency and asymptotic dis-

tribution of the least squares estimator are discussed.

III. MAIN RESULTS AND PROOFS

In the following theorem, the consistency of the least
squares estimators are proved by using Cauchy-Schwarz
inequality, Gronwall’s inequality, Markov inequality and
dominated convergence.

Theorem 1: When ε → 0 and n → ∞, the least squares
estimator α̂n,ε is consistent, namely

α̂n,ε
P→ α0.

Proof: By using the Euler-Maruyama scheme to dis-
cretize equation (2), it follows that

Xti −Xti−1
= α0f(Xti−1

)∆ti−1 + εg(Xti−1
)(Lti −Lti−1

).
(5)

Then, it is easy to see that
n∑
i=1

(Xti −Xti−1
)f(Xti−1

)

g2(Xti−1
)

= α0

n∑
i=1

f2(Xti−1
)

g2(Xti−1
)
∆ti−1

+ε
n∑
i=1

f(Xti−1
)

g(Xti−1
)
(Lti − Lti−1

). (6)

Substituting Equation (6) into the expression of α̂n,ε, it
follows that

α̂n,ε − α0 =
ε
∑n
i=1

f(Xti−1
)

g(Xti−1
) (Lti − Lti−1

)∑n
i=1

f2(Xti−1
)

g2(Xti−1
)∆ti−1

. (7)

Let Mn,ε
t = X[nt]/n, in which [nt] denotes the integer part

of nt. We will prove that the sequence {Mn,ε
t } converges to

the deterministic process {X0
t } uniformly in probability as

ε→ 0 and n→∞.
Observe that

Xt −X0
t = α0

∫ t

0

(f(Xs)− f(X0
s ))ds+ ε

∫ t

0

g(Xs)dLs.

(8)
From the Assumption 1 and the Cauchy-Schwarz inequal-

ity, we have

|Xt −X0
t |2

≤ 2α2
0|
∫ t

0

(f(Xs)− f(X0
s ))ds|2 + 2ε2|

∫ t

0

g(Xs)dLs|2

≤ 2α2
0t

∫ t

0

|f(Xs)− f(X0
s |2ds+ 2ε2|

∫ t

0

g(Xs)dLs|2

≤ 2α2
0K

2
2 t

∫ t

0

|Xs −X0
s |2ds+ 2ε2|

∫ t

0

g(Xs)dLs|2.

According to the Gronwall’s inequality, it can be checked
that

|Xt −X0
t |2 ≤ 2ε2σ2e2α

2
0K

2
2 t

2

|
∫ t

0

g(Xs)dLs|2. (9)

Then, it follows that

sup
0≤t≤T

|Xt −X0
t | ≤

√
2εσeα

2
0K

2
2T

2

sup
0≤t≤T

|
∫ t

0

g(Xs)dLs|.

(10)
Therefore, for each T > 0, when ε→ 0, we have

sup
0≤t≤T

|Xt −X0
t |

P→ 0. (11)

As [nt]/n → t when n → ∞, we get that the sequence
{Mn,ε

t } converges to the deterministic process {X0
t } uni-

formly in probability as ε→ 0 and n→∞.

Then, we will prove that
∑n
i=1

f(Xti−1
)

g(Xti−1
) (Lti − Lti−1

)
P→∫ 1

0
f(X0

s )
g(X0

s )
dLs.

Note that

n∑
i=1

f(Xti−1
)

g(Xti−1
)
(Lti − Lti−1

) =

∫ 1

0

f(Mn,ε
s )

g(Mn,ε
s )

dLs. (12)
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Then, it yields that

|
∫ 1

0

f(Mn,ε
s )

g(Mn,ε
s )

dLs −
∫ 1

0

f(X0
s )

g(X0
s )
dLs|

= |
∫ 1

0

(
f(Mn,ε

s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )

)dBs

+

∫ 1

0

∫
|z|>1

(
f(Mn,ε

s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )

)zN(ds, dz)

+

∫ 1

0

∫
|z|≤1

(
f(Mn,ε

s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )

)zÑ(ds, dz)|

≤ |
∫ 1

0

(
f(Mn,ε

s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )

)dBs|

+ |
∫ 1

0

∫
|z|>1

(
f(Mn,ε

s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )

)zN(ds, dz)|

+ |
∫ 1

0

∫
|z|≤1

(
f(Mn,ε

s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )

)zÑ(ds, dz)|.

It can be easily to check that

|
∫ 1

0

∫
|z|>1

(
f(Mn,ε

s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )

)zN(ds, dz)|

≤
∫ 1

0

∫
|z|>1

|f(Mn,ε
s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )
||z|N(ds, dz)

≤ sup
0≤s≤1

|f(Mn,ε
s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )
|
∫ 1

0

∫
|z|>1

|z|N(ds, dz)

P→ 0,

as ε→ 0 and n→∞.

By using the Markov inequality and dominated conver-
gence, we get

|
∫ 1

0

(
f(Mn,ε

s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )

)dBs|
P→ 0, (13)

and

|
∫ 1

0

∫
|z|≤1

(
f(Mn,ε

s )

g(Mn,ε
s )

− f(X0
s )

g(X0
s )

)zÑ(ds, dz)| P→ 0. (14)

Thus, together with the previous results, it follows that

n∑
i=1

f(Xti−1
)

g(Xti−1
)
(Lti − Lti−1

)
P→

∫ 1

0

f(X0
s )

g(X0
s )
dLs. (15)

Moreover,

| 1
n

n∑
i=1

f2(Xti−1)

g2(Xti−1)
−

∫ 1

0

f2(X0
s )

g2(X0
s )
ds|

= |
∫ 1

0

f2(Mn,ε
s )

g2(Mn,ε
s )

ds−
∫ 1

0

f2(X0
s )

g2(X0
s )
ds|

= |
∫ 1

0

f2(Mn,ε
s )g2(X0

s )− f2(X0
s )g2(Mn,ε

s )

g2(Mn,ε
s )g2(X0

s )
ds|

= |
∫ 1

0

f2(Mn,ε
s )g2(X0

s )− f2(X0
s )g2(X0

s )

g2(Mn,ε
s )g2(X0

s )
ds

+

∫ 1

0

f2(X0
s )g2(X0

s )− f2(X0
s )g2(Mn,ε

s )

g2(Mn,ε
s )g2(X0

s )
ds|

= |
∫ 1

0

f2(Mn,ε
s )− f2(X0

s )

g2(Mn,ε
s )

ds

+

∫ 1

0

f2(X0
s )(g2(X0

s )− g2(Mn,ε
s ))

g2(Mn,ε
s )g2(X0

s )
ds|

= |
∫ 1

0

(f(Mn,ε
s ) + f(X0

s ))(f(Mn,ε
s )− f(X0

s ))

g2(Mn,ε
s )

ds

+

∫ 1

0

f2(X0
s )(g(X0

s ) + g(Mn,ε
s ))(g(X0

s )− g(Mn,ε
s ))

g2(Mn,ε
s )g2(X0

s )

ds|

= |
∫ 1

0

(f(Mn,ε
s ) + f(X0

s ))

g2(Mn,ε
s )∫ 1

0

f ′(X0
s + θ(Mn,ε

s −X0
s ))(Mn,ε

s −X0
s )dθds

+

∫ 1

0

f2(X0
s )(g(X0

s ) + g(Mn,ε
s ))

g2(Mn,ε
s )g2(X0

s )∫ 1

0

g′(Mn,ε
s + θ(X0

s −Mn,ε
s ))(X0

s −Mn,ε
s )dθds|

≤
∫ 1

0

| (f(Mn,ε
s ) + f(X0

s ))

g2(Mn,ε
s )

|K3(1 + |X0
s |+ |Mn,ε

s |)λ|Mn,ε
s −X0

s |ds

+

∫ 1

0

|f
2(X0

s )(g(X0
s ) + g(Mn,ε

s ))

g2(Mn,ε
s )g2(X0

s )

|K3(1 + |X0
s |+ |Mn,ε

s |)λ|Mn,ε
s −X0

s |ds

≤
∫ 1

0

| (f(Mn,ε
s ) + f(X0

s ))

g2(Mn,ε
s )

|K3(1 + sup
0≤s≤1

|X0
s |+ sup

0≤s≤1
|Xs|)λ

sup
0≤s≤1

|Mn,ε
s −X0

s |ds

+

∫ 1

0

|f
2(X0

s )(g(X0
s ) + g(Mn,ε

s ))

g2(Mn,ε
s )g2(X0

s )

|K3(1 + sup
0≤s≤1

|X0
s |+ sup

0≤s≤1
|Xs|)λ

sup
0≤s≤1

|Mn,ε
s −X0

s |ds

P→ 0.

Thus, we have

1

n

n∑
i=1

f2(Xti−1
)

g2(Xti−1)

P→
∫ 1

0

f2(X0
s )

g2(X0
s )
ds. (16)

With above results, when ε → 0 and n → ∞, it follows
that

α̂n,ε
P→ α0. (17)
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The proof is complete.
Theorem 2: When ε→ 0 and n→∞,

ε−1(α̂n,ε − α0)
p→

∫ 1

0
f(X0

s )
g(X0

s )
dLs∫ 1

0
f2(X0

s )
g2(X0

s )
ds
.

Proof: When ε → 0 and n → ∞, it is easy to check
that

ε−1(α̂n,ε − α0)
p→

∫ 1

0
f(X0

s )
g(X0

s )
dLs∫ 1

0
f2(X0

s )
g2(X0

s )
ds
. (18)

Remark 1: In this section, we discuss the extension of our
main results in Section 3 to the general case when the driving
noise is a semi-martingale. Let Qt = Q0 + Mt + At be a
semi-martingale, where Mt is a local martingale and At is
a finite variation process. Then, we can replace the driving
Lévy process Lt by the semi-martingale Qt to get{

dXt =αf(Xt)dt+ εg(Xt)dQt, t ∈ [0, 1]

X0 =x0,
(19)

where α is an unknown parameter. Without loss of generality,
it is assumed that ε ∈ (0, 1].

All the related information about the least squares estima-
tor of α discussed in this section is same to Section 2. It is
easy to check that the consistency and asymptotic behavior
of the least squares estimator of α are also hold.

IV. EXAMPLE

In this section, the Hyperbolic diffusion driven by small
Lévy noises is given as an example. Hyperbolic diffusion
is widely used to describe the financial phenomenon. The
equation has the following expression dXt =α

Xt√
1 +X2

t

dt+ εσdLt, t ∈ [0, 1]

X0 =x0,

(20)

where α is an unknown parameter.
It is easy to check that Hyperbolic diffusion satisfies the

Assumptions 1-4, the contrast function has the following
expression

ρn,ε(α) =
n∑
i=1

|Xti −Xti−1
− α Xti−1√

1+X2
ti−1

∆ti−1|2

ε2σ2∆ti−1
,

and the least squares estimator is derived

α̂n,ε =

∑n
i=1

(Xti
−Xti−1

)Xti−1√
1+X2

ti−1∑n
i=1

X2
ti−1

1+X2
ti−1

∆ti−1

.

We can derive that

α̂n,ε
P→ α0,

and

ε−1(α̂n,ε − α0)
p→

∫ 1

0

X0
s√

1+(X0
s )2

σ dLs∫ 1

0

(X0
s )2

1+(X0
s )2

σ2 ds

.

We generate a discrete sample (Xti)i=0,1,...,n and compute
α̂n,ε from the sample. We let σ = 0.5, x0 = 0.1, the char-
acter measure υ of Poisson jump satisfies υ(dz) = ζφ(dz),
where ζ = 1.5 is the intensity of Poisson distribution and φ
is the probability intensity of the standard normal distributed
variable z. For every given true value of the parameter-α0,
the size of the sample is represented as“Size n” and given
in the first column of the table. In Tables 1 and 3, ε = 0.05,
the size is increasing from 500 to 3000. In Tables 2 and 4,
ε = 0.001, the size is increasing from 5000 to 30000. Tables
1 and 2 list the value of “α0−LSE” and the absolute errors
(AE) of LSE, LSE means least squares estimator. Tables 3
and 4 list the value of “α0−LSE” and the confidence interval
of α0.

Two tables illustrate that when n is large enough and ε is
small enough, the obtained estimators are very close to the
true parameter value and the length of the confidence interval
is becoming small when the size of the sample is increasing.
Therefore, the methods used in this paper are effective and
the obtained estimators are good.

TABLE I
LSE SIMULATION RESULTS OF α0

True Aver AE

(α0) Size n α0 − LSE α0

1

500 0.9557 0.0443

1000 0.9623 0.0377

3000 0.9775 0.0225

2

500 1.9574 0.0426

1000 2.0358 0.0358

3000 2.0162 0.0162

3

500 2.9596 0.0404

1000 3.0328 0.0328

3000 3.0183 0.0183

V. CONCLUSION

In this paper, parameter estimation for nonlinear stochas-
tic differential equations with small Lévy noises has been
studied from discrete observations. The explicit formula of
the least squares estimator and the estimation error have
been obtained. The consistency and asymptotic distribution
of the estimator have been derived by using Cauchy-Schwarz
inequality, Gronwall’s inequality, Markov inequality and
dominated convergence. Further research topics will include
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TABLE II
LSE SIMULATION RESULTS OF α0

True Aver AE

(α0) Size n α0 − LSE α0

1

5000 0.9782 0.0218

10000 0.9835 0.0165

30000 0.9946 0.0054

2

5000 2.0285 0.0285

10000 2.0130 0.0130

30000 2.0012 0.0012

3

5000 3.0259 0.0259

10000 3.0126 0.0126

30000 3.0025 0.0025

TABLE III
SIMULATION RESULTS OF CONFIDENCE INTERVAL FOR α0

True Aver confidence in-
terval of 0.95

(α0) Size n α0 − LSE α0

1

500 0.9557 [0.9396,0.9912]

1000 0.9623 [0.9452,0.9836]

3000 0.9714 [0.9528,0.9786]

2

500 2.0416 [1.8925,2.0538]

1000 2.0358 [1.9157,2.0479]

3000 2.0162 [2.0026,2.0314]

3

500 3.0415 [2.8579,3.0627]

1000 3.0328 [2.9236,3.0541]

3000 3.0183 [3.0012,3.0428]

TABLE IV
SIMULATION RESULTS OF CONFIDENCE INTERVAL FOR α0

True Aver confidence in-
terval of 0.95

(α0) Size n α0 − LSE α0

1

5000 1.0231 [0.9527,1.0630]

10000 1.0169 [0.9623,1.0512]

30000 1.0036 [0.9717,1.0436]

2

5000 2.0228 [1.9633,2.0685]

10000 2.0106 [1.9721,2.0514]

30000 2.0010 [1.9813,2.0463]

3

5000 3.0252 [2.9163,3.0710]

10000 3.0117 [2.9228,3.0632]

30000 3.0009 [2.9382,3.0519]

the drift and diffusion parameter estimation for nonlinear
stochastic differential equations driven by Lévy noises.
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