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in 5G Communication based on
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Abstract—With the rapidly deployment of 5G communica-
tion, network functional virtualization has became one of key
technology. However, how to achieve virtual network function
service chaining (VNF-SC) adaptively and cost-effectively in
an inter datacenter elastic optical network (interDC-EON) has
become an interesting and challenging problem. In addition,
network function virtualization has became one of the key
technology for 5G Commons. In this paper, we propose a
resource scheduling framework based on artificial intelligence.
In addition, an effective VNF-SC deployment algorithm based
on deep reinforcement learning (RL) is designed. In this
algorithm, VNF-SC deployed scheme is obtained by using deep
Q-learning according to the state of the network and the
reward of the action. To verify the efficient of the proposed
algorithm, a large number of experiments have been conducted.
Experimental results demonstrate that the RL achieves better
performance than several benchmarks, in terms of balancing
the tradeoff among the overall resource utilization, the vNF-SC
request blocking probability.

Index Terms—Virtual Network Function (VNF); VNF-service
chain (VNF-SC); Reinforcement learning (RL); 5G Communi-
cation

I. INTRODUCTION

ETWORK function virtualization (NFV) becomes a

hot research field as it can facilitate the flexibility
of the network services[l], [2]. NFV decouples network
functions from underlying hardware so these functions can
run as software images on commodity hardware as well as
custom-built hardware[3], [4], [5]. With network function
virtualization technology, traditional hardware based network
appliances are replaced by software-based virtual network
functions (VNFs), and virtual network functions (VNFs) can
be realized by using generic network resources[6]. VNFs can
be deployed on high performance servers in datacenters (i.e.,
service chain), and the deployment of new network services
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can be easily realized by routing data traffic through a series
of VNFs on datacenters[7].

In addition to the innovations on the datacenter, NFV also
gains advantages from new optical networking architectures
(e.g., elastic optical networks (EONSs))[8], [9]. This is be-
cause VNF-SC can route high-throughput and gusty traffic
across several datacenters has to use an optical network as
its physical layer [10]. NFV MANO (NFV management
and orchestration)[11] is responsible for management the
infrastructure, resource and service. It can arrange different
VNFs to realize management of the automatic deployment.

In the meantime, recent advances in reinforcement learn-
ing (RL) have demonstrated beyond human-level perfor-
mance in handling large-scale online control tasks [12], [13].
By accumulating action experiences from repeated interac-
tions with the target systems and by reinforcing actions
leading to higher rewards, RL is able to learn successful
policies progressively. The application of RL in the com-
munication and networking domain has received intensive
research interests during the past two years [14], [15]. In [16],
the authors enhanced the general deep Q-learning framework
in with novel exploration and experience replay techniques
to solve the traffic engineering problem. The authors of
[17] presented a RL-based framework for datacenter network
management and demonstrated a RL agent which can learn
the optimal topology configurations with respect to different
application profiles.

In this paper, we focus on the VNF-SC deployment
problem in inter-DC EONs. The main contributions of this
paper are as follows: (1) We propose a resource scheduling
framework based on artificial intelligence. (2) An effec-
tive VNF-SC deployment algorithm based on reinforcement
learning (RL) is designed. In this algorithm, VNF-SC de-
ployed scheme is obtained by using Q-learning according to
the state of the network and the reward of the action.

II. RELATED WORKS

In recent years, there are more and more researches fo-
cusing on the VNF-SC deployment[18], [19]. To investigates
the problem of how to optimize the provisioning of VNF-
SCs in Inter-Dc EON, taking advantage of the broker-based
hierarchical control paradigm for the orchestration of cross-
stratum resources and propose to realize incentive-driven
VNF-SC provisioning with a noncooperative mixed-strategy
gaming approach is investigated[20]. A deep-learning (DL)
model is designed to predict future VNF-SC requests, then
lightpath establishment and VNF deployment are performed
accordingly to pre-deploy resources for the predicted requests
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in [21]. Literature[22] addressesed the placement aspect of
these service chains by finding the best locations and hosts
for the VNFs and to steer traffic across these functions
while respecting user requirements and maximizing provider
revenue. We propose a novel eigendecomposition-based ap-
proach for the placement of virtual and physical network
function chains in networks and cloud environments. A
novel primal-dual decomposition using column generation
that solves exactly a relaxed version of the problem and
can serve as a benchmark approach is presented[23]. To
minimize the rejection of VNF-SC bandwidth and reduce
the energy consumed, a consolidation algorithm based on a
migration policy of VNF-SC that considers the revenue loss
due to QoS degradation that a user suffers due to information
loss occurring during the migrations is proposed[24]. For
general IP networks, a mixed integer linear programming
(MILP) model to determine the upper bound on the reliability
with max-min fairness is established[25]. In addition, an
efficient heuristic is developed to address reliable multicast
VN mapping with a low computational complexity. Literature
[26] studied the SFC Embedding Problem (SFC-EP) with
dynamic VNF placement in geo-distributed cloud system
and formulated this problem as a Binary Integer Program-
ming (BIP) model aiming to embed SFC requests with the
minimum embedding cost. A framework employs a non-
cooperative hierarchical game-theoretic mechanism, where
the resource brokers and the VNF-SC users play the leader
and the follower games, respectively is proposed[27].

III. PROBLEM DESCRIPTION AND MATHEMATICAL
MODELING

A. Problem Description

In General, VNF deployment problem can be divided
into two sub-problems, i.e., VNF placement and VNF-SC
constructing. The mainly problem of VNF placement is
placing the VNF to the suitable virtual machine in the data
center. VNF-SC constructing determine the optimal traffic
scheduling scheme for the VNF-SCs.

We use a directed graph G = (V, E) to describe a inter-
DC EONs, where V and E denote the node set and link
set, respectively. v;, which connected to the data center,
denotes the i-th node in V' = {vi,ve, -, VN, }. Ny is
the number of the nodes in the network. N, and e; represent
the number of links and the ¢-th link in the set of link set
E ={ei,ea, -+ ,en,}. Foreachnode v;(i = 1,2, -+ , Ny),
there are [V,, virtual machine in the node v;. In addition, each
virtual machine can service one VNF at the san time. Thus,
one node can hold up NV,, VNF. In this work, the shortest
path is selected for each node pair v; and v; (i # j), we can
use T'(v;,v;) to denote the time delay in the shortest path
between node v; and v;. F' = {fi, fo,---, fn,} represent
the set of VNF, and f;(i = 1,2,---, Ny) denotes the i-th
VNF, such as fire wall, load balancer, etc. For each VNF-SC
S;, it can be described as C; = (¢;,1,€i2,Cias + ,Cijy ),
where c; ; denotes the j-th network function of the VNF-SC
C;, and |C;| represents the length of the VNF-SC C;. Each
network function c; ; is realized by one VNF, denoted by
f(cij). v(ciy) is used to present the node of ¢; ; placed.
The traffic between each two nodes has K candidate paths,

denoted by Q;; = {Q};,Q7;,--,QF,,---,QF,}, where

f j(k = 1,2,--- ,K) represents the k-th candidate path
between node v; and v;.

B. Mathematical Modeling

In this investigation, we have two objectives, including
average of transfer time delay and load of the service.

The first objective is minimizing the average of transfer
time delay of all the VNF-SCs. We can express it as follows:

Ny |Cil

N ZZD v(ci ),

1=1 j=1

v(ci 1)) (1)

where D(v;,v;) denotes the time delay in the path occupied
between the nodes v; and v;. If we use D(s,d) to denote
the maximum of the time delay bet each two node, thus we
have

NV |C ‘ NV |C |
Y D) v ) € D03 Dlssd
v i=1 j=1 =1 j=1
2
So, we can normalized the first objective as
Ny |Gl
Zl Z D(v(eij),v(ciji1))
B === 3
1 A (3)
> Z D(s,d)

i=17=

In addition, we have 0 < F; < 1. The second objective is
to reach the goal of load balance on all the node. We can
expressed this objective as

Ny

W) )

where NNU denotes the number of virtual machine that has
been occupied in node V;, N, represents the average number
of virtual machine that has been occupied in all nodes. N,
is calculated by

Ny T

1 N anf
N’Ui = X Nvi = a7 (5)
v 2N
Thus, Eq.(4) can be re-written as
Ny
1 <~ 2
2
0 =—" Nm Nm)
p Z
(6)

2
Unf)

Note that when all VNFs in all VNF-SCs are assigned to
one node, o will arrive at the maximum value denoted by
I'2. We can normalize 02 by o2 /T2, where I'? can be easily

calculated by
N ( vnf) NT Ngnf 2
( v = 1) + vnf ~ "Ny

2 _
I = Ny

B (W = 1)+ (v = 1)?) ™
_ =

(VB (NE —Npo) (V)P (Ny — 1)

Ny Ny
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So, the second objective function can be expressed as

1 Ny T 2
o2 WZZ (NVN anf)
== (NI, 2Ny —1)
Nz
Ny — T 2
gﬁwmfmw)
(NV_l)( vnf)2 (8)

NV%(N ) 2N'3;szsz+(N1:fnf)
(NV _1)(anf)2
Ny 3 (Nur)? — (N5,

N TP

Thus, we have 0 < F; < 1. Now we integrate the two
objectives into one to be minimized as follows

min f = min {aF + BF2} 9)

where « and 3 are two weights to adjust the importance
of the two objectives with 0 < o, 8 < 1, a + 3 = 1. So,
0<f<1

The decision should be made under some conditions.
These conditions constitute the constraints of the problem
as follows:
(1) For each node, the number of virtual machine should not
greater than its capacity of the node, that is

N, <N,

(10)

IV. VNF-SC DEPLOYMENT ALGORITHM BASED
REINFORCEMENT LEARNING

A. Reinforcement Learning

Reinforcement learning is one of the important methods
of machine learning in the field of artificial intelligence.
Reinforcement learning lies its interaction with the envi-
ronment. This is the difference of reinforcement learning
from supervised learning and unsupervised learning. Rein-
forcement learning is an interactive learning method, which
emphasizes learning to obtain evaluative feedback signals
in the interaction with the environment. In the absence of
the expected output of input signals in various states, the
goal of learning is to maximize future returns.Therefore,
reinforcement learning has the advantages of self-learning
and online learning, and has a wide range of applications
in solving complex optimization decision problems with less
prior information.

In the process of using reinforcement learning to solve
practical problems, the most important thing is to transform a
practical problem into a model of reinforcement learning and
use relevant algorithms to get optimal strategy results.That
is, the state set, action set and feedback function in the
environment are defined according to the actual problem to
be solved.In the service chain mapping problem, it is defined
as follows:

State set. The key to selecting the physical server nodes
for each VNF in the service chain for deployment is to select
the appropriate placement nodes according to the real-time
status of each node. First, the state of a single node is defined

based on the number of vCPUs already used by the physical
server node, and a threshold value is set for the vCPU usage
of each node. If the threshold value is exceeded, the node
state is 1; otherwise, the node state is 0. Then consider the
state of the global node. If there are Ny nodes, each node
has two states, namely O and 1, then there are 2NV gtates
globally If the binary representation state value is 00107, it
means that the resource usage of one of the nodes exceeds
the threshold, and the remaining nodes No more than the
threshold.In addition to the state of the global node, since
the business traffic needs to pass through the VNF in the
service chain in order, the current deployment location of
VNF has a certain relationship with the deployment location
of the last VNF in the service chain, and the traffic will be
forwarded between the two adjacent VNF node locations.
Therefore, in this paper, the node location of the last VNF
deployment is introduced into the state information. Thus,
the number of states in the state set is n = 2VV Ny . The
state set is represented as

S:{517527"' asn}

Action set. According to the state information at each
moment, it is necessary to select a physical server node for
the currently deployed VNF to deploy. Assuming there are
Ny nodes, each action in the action set corresponds to one
node, and there are Ny kinds of actions. Action set is

757:,...

A:{a1;a2a"' s Ay 7aNV}

Excitation function According to different situations,
different feedback values are set. When the use of node
resources selected by the action has exceeded the threshold
value, the feedback value is fixed at -50. When the node
resources selected by the action do not exceed the threshold
value, the excitation function is

(8t) = Ly(st41)] — (1)

where L, (s;) represents the load balance of the system at
state sy, D, denotes the minimum delay between the node
selected for this action and the previous VNF deployment
node.

In addition, due to the problems of reinforcement learning
algorithm such as dimensional disaster, slow convergence
speed, exploration and utilization balance, the algorithm in
this paper will focus on the deployment of a service chain
in a data center or enterprise network, temporarily ignoring
the need to deploy a service chain in multiple domains at the
same time.In other words, multiple SDN domains and NFV-
O domains are temporarily ignored, and only the mapping
of service chain on a certain infrastructure is considered. In
addition, in the group chain stage of the service chain, flow
table is basically issued by SDN controller to control the flow
direction between different VNF, which is generally selected
according to the shortest path strategy.

R=0-A[L, BD,

B. Proposed VNF-SC Deployment Algorithm

Reinforcement learning tasks are usually described by
MDP (Markov Decision Process). As the state transition
probability of the model is unknown in the Markov decision
process of system modeling, g-learning algorithm is adopted
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in this paper to carry out learning control in the model. Q-
learning algorithm is a model-independent value iteration
method, which does not need to know the state transition
matrix in advance to solve the sequential optimization deci-
sion problem with delayed return.

In Q-Learning algorithm, the key is to define a state-action
matrix Q(s,a), and each value in the matrix represents the
value of a ’state-action’ pair. Each time an action is selected,
it is selected according to the (s, a) matrix. Assuming the
current state is s;, the selected action a needs to meet

Q(s, d) = m?XQ(Sv a)

In this paper, e-greedy exploration is used to select actions.
In this mechanism, an action is randomly selected with low
probability, and the best action is selected according to the
Q matrix with probability 1 — €. This mechanism is mainly
to prevent the algorithm from falling into the local optimal
state and jump out of the local optimal state through the low-
probability exploration mechanism.In algorithm design, ¢ is
not fixed, but dynamically changing. ¢ = 10/K is selected,
where K is the number of learning cycles. The significance
of doing so lies in the greater probability of using random
method in the selection of early learning actions, which can
be better explored. In the later stage of learning, the action
selection is more inclined to be generated according to @
matrix calculation.

When the action is selected and executed, the system
enters the next state s;11, and a feedback 7 (s, a;) of the
system can also be obtained. According to Equation (13),
the () matrix is iteratively updated.

Q(st,at) =Q(s¢,ar) + ar[r(se, ar)
+ ngﬁiQ(stH, aty1) — Q(st,at)]

(12)

13)

where (s¢,a;) is the ’state-action’ of Markov decision pro-
cess at time t. s;41 is the state of the time ¢. (s, at) is the
return at time t. o is the learning factor at time t.

C. Algorithm Description

In Section 5.1, specific algorithm implementation descrip-
tion is given. Algorithm 1 focuses on describing the mapping
algorithm process of the entire service chain, as shown below.

Algorithm 2 presents the placement process of VNF based
on Q-learning, as shown below.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Simulation Environment

In this paper, a test verification tool is written based on
Java language to realize the simulation of the algorithm.The
simulation implementation of the algorithm is divided into
three modules. The first module is the construction of the
underlying network environment, including the simulation of
network topology nodes and physical server node resources.
Then comes the generating module of the business. Each
business contains a service chain. The business arrives in a
Poisson flow, and the time completed in the system follows
a negative exponential distribution. Finally, the service chain
mapping algorithm module based on enhanced learning runs

Algorithm 1: VNF-SC mapping algorithm based Q-
learning

1 Receive a service chain placement request

2 Check whether the infrastructure compute storage
network resources meet the total resource requirements
of the service chain request;

3 if Meet the total resource demand then

4 Deployment the head node of the service chain on

the node with the least load;
5 for The others VNF do
6 Appropriate VNF placement nodes are selected
according to g-Learning algorithm;

7 end

8 else

9 ‘ Denial of service chain placement requests;

10 end

Algorithm 2: VNF deployment algorithm based Q-
learning

1 VNF placement request received

2 Generate a random number ~ between (0,1);

3 if v < € then

4 Random selection action to place VNF, that is,
random selection node to place VNF;

5 else

6 According to the Q matrix calculation select the
optional action to place the VNF in the appropriate
node;

7 Calculate the feedback value r(ay, s;) after VNF
placement;

8 According to Equation (13), the @) matrix is updated
for the next calculation of placement strategy;

9 end

the Q-learning algorithm, makes decisions for the deploy-
ment of the service chain in the business, and then checks the
next state and feedback of the system after each deployment
to update the () matrix.

Generation of VNF-SC: Assume that the number of
VNF types in the network is 10. The length of the service
chain is randomly generated from the uniform distribution
of [1, 8]. The generation of each VNF in a service chain
is randomly selected from the set, and the selected type of
VNF is guaranteed not to be selected, so that the VNF type
in a service chain is not the same. Service chain requests
are generated according to the Poisson process, i.e., the
generated time interval follows the exponential distribution
e ™ where A = 1; Meanwhile, the duration of the
service chain in the system follows exponential distribution
e #*, where u = 1. The system manages the service chain
life cycle according to the above probability distribution law.

Experimental topological generation: The network
topology is generated by Brite topology generator. A total
of Ny node network topologies are selected and generated.
The connection relationship between nodes and the delay of
links are generated by the topology generator. Assuming that
each server node has 10 vCPU, this paper assumes that each
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vCPU can host one VNF, so 10 VNFs can be placed on each
server node.

VNF mapping algorithm based on Q-Learning: The key
of Q-Learning algorithm lies in the () matrix. Since there are
Ny nodes in the experimental network topology, the number
of states in the state set is 2V Ny, the number of actions in
the action set is /Ny, and the number of ’state-action’ pairs in
the @ matrix is 2"V Ny, x Ny.. Each request to the service
chain is deployed and the () matrix is updated. When the
algorithm is evaluated, the convergent () matrix is used to
make decisions for the deployment of the service chain to
test the performance of the algorithm.

B. Comparison Algorithm

In order to compare and verify the effectiveness of the
proposed algorithm, the following classical service chain
mapping algorithms are selected for comparative analysis.

RL(reinforcement learning): Reinforcement learning al-
gorithm, i.e., proposed algorithm in this paper.

EBA (Eigendecomposition-based Approach)[28]: A nov-
el eigendecomposition-based approach for the placement of
virtual and physical network function chains in networks and
cloud environments. A heuristic based on a custom greedy
algorithm is also presented to compare performance and
assess the capability of the eigendecomposition approach.

JoraNFV(Jointly Optimize the Resource Allocation in
NFV)[29]: Considering network cost and service perfor-
mance, a two-stage service chain mapping algorithm based
on one-hop traffic scheduling and greedy algorithm for
searching multiple paths is proposed.

CCMF(Closed-Loop with Critical Mapping Feed-
back)[3]: A closed-loop algorithm based on feedback from
key subtopological mappings is used to jointly optimize VNF
combination and service chain mapping to minimize overall
bandwidth consumption.

C. Evaluation Indicators

Since the placement of the service chain involves such
indexes as resource utilization rate, network delay, and sys-
tem energy consumption, two important evaluation indexes
are selected to measure the effectiveness of the proposed
algorithm for the time being: 1) The average transmission
delay of each service chain; 2) Load balancing of server
nodes in the system.The algorithm in this paper is suitable
for optimizing different targets and only needs to change the
feedback value.

Average transmission delay of the service: If the form of
a service chain is VNF;—VNF;—VNF;, the transmission
delay of the service is the link transmission delay from
the node where VNF; is map to the node where VNFo
map to and the node where VNFs is map to. If two VNF
are deployed on the same node, the transmission delay
between the two VNF is minimal and negligible, that is,
D(v(S;,;),V(Sij4+1)) = 0. If two VNFS are deployed on
different nodes, D(v(S; ),V (Si j+1)) = 0 is the minimum
delay of the path between the two nodes.

Load balancing of the system: During the operation of
the system, the load conditions on different physical server
nodes are collected at different times, and then the variance
of the load conditions on different server nodes is calculated

0.32: RL EBA FHH] JoraNFV == CCMF

t
800 1000

Fig. 1. Results obtained of the transmission delay when Ny = 10

g;g: D2 R EBA FEH JoraNFV == CCMF
0.654 ]
0.60 =

Fig. 2. Results obtained of the transmission delay when Ny = 20

to measure the load balance of the system. The smaller the
variance is, the more balanced the system load is. The greater
the variance is, the greater the system load fluctuation is.

D. Experimental Results

1) Result of the Average Transmission Delay: The service
chain is deployed according to the convergent () matrix and
the algorithm performance is evaluated.In the experiment,
Np service chains were randomly generated and deployed
in accordance with different algorithms. Then, the average
link delay of the service chain bearing service was counted.
The comparison of the average link delay index is shown in
Fig.1 to Fig.3. In each figure, the number of VNF-SC ranges
from 200 to 1000.

2) Result of Load Balancing: During the operation of the
simulation platform, when the business arrives and leaves
according to poisson flow, there will be some business chains
being processed in the system. The deployment of these
business chains and whether the load of the system is more
balanced are also important factors for the system to be
evaluated. During the operation of the system, the current
load balancing status of the system is collected at certain

0703 P77} v Y A EEE oranFV = COME

0.60
0.55
Z 0.50
£ 0u0]
g 0.
2 0354
S 030
£ 025
Z 020
£ 0.15]
0.10]
0.05
0.00

Fig. 3. Results obtained of the transmission delay when Ny = 30
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Fig. 4. Results obtained of the load balance when Ny = 10
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Fig. 5. Results obtained of the load balance when Ny = 20

intervals, that is, the monitoring node vCPU resource usage,
and then the variance values of resource usage of different
nodes are counted. A total of 30 groups of data are collected
to calculate the variance, and then the average of the 30 times
of variance is taken. In this paper, the mean value of variance
is used to describe the equilibrium of the system, as shown
in Fig.4 to Fig.6. Similar to the experiments in transmission
delay, the number of VNF-SC ranges from 200 to 1000 in
each figure.

3) Result of Blocking Probability: To evaluate the per-
formance of the algorithm more comprehensively, another
group experiment has been conducted. In this experiment,
the the number of VNF-SC ranges from 2000 to 10000 in
each figure. In this paper, the mean blocking probability is
used to describe the performance of the system, as shown in
Fig.7 to Fig.9.

E. Experimental Results Analysis

As shown in Fig.1 to Fig.3, RL has the lowest average
service link delay, because it chooses to deploy two adjacent
VNES on the same service chain on the same node each time,
or two adjacent VNFS on the two nodes with the lowest

0701 RL XY EBA ] JoraNFV == CCMF
0.654 o
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0.454
0.404
0.354
0.304
0.254
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0.154
0.10
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Load Balancing

A
é
/
%
%

T
800 1000

Fig. 6. Results obtained of the load balance when Ny = 30
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u t T u
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R

Fig. 7. Results obtained of the blocking probability when Ny = 10

045 RL EBA [ JoraNFV = CCMF
2]

u t t U
2000 4000 6000 8000 10000

N,

R

Fig. 8. Results obtained of the blocking probability when Ny = 20

link delay, which can effectively reduce the service delay.
The performance of CCMF algorithm on service average
link delay is second only to RL, because this algorithm
adds incentive on link delay optimization in the reward and
punishment feedback of reinforcement learning. The smaller
the link delay is, the greater the reward will be. Therefore,
nodes with smaller delay will be selected to deploy VNF
in strategy selection. JoraNFV has the worst performance,
because JoraNFV selects the node with the lowest load to
deploy VNF every time, leading to the possibility that VNF
in the same service chain may be distributed on multiple
server nodes, increasing the link delay.

As shown in Fig.4 to Fig.6, RL has small fluctuation and
small load variance value of the system, indicating that the
load of the system is balanced and performs best. This is
because JoraNFV deploies each VNF in the service chain on
the node with the smallest load every time. The performance
of RL algorithm is better than JoraNFV, because the system
load is considered in the algorithm reward and punishment
feedback. Each time the strategy is selected, each VNF in the
service chain will be deployed on the node with small load,
so that the load of the system can be relatively balanced. The

o
o

] RL EBA [ JoraNFV == CCMF

o o o
5 a8 @
N

Blocking Probability
o
8

HH R
y T T U
2000 4000 6000 8000 10000

N,

Fig. 9. Results obtained of the blocking probability when Ny = 30
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EBA algorithm performs worst because, in order to reduce
the link delay, EBA often deploys two adjacent VNFs on the
same node, resulting in poor load balance performance of
the system.

In this experiment, the strategy matrix is selected as the
strategy representation of q-Learning algorithm. Due to the
natural scalability of the strategy matrix, the algorithm cannot
support large-scale network topology. Therefore, in view
of the extensibility of the algorithm, this paper proposes
the following improvement ideas as future research work.
First, when the number of nodes is large, we can choose to
initialize the strategy matrix according to experience, so that
the strategy matrix is close to the optimal result, to accelerate
the convergence of the strategy matrix. Secondly, deep neural
network can be used to express status-action set. The industry
has used deep neural network to represent status-action set
in game scenes, proving that deep neural network can be
applicable to complex scenes.

VI. CONCLUSION

Service chain mapping is the core of the NFV architecture,
focusing on the dynamic provision and flexible orchestration
of network service resources. In this paper, a service chain
resource scheduling architecture based on reinforcement
learning technology is designed, and a service chain mapping
algorithm based on Q-learning reinforcement learning is
proposed. Simulation results show that good optimization
results are obtained in terms of average service transmission
delay and server node load balance. In the following work,
the service chain mapping mode driven by different business
characteristics such as virtualized core network and virtual
content distribution network will be studied.
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