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Abstract—The spectral and hybrid conjugate gradient meth-
ods are part of the conjugate gradient methods. Conjugate
gradient methods are among the iterative method for solving
unconstrained optimization problems. In this paper, a new
spectral and hybrid conjugate gradient methods are proposed.
Based on some assumptions and strong Wolfe line search, the
new spectral conjugate gradient method satisfies the global con-
vergence properties. As well as the hybrid conjugate gradient
method fulfill the global convergence properties under an exact
line search. We also prove that the proposed methods fulfill
the sufficient descent condition. Finally, based on some test
problems, the numerical results of the proposed methods are
very competitive and most efficient.

Index Terms—Strong Wolfe line search, spectral conjugate
gradient method, global convergence properties, hybrid con-
jugate gradient method, exact line search, sufficient descent
condition.

I. INTRODUCTION

THE new method in this paper is designed to solve un-
constrained optimization problems, in which problems

modeled as minimization problems:

min
x∈Rn

f(x), (1)

where f : Rn → R is a smooth objective function and its
gradient is available. The conjugate gradient method are an
iterative method with generates a sequence {xk} by formula
[1]

xk+1 = xk + αkdk, k = 0, 1, 2, ..., (2)

where x0 is initial point, xk is point at kth iteration, αk is a
positive step length, and dk is a search direction defined by:

dk =

{
−gk, k = 0

−gk + βkdk−1, k ≥ 1
. (3)
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Need to know that gk = g(xk) = ∇f(xk) is a gradient
of f at point xk, and βk is a scalar known as the conju-
gate gradient coefficient [2]. Some well-known formulas for
coefficients of the conjugate gradient method are:

βHSk =
gTk (gk − gk−1)

dTk−1(gk − gk−1)
,

βFRk =
‖gk‖2

‖gk−1‖2
,

βCDk = − ‖gk‖2

dTk−1gk−1
,

βLSk = −gTk (gk − gk−1)

dTk−1gk−1
,

βDYk =
‖gk‖2

dTk−1(gk − gk−1)
,

βPRPk =
gTk (gk − gk−1)

‖gk−1‖2
, (4)

βWYL
k =

gTk (gk −
‖gk‖
‖gk−1‖gk−1)

‖gk−1‖2
,

βNPRPk =
‖gk‖2 − ‖gk‖

‖gk−1‖
∣∣gTk gk−1∣∣

‖gk−1‖2
,

where ‖.‖ represent the Euclidean norm of vectors and gTk
is transpose gk. The proper naming of the methods above
are Hestenes-Steifel (HS) method [3], Fletcher-Reeves (FR)
method [4], Conjugate Descent (CD) method [5], Liu-Storey
(LS) method [6], Dai-Yuan (DY) method [7], Polak-Ribiére-
Polyak (PRP) method [8], Wei-Yao-Liu (WYL) method [9],
and modified Wei-Yao-Liu (NPRP) method [10].

The value of step length αk can obtained by using any
type of line search such as exact line search and inexact line
search. The formula of exact line search is defined as:

f(xk + αkdk) = min
α≥0

f(xk + αkdk), (5)

and inexact line search that are; the strong Wolfe line search
defined as follows:{

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk∣∣∣g (xk + αkdk)

T
dk

∣∣∣ ≤ −σgTk dk , (6)

where 0 < δ < σ < 1 and Armijo line search where the
step size αk is obtained by αk = max{ρj , j = 0, 1, 2, ...}
satisfying

f(xk + αkdk) ≤ f(xk)− δα2
k‖dk‖2

with the constants ρ, δ ∈ (0, 1) [11].
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It is possible to classify the conjugate gradient method
into many different types; the standard, hybrid, spectral,
and three-term conjugate gradient methods. The methods
mentioned above (HS, FR, CD, LS, DY, PRP, WYL, NPRP)
are the standard conjugate gradient method.

The Spectral method was originally introduced by Barzilai
and Borwein in 1988 [12] and Raydan developed the specrtal
method to solve the optimization problems [13]. In addition,
Birgin and Martinez [14] suggested three kinds of spectral
methods that are a mixture of spectral and gradient conjugate
methods with the search direction as follows

dk = −θkgk + βksk−1,

where θk is the spectral gradient parameter, sk−1 =
αk−1dk−1, and the coefficient βk is determined by

βk =
(θkyk−1 − sk−1)

T
gk

sTk−1yk−1
,

βk =
θkg

T
k yk−1

αk−1θk−1gTk−1gk−1
,

βk =
θkg

T
k gk

αk−1θk−1gTk−1gk−1
,

where

yk−1 = gk − gk−1 , θk =
sTk−1sk−1

sTk−1yk−1
.

Zhang et al. [15] suggested modifying the FR method in
2006 with the name of the modified FR method (MFR). The
MFR method’s search direction is defined as follows:

dk =

{
−gk, k = 0

−θkgk + βkdk−1, k ≥ 1
, (7)

where

βk = βFRk , θk =
dTk−1yk−1

‖gk−1‖2
.

It could easily be that the search direction of the MFR
method can be written as follows:

dk = −
(
1 + βFRk

gTk dk−1
‖gk‖2

)
gk + βFRk dk−1. (8)

The main difference between standard and spectral conjugate
gradient methods lies in the compute of the search direction
dk. The search direction of the standard conjugate gradient
method using formula (3), but the search direction of the
spectral conjugate gradient method using formula (7).

As well as Liu and Jiang [16] proposed a spectral conju-
gate gradient method which is called the SCD method. The
SCD method is run using the conjugate gradient coefficient
(βk) and spectral gradient parameter (θk) as follows:

βk =

{
βCDk , if gTk dk−1 ≤ 0

0, else
,

θk = 1− gTk dk−1
gTk−1dk−1

.

In 2020, Jian et al. [17] introduced a new approach for
spectral gradient parameter formula, the formula was inspired
by the θk of the SCD method, which is written in form:

θJY JLLk = 1 +

∣∣gTk dk−1∣∣
−gTk−1dk−1

,

and conjugate gradient coefficient formula as follows:

βJY JLLk =
‖gk‖2 −

(gT
k dk−1)

2

‖dk−1‖2

max
{
‖gk−1‖2,dTk−1 (gk − gk−1)

} .
The sufficient descent condition and global convergence

properties are also investigated by several researchers while
proposing new methods of standard, spectral, and hybrid con-
jugate gradient methods. The search direction in conjugate
gradient method satisfies the sufficient descent condition if
there exist a constant c > 0 such that

gTk dk ≤ −c‖gk‖2, for all k ≥ 0, (9)

and the conjugate gradient method is global convergence if

lim
k→∞

inf ‖gk‖ = 0 (10)

(see [18]).
The MFR method fulfill the descent property (gTk dk < 0)

and with Armijo line search satisfies the global convergence
properties even if the objective function is nonconvex. The
SCD and JYJLL method satisfies the sufficient descent con-
dition without depending any line search, and under strong
Wolfe line search, the method fulfill the global convergence
properties. For the NPRP method, Zhang has proven that
method fulfill the sufficient descent condition with the strong
Wolfe line search and converges globally for nonconvex
minimization.

Besides the spectral conjugate gradient method, the hybrid
conjugate gradient method can also be used to solve the
problem (1). The hybrid conjugate gradient coefficient is a
mixture of different parts of the standard conjugate gradient
coefficient to give better performance.

Several hybrid conjugate gradient approaches have also
been proposed in the literature. The most popular for hybrid
conjugate gradient method are Touati-Ahmed and Storey
(TS) method [19], Hu and Storey (HuS) method [20], Gilbert
and Nocedal (GN) method [21], Dai and Yuan (hDY and
LS-CD) method [22], Li and Zhao (P-W) method [23], and
Hybrid-Jinbao, Han and Jiang (HJHJ) method [24]:

βTSk =

{
βPRPk , if 0 ≤ βPRPk ≤ βFRk
βFRk , otherwise

,

βHuSk = max
{
0,min

{
βPRPk , βFRk

}}
,

βGNk = max
{
−βFRk ,min

{
βPRPk , βFRk

}}
,

βhDYk = max
{
0,min

{
βHSk , βDYk

}}
,

βLS−CDk = max
{
0,min

{
βLSk , βCDk

}}
,

βP−Wk = max
{
βPRPk , βWYL

k

}
,

βHJHJk =
‖gk‖2 −max

{
0, ‖gk‖
‖gk−1‖g

T
k gk−1

}
max

{
‖gk−1‖2,dTk−1(gk − gk−1)

} .
The convergence properties and performance computa-

tional of the above methods have been studied by authors.
The hybrid TS and HuS methods are known to fulfill the
descent property and global convergence under the strong
Wolfe line search, and computational results are more effi-
cient than the FR and PRP methods. The hybrid GN method
can be negative, since βFRk is always nonnegative, and when
the HuS method jams, then the hybrid GN method is used

IAENG International Journal of Computer Science, 48:1, IJCS_48_1_08

Volume 48, Issue 1: March 2021

 
______________________________________________________________________________________ 



instead. The hDY method is a mixture of HS and DY
methods in which the global convergence of the method
was identified in the rules of the Wolfe line search. The
hybrid LS-CD approach used for the exact line search has
comparable performance to the HuS method. Under certain
line search, the hybrid P-W approach has been shown to be
a global convergent. Under the Wolfe line search, the HJHJ
method fulfills the global convergence properties.

For good references for studies about the conjugate gradi-
ent method can be seen in [25]-[33].

Inspired by the work of Zhang et al. [15] and Zhang [10],
we further propose and analyze a new spectral conjugate
gradient method to solve the unconstrained optimization
problems. The sufficient descent condition of the new method
will be presented, and under some assumptions, the global
convergence properties are established using the strong Wolfe
line search.

In this paper, we also propose a new hybrid conjugate
gradient coefficient in which the sufficient descent condition
and global convergence properties were proven under exact
line search and performance computational compared with
the HuS, GN, HDY, LS-CD, and HJHJ methods.

The next part of the paper is structured as follows. We are
giving a new parameter for the spectral and a new coefficient
for the hybrid conjugate gradient methods in Section II. In
Section III, we present the global convergence analysis of
the new spectral conjugate gradient method and in Section
IV we provide the convergence analysis for the new hybrid
conjugate gradient method. In Section V, the numerical
results are presented to illustrate the performance of our new
methods. The conclusion in this paper is presented in Section
VI.

II. NEW PARAMETER AND COEFFICIENT

Recently, Malik et al. [34] propose a new βk which its
inspired by the formula βNPRPk . The coefficient βk is defined
as follows:

βMMSIS
k =

{
X , if Y
0 , otherwise

(11)

where

X =
‖gk‖2 − ‖gk‖

‖gk−1‖
∣∣gTk gk−1∣∣− ∣∣gTk gk−1∣∣
‖dk−1‖2

,

Y = ‖gk‖2 >
(
‖gk‖
‖gk−1‖

+ 1

) ∣∣gTk gk−1∣∣ .
Based on formula (8), we propose a new spectral gradient
parameter as follows:

θMMSIS
k = 1 + βMMSIS

k

gTk dk−1
‖gk‖2

, (12)

where MMSIS is denotes Malik, Mustafa, Sabariah, Ibrahim,
Sukono.

In the following, we establish the new algorithm of the
spectral MMSIS (SpMMSIS) method for solving uncon-
strained optimization problems.

Algorithm 1. (SpMMSIS Method)
Step 1. Given any an initial point x0 ∈ Rn, stopping criteria

ε > 0, parameters σ, and δ. Suppose that d0 = −g0,
set k := 1.

Step 2. Calculate ‖gk‖, if ‖gk‖ ≤ ε then stop. Otherwise,
go to Step 3.

Step 3. Calculate βMMSIS
k using (11).

Step 4. Calculate θMMSIS
k using (12).

Step 5. Calculate search direction dk using (7).
Step 6. Calculate step length αk using the strong Wolfe line

search (6).
Step 7. Set k := k + 1 and calculate the next iterate xk+1

using (2). Go to Step 2.

Secondly, we propose the new hybrid coefficient βk which
is known as βHMMSIS

k . The new βHMMSIS
k is motivated

from HuS method, where the βFRk in HuS method substituted
by βMMSIS

k , βPRPk is retained and expanded by multiplying
with constant µ. Hence the proposed new coefficient is
defined as follows:

βHMMSIS
k = max{0, µmin {βPRPk , βMMSIS

k }} (13)

where µ = 6 and HMMSIS denotes Hybrid MMSIS.
We now present our new HMMSIS algorithm.

Algorithm 2. (HMMSIS Method)
Step 1. Given x0 ∈ Rn, stopping tolerance ε > 0, set k = 0.
Step 2. Compute ‖gk‖. If ‖gk‖ ≤ ε then stop. Else, go to

Step 3.
Step 3. Calculate βk using (13).
Step 4. Calculate dk using (3).
Step 5. Calculate αk using the exact line search (5).
Step 6. Set k := k + 1 and use (2) to compute the next

iteration of xk+1. Just go to Step 2.

III. GLOBAL CONVERGENCE ANALYSIS NEW SPECTRAL
CONJUGATE GRADIENT METHOD

In this section, the sufficient descent condition and global
convergence properties of the SpMMSIS method will be
presented.

The following theorem shows that the SpMMSIS method
possesses the sufficient descent condition without depending
any line search.

Theorem 1. Suppose that the sequences {gk} and {dk}
be generated by Algorithm 1, and let the step length αk be
calculated by any line search, then

gTk dk = −‖gk‖2 < 0

holds for any k ≥ 0.

Proof: We first prove for k = 0. From (7), we have
d0 = −g0. Further we obtain gT0 d0 = −gT0 g0 = −‖g0‖2 <
0. Now, we prove for k ≥ 1. From (7), we get

dk = −θkgk + βkdk−1.

Substituting θk by θMMSIS
k and βk by βMMSIS

k , then we
have

dk = −θMMSIS
k gk + βMMSIS

k dk−1. (14)

The proof is split into two cases based on the value of
βMMSIS
k as follows.

• Case 1. If ‖gk‖2 >
(
‖gk‖
‖gk−1‖ + 1

) ∣∣gTk gk−1∣∣, then from
(11) and (14), we obtain

dk = −gk.
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Multiply both sides of equation above by gTk , we get
gTk dk = −‖gk‖2 < 0. Hence, the sufficient descent
condition holds.

• Case 2. If ‖gk‖2 ≤
(
‖gk‖
‖gk−1‖ + 1

) ∣∣gTk gk−1∣∣, then from
(11), (12), and (14), we have

dk = −
(
1 +X

gTk dk−1
‖gk‖2

)
gk +Xdk−1.

Multiply both sides by gTk , we obtain

gTk dk = −
(
1 +X

gTk dk−1
‖gk‖2

)
gTk gk +XgTk dk−1

= −‖gk‖2 −XgTk dk−1 +XgTk dk−1

= −‖gk‖2 < 0.

Hence, the sufficient descent condition holds for k ≥ 1.
The proof is completed.

The next lemma is needed to prove the global convergence
properties of the SpMMSIS method.

Lemma 1. βMMSIS
k satisfies

0 ≤ βMMSIS
k ≤ ‖gk‖2

‖dk−1‖2
, ∀ k ≥ 0.

Proof: See [34].
In the global convergence analysis of the conjugate gradi-

ent methods, we will assume that

Assumption 1. (A1) The level set T = {x : f(x) ≤ f(x0)}
is bounded. (A2) Let M be some neighborhood of T , then
f is continuous and differentiable, and its gradient g(x) is
Lipschitz continuous on M with Lipschitz constant L > 0;
i.e.,

‖g(x)− g(y)‖ ≤ L‖x− y‖, for all x,y ∈M.

The following lemma often called the Zoutendijk condi-
tion, is used to prove the global convergence properties of
the conjugate gradient method, which has been proven by
Zoutendijk in [35].

Lemma 2. Suppose that Assumption 1 holds. Consider any
conjugate gradient method with (2), where dk satisfies the
descent condition such that gTk dk < 0, and step length αk
determined by the exact line search (5) or strong Wolfe line
search (6). Then

∞∑
k=0

(gTk dk)
2

‖dk‖2
<∞.

The next theorem establishes the global convergence prop-
erties of SpMMSIS method under strong Wolfe line search.

Theorem 2. Suppose that Assumption 1 holds, and let the
sequence {xk} be generated by Algorithm 1, where step
length αk be calculated by the strong Wolfe line search (6).
Then

lim
k→∞

inf ‖gk‖ = 0. (15)

Hence, the SpMMSIS method is global convergence.

Proof: Suppose by contradiction that (15) is not true.
Then there exist constant W such that ‖gk‖ ≥W, for all k ≥
0, further we have

1

‖gk‖2
≤ 1

W 2
. (16)

By rewriting (14), we get

dk + θMMSIS
k gk = βMMSIS

k dk−1.

Squaring both sides yields:

‖dk‖2 = (βMMSIS
k )2‖dk−1‖2 − 2θMMSIS

k gTk dk −(
θMMSIS
k

)2 ‖gk‖2.
Dividing both sides by (gTk dk)

2, then we obtain

‖dk‖2

(gTk dk)
2

=

(
βMMSIS
k

)2 ‖dk−1‖2
(gTk dk)

2
− 2θMMSIS

k

gTk dk
−(

θMMSIS
k

)2 ‖gk‖2
(gTk dk)

2
.

From Theorem 1, we have gTk dk = −‖gk‖2. So the above
equation becomes

‖dk‖2

(gTk dk)
2

=
(
βMMSIS
k

)2 ‖dk−1‖2
‖gk‖4

+
2θMMSIS
k

‖gk‖2

−
(
θMMSIS
k

)2
‖gk‖2

=
(
βMMSIS
k

)2 ‖dk−1‖2
‖gk‖4

−

1

‖gk‖2
((
θMMSIS
k

)2 − 2θMMSIS
k

)
=

(
βMMSIS
k

)2 ‖dk−1‖2
‖gk‖4

−

1

‖gk‖2
((
θMMSIS
k − 1

)2 − 1
)

=
(
βMMSIS
k

)2 ‖dk−1‖2
‖gk‖4

−
(
θMMSIS
k − 1

)2
‖gk‖2

+
1

‖gk‖2

≤
(
βMMSIS
k

)2 ‖dk−1‖2
‖gk‖4

+
1

‖gk‖2
.

By Applying Lemma 1, we obtain

‖dk‖2

(gTk dk)
2
≤

(
‖gk‖2

‖dk−1‖2

)2 ‖dk−1‖2

‖gk‖4
+

1

‖gk‖2

≤ 1

‖dk−1‖2
+

1

‖gk‖2
.

Since
1

‖dk‖2
<

4

‖gk‖2
(see equation (41) in [34]), and from

(16), then we have

‖dk‖2

(gTk dk)
2
≤ 1

‖dk−1‖2
+

1

‖gk‖2

<
4

‖gk−1‖2
+

1

‖gk‖2

<
4

W 2
+

1

W 2
=

5

W 2
.

That implies
(gTk dk)

2

‖dk‖2
>
W 2

5
. (17)

Furthermore from (17), we can obtain
n∑
k=0

(gTk dk)
2

‖dk‖2
>

(
n∑
k=0

W 2

5
=
W 2

5
(n+ 1)

)
.
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Hence,
∞∑
k=0

(gTk dk)
2

‖dk‖2
>

(
lim
n→∞

W 2

5
(n+ 1) =∞

)
.

This contradicts Zoutendijk condition in Lemma 2. There-
fore, (15) is true. Furthermore, based on (10), the SpMMSIS
method fulfill the global convergence properties. The proof
is completed.

IV. GLOBAL CONVERGENCE ANALYSIS NEW HYBRID
CONJUGATE GRADIENT METHOD

In this section, the sufficient descent condition and global
convergence properties of the new hybrid conjugate gradient
method will be discussed.

Therefore, we must attention to the following lemma.

Lemma 3. The βHMMSIS
k satisfies one of the following

condition:
1) If 0 < βMMSIS

k < βPRPk , then

βHMMSIS
k = 6βMMSIS

k ≤ 6
‖gk‖2

‖dk−1‖2
. (18)

2) If βMMSIS
k > βPRPk > 0, then

βHMMSIS
k = 6βPRP+

k ≤ 6
‖gk‖2

‖gk−1‖2
. (19)

3) If βPRPk < 0 or βPRPk = βMMSIS
k = 0, then

βHMMSIS
k = 0. (20)

Proof:
1) For 0 < βMMSIS

k < βPRPk , then based on (13), we
have βHMMSIS

k = 6βMMSIS
k . Applying Lemma 1, we

obtain βHMMSIS
k = 6βMMSIS

k ≤ 6
‖gk‖2

‖dk−1‖2
.

2) For βMMSIS
k > βPRPk > 0, then based on (13),

we have βHMMSIS
k = 6βPRP+

k . From (4), we obtain

βHMMSIS
k = 6βPRP+

k ≤ 6
‖gk‖2

‖gk−1‖2
.

3) For βPRPk < 0 or βPRPk = βMMSIS
k = 0, then based

on (13),we have βHMMSIS
k = 0.

The proof is completed.
First, we will show that for the HMMSIS method the

sufficient descent condition will be fulfilled.

Theorem 3. Let the sequences {gk} and {dk} be gener-
ated by Algorithm 2 under the exact line search. Then the
sufficient descent condition holds.

Proof: If k = 0, then d0 = −g0, and we get gT0 d0 =
−gT0 g0 = −‖g0‖2. Therefore, condition (9) holds true. We
also need to proof that for k ≥ 1, condition (9) will also
hold true. From (3), multiply both side by gTk , then

gTk dk = −gTk gk + βHMMSIS
k gTk dk−1.

For the exact line search, we know that gTk dk−1 = 0. Thus,

gTk dk = −gTk gk = −‖gk‖2, (21)

which implies that the sufficient descent condition holds true
for k ≥ 1. Hence, for the HMMSIS method, the sufficient
descent condition under exact line search holds.

We need the following lemma to prove the global con-
vergence properties of the HMMSIS method under the exact
line search.

Lemma 4. Suppose that any conjugate gradient method in
the form (2) and (3), where αk is calculated by exact line
search (5). Then the following relation holds:

1

‖dk‖2
≤ 1

‖gk‖2
, ∀k ≥ 0. (22)

Proof: Note that we have the following relation:

‖gk + dk‖2 = ‖gk‖2 + 2gTk dk + ‖dk‖2.

By applying (21) to equation above, we have

‖gk + dk‖2 + ‖gk‖2 = ‖dk‖2.

Furthermore,
‖gk‖2 ≤ ‖dk‖2,

which means,

1

‖dk‖2
≤ 1

‖gk‖2
, ∀k ≥ 0.

The proof is finished.
The next theorem establishes the global convergence prop-

erties of the HMMSIS method under the exact line search.

Theorem 4. Suppose that Assumption 1 holds. Assume the
conjugate gradient method in the form (2) and (3), where αk
is calculated by the exact line search (5) and βk is calculated
by βHMMSIS

k . Also, consider the sufficient descent condition
(9) holds. Then

lim
k→∞

inf ‖gk‖ = 0. (23)

Hence, the HMMSIS method is global convergence.

Proof: Assume that (23) does not hold. Then there exist
a constant H > 0 such that ‖gk‖ ≥ H,∀k ≥ 0, it becomes

1

‖gk‖2
≤ 1

H2
. (24)

Rewriting (3) as

dk + gk = βHMMSIS
k dk−1,

and squaring both side of the equation, we obtain

‖dk‖2 =
(
βHMMSIS
k

)2 ‖dk−1‖2 − 2gTk dk − ‖gk‖2.

Dividing both sides by
(
gTk dk

)2
, we get

‖dk‖2(
gTk dk

)2 =

(
βHMMSIS
k

)2 ‖dk−1‖2(
gTk dk

)2 − 2

gTk dk
−

‖gk‖2(
gTk dk

)2
=

(
βHMMSIS
k

)2 ‖dk−1‖2(
gTk dk

)2 −(
1

‖gk‖
+
‖gk‖
gTk dk

)2

+
1

‖gk‖2

≤
(
βHMMSIS
k

)2 ‖dk−1‖2(
gTk dk

)2 +
1

‖gk‖2
. (25)
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Note that, from Lemma 3 there are three cases for value
βHMMSIS
k . So that we have three cases for the inequality

(25) above.

• Case 1. For βHMMSIS
k ≤ 6

‖gk‖2

‖dk−1‖2
, together with

(21), then the equation (25) is going to be

‖dk‖2(
gTk dk

)2 ≤ 36

‖dk−1‖2
+

1

‖gk‖2
. (26)

By using (22) and (24) , we obtain

‖dk‖2(
gTk dk

)2 ≤ 36

‖gk−1‖2
+

1

‖gk‖2

≤ 36

H2
+

1

H2
=

37

H2
.

Then we get (
gTk dk

)2
‖dk‖2

≥ H2

37
.

This implies,
n∑
k=0

(
gTk dk

)2
‖dk‖2

≥
n∑
k=0

H2

37
= (n+ 1)

H2

37
.

Furthermore, if n→∞, we obtain
∞∑
k=0

(
gTk dk

)2
‖dk‖2

≥ lim
n→∞

(n+ 1)
H2

37
=∞.

This contradicts the Zoutendijk condition in Lemma
2. Therefore, (23) holds. So, the HMMSIS method is
global convergence.

• Case 2. For βHMMSIS
k ≤ 6

‖gk‖2

‖gk−1‖2
, together with

inequality (25) and (21), we obtain

‖dk‖2(
gTk dk

)2 ≤ 36‖dk−1‖2

‖gk−1‖2
+

1

‖gk‖2
.

Since d0 = −g0, then we have
‖d0‖2

(gT0 d0)2
=

1

‖g0‖2
,

furthermore by using (24), we get

‖dk‖2(
gTk dk

)2 ≤ 36‖dk−1‖2

‖gk−1‖2
+

1

‖gk‖2

≤ 362‖dk−2‖2

‖gk−2‖2
+

1

‖gk−1‖2
+

1

‖gk‖2

≤ ... ≤ 36k

‖g0‖2
+

k∑
i=1

1

‖gi‖2

≤ 36k

‖g0‖2
+

k

H2
= U,

where U > 0 is arbitrary constant. So, we get(
gTk dk

)2
‖dk‖2

≥ 1

U
. Furthermore, we have a relation

n∑
k=0

(
gTk dk

)2
‖dk‖2

≥
n∑
k=0

1

U
=
n+ 1

U
.

Take n→∞, we get
∞∑
k=0

(
gTk dk

)2
‖dk‖2

≥ lim
n→∞

n+ 1

U
=∞.

This contradicts with Zoutendijk condition in Lemma
2. Hence, the condition (23) holds and the HMMSIS
method is global convergence.

• Case 3. For βHMMSIS
k = 0, then the inequality (25) is

going to be
‖dk‖2(
gTk dk

)2 ≤ 1

‖gk‖2
.

By applying (24), we obtain

‖dk‖2(
gTk dk

)2 ≤ 1

‖gk‖2
≤ 1

H2
.

Take summation, we have
n∑
k=0

(
gTk dk

)2
‖dk‖2

≥
n∑
k=0

H2 = (n+ 1)H2.

If n→∞, we get
∞∑
k=0

(
gTk dk

)2
‖dk‖2

≥ lim
n→∞

(n+ 1)H2 =∞.

This contradicts the Zoutendijk condition in Lemma
2. Hence, the condition (23) holds and the HMMSIS
method is global convergence.

The proof is finished.

V. NUMERICAL RESULTS

In this section, the computational performance of the
SpMMSIS and HMMSIS methods are analyzed. We compare
the performance of the number of iterations (NOI) and the
central processing unit (CPU) time. The performance profile
under strong Wolfe line search, we use parameter σ = 0.001
and δ = 0.0001. The performance of the SpMMSIS method
will be compared with MFR, SCD, JYJLL, and NPRP
method. Meanwhile, the HMMSIS method will be compared
with the HuS, GN, HDY, LS-CD, and HJHJ method. The
stopping criterion ‖gk‖2 ≤ 10−6, where ε = 10−6.

To find the performance of the SpMMSIS, MFR, SCD,
JYJLL, NPRP, HMMSIS, HuS, GN, HDY, LS-CD, and HJHJ
methods, we use some test functions together initial point
considered by Andrei [36]. In addition, we use various
dimensions of each test function, i.e., 2, 3, 4, 10, 50, 100,
500, 1,000, 5,000, and 10,000, as in the Malik et al. [37],
[38], [39], [40].

In this paper, we list the test functions together with the
initial points in Table I, and implemented MATLAB software
with personal laptop; Intel Core i7 processor, 16 GB RAM,
64 bit Windows 10 Pro operating system. Note that we are
changing the initial point in problem 10 with (-1,...,-1) and
problem 24 with (2,...,2) for comparing the hybrid method.
The numerical result of each method is presented in Table II
and Table III.

From Table II, we can see that the SpMMSIS method is
successful in solving all problems, whereas the MFR method
is only 93%, the SCD method 96%, the JYJLL method 94%,
and the NPRP method 96%.

From Table III, we can see that the HMMSIS method is
successful in solving all problems, whereas the HuS method
is only 97%, the HDY method 96%, the GN, LS-CD, and
HJHJ method 98%.
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TABLE I: The list of the test functions, dimension, and initial point.

Problem Test Function Dimension Initial point Problem Test Function Dimension Initial point

1 Ext. White & Holst 1000 (-1.2,1,...,-1.2,1) 50 Ext. Maratos 10 (-1,...,-1)
2 Ext. White & Holst 1000 (10,...,10) 51 Six hump camel 2 (-1,2)
3 Ext. White & Holst 10000 (-1.2,1,...,-1.2,1) 52 Six hump camel 2 (-5,10)
4 Ext. White & Holst 10000 (5,...,5) 53 Three hump camel 2 (-1,2)
5 Ext. Rosenbrock 1000 (-1.2,1,...,-1.2,1) 54 Three hump camel 2 (2,-1)
6 Ext. Rosenbrock 1000 (10,...,10) 55 Booth 2 (5,5)
7 Ext. Rosenbrock 10000 (-1.2,1,...,-1.2,1) 56 Booth 2 (10,10)
8 Ext. Rosenbrock 10000 (5,...,5) 57 Trecanni 2 (-1,0.5)
9 Ext. Freudenstein & Roth 4 (0.5,-2,0.5,-2) 58 Trecanni 2 (-5,10)
10 Ext. Freudenstein & Roth 4 (5,5,5,5) 59 Zettl 2 (-1,2)
11 Ext. Beale 1000 (1,0.8,...,1,0.8) 60 Zettl 2 (10,10)
12 Ext. Beale 1000 (0.5,...,0.5) 61 Shallow 1000 (0,...,0)
13 Ext. Beale 10000 (-1,...,-1) 62 Shallow 1000 (10,...,10)
14 Ext. Beale 10000 (0.5,...,0.5) 63 Shallow 10000 (-1,...,-1)
15 Ext. Wood 4 (-3,-1,-3,-1) 64 Shallow 10000 (-10,...,-10)
16 Ext. Wood 4 (5,5,5,5) 65 Generalized Quartic 1000 (1,...,1)
17 Raydan 1 10 (1,...,1) 66 Generalized Quartic 1000 (20,...,20)
18 Raydan 1 10 (10,...,10) 67 Quadratic QF2 50 (0.5,...,0.5)
19 Raydan 1 100 (-1,...,-1) 68 Quadratic QF2 50 (30,...,30)
20 Raydan 1 100 (-10,...,-10) 69 Leon 2 (2,2)
21 Ext. Tridiagonal 1 500 (2,...,2) 70 Leon 2 (8,8)
22 Ext. Tridiagonal 1 500 (10,...,10) 71 Gen. Tridiagonal 1 10 (2,...,2)
23 Ext. Tridiagonal 1 1000 (1,...,1) 72 Gen. Tridiagonal 1 10 (10,...,10)
24 Ext. Tridiagonal 1 1000 (-10,...,-10) 73 Gen. Tridiagonal 2 4 (1,1,1,1)
25 Diagonal 4 500 (1,...,1) 74 Gen. Tridiagonal 2 4 (10,10,10,10)
26 Diagonal 4 500 (-20,...,-20) 75 POWER 10 (1,...,1)
27 Diagonal 4 1000 (1,...,1) 76 POWER 10 (10,...,10)
28 Diagonal 4 1000 (-30,...,-30) 77 Quadratic QF1 50 (1,...,1)
29 Ext. Himmelblau 1000 (1,...,1) 78 Quadratic QF1 50 (10,...,10)
30 Ext. Himmelblau 1000 (20,...,20) 79 Quadratic QF1 500 (1,...,1)
31 Ext. Himmelblau 10000 (-1,...,-1) 80 Quadratic QF1 500 (-5,...,-5)
32 Ext. Himmelblau 10000 (50,...,50) 81 Ext.quad.pen.QP2 100 (1,...,1)
33 FLETCHCR 10 (0,...,0) 82 Ext.quad.pen.QP2 100 (10,...,10)
34 FLETCHCR 10 (10,...,10) 83 Ext.quad.pen.QP2 500 (10,...,10)
35 Ext. Powell 100 (3,-1,0,1,...,1) 84 Ext.quad.pen.QP2 500 (50,...,50)
36 Ext. Powell 100 (5,...,5) 85 Ext.quad.pen.QP1 4 (1,1,1,1)
37 NONSCOMP 2 (3,3) 86 Ext.quad.pen.QP1 4 (10,10,10,10)
38 NONSCOMP 2 (10,10) 87 Quartic 4 (10,10,10,10)
39 Ext. DENSCHNB 10 (1,...,1) 88 Quartic 4 (15,15,15,15)
40 Ext. DENSCHNB 10 (10,...,10) 89 Matyas 2 (1,1)
41 Ext. DENSCHNB 100 (10,...,10) 90 Matyas 2 (20,20)
42 Ext. DENSCHNB 100 (-50,...,-50) 91 Colville 4 (2,2,2,2)
43 Ext. Penalty 10 (1,2,3,...,10) 92 Colville 4 (10,10,10,10)
44 Ext. Penalty 10 (-10,...,-10) 93 Dixon and Price 3 (1,1,1)
45 Ext. Penalty 100 (5,...,5) 94 Dixon and Price 3 (10,10,10)
46 Ext. Penalty 100 (10,...,10) 95 Sphere 5000 (1,...,1)
47 Hager 10 (1,...,1) 96 Sphere 5000 (10,...,10)
48 Hager 10 (-10,...,-10) 97 Sum Squares 50 (0,1,...,0,1)
49 Ext. Maratos 10 (1.1,0.1) 98 Sum Squares 50 (10,...,10)

TABLE II: Numerical results of the SpMMSIS, JYJLL, MFR, SCD, and NPRP methods.

Problem SpMMSIS JYJLL MFR SCD NPRP

NOI CPU NOI CPU NOI CPU NOI CPU NOI CPU
1 12 0.0498 40 0.0933 49 0.1059 15 0.0625 17 0.0574
2 53 0.1931 202 0.8989 210 0.9704 105 0.252 55 0.2006
3 13 0.331 41 0.7117 50 0.8048 15 0.389 17 0.4105
4 40 1.199 291 6.5962 130 4.4795 382 5.0925 42 1.1005
5 23 0.0442 57 0.1101 59 0.1179 5954 3.6831 35 0.0587
6 33 0.0603 104 0.1882 163 0.2156 150 0.1317 25 0.0392
7 13 0.3435 57 0.8398 59 0.8258 6014 41.4951 36 0.3775
8 25 0.2982 171 2.7871 194 3.1419 1058 6.8776 23 0.303
9 8 5.90E-04 21 0.0066 21 0.0029 9 0.0183 9 0.005
10 11 8.22E-04 fail fail 21 0.1658 fail fail fail fail
11 14 0.0445 75 0.1352 75 0.1322 17 0.0732 26 0.0575
12 12 0.0433 81 0.1376 81 0.1436 335 0.4867 25 0.0639
13 14 0.289 87 1.2204 87 1.2208 14 0.32 28 0.4719
14 12 0.257 87 1.1868 87 1.2353 322 4.0799 25 0.4269
15 270 0.0116 fail fail fail fail 922 0.0647 281 0.0111

(Continued on next page)
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TABLE II – Continued
Problem SpMMSIS JYJLL MFR SCD NPRP

NOI CPU NOI CPU NOI CPU NOI CPU NOI CPU
16 454 0.0198 fail fail fail fail 2967 0.136 1427 0.0488
17 21 0.0015 19 0.0065 19 0.0047 20 0.015 27 0.002
18 34 0.0026 2350 0.1437 2620 0.1278 50 0.0087 29 0.0027
19 102 0.0279 93 0.0311 95 0.0243 253 0.0509 97 0.03
20 164 0.0433 801 0.349 fail fail 390 0.0782 134 0.0424
21 12 0.0298 452 0.3883 452 0.4074 19 0.0373 22 0.0473
22 8 0.0231 9 0.0169 9 0.0225 15 0.0258 8 0.0243
23 12 0.0437 517 0.7546 517 0.767 19 0.0458 22 0.0695
24 8 0.0374 8 0.023 9 0.0265 17 0.0391 8 0.0372
25 2 0.002 2 0.0021 2 0.0017 5 0.0116 2 0.002
26 2 0.0021 2 0.002 2 0.0021 3 0.0022 2 0.0025
27 2 0.0033 2 0.0035 2 0.0025 4 0.0057 2 0.003
28 2 0.0029 2 0.0034 2 0.0031 4 0.0034 2 0.0032
29 9 0.011 14 0.0199 15 0.0208 21 0.042 13 0.0192
30 6 0.0124 9 0.0164 9 0.0211 10 0.0149 10 0.0177
31 11 0.1177 22 0.2385 17 0.2096 15 0.1613 15 0.1302
32 7 0.0865 13 0.1242 13 0.1156 18 0.1403 10 0.1028
33 85 0.0051 1142 0.0615 1208 0.0461 153 0.0217 85 0.0057
34 94 0.0061 403 0.0373 299 0.0214 148 0.0105 134 0.0087
35 239 0.0748 5487 1.1151 5589 1.0281 fail fail fail fail
36 156 0.0564 6066 1.2068 6019 1.0706 fail fail fail fail
37 12 6.97E-04 86 0.0081 156 0.0052 28 0.0071 15 0.000822
38 14 8.59E-04 88 0.0049 93 0.0043 22 0.0025 15 0.0013
39 7 4.90E-04 9 0.0011 9 0.000734 10 0.0105 10 0.000661
40 9 6.59E-04 11 0.0014 11 0.0014 21 0.0027 9 0.0011
41 10 0.0034 11 0.0026 11 0.0045 22 0.0087 9 0.0035
42 7 0.0047 63 0.0132 63 0.0099 11 0.0055 13 0.0052
43 20 0.0012 10 8.84E-04 11 0.0011 45 0.0151 14 0.000943
44 9 6.88E-04 19 0.0024 19 0.0014 54 0.0058 14 0.0012
45 9 0.0034 28 0.0087 28 0.0109 10 0.0044 10 0.0043
46 9 0.0038 fail fail 28 0.1552 17 0.0121 10 0.0067
47 12 6.98E-04 11 0.0039 11 0.0031 12 0.0107 12 0.0014
48 18 0.0012 96 0.0096 97 0.0076 18 0.0081 19 0.0015
49 44 0.0038 3527 0.5159 fail fail 1229 0.0732 48 0.0129
50 33 0.0029 165 0.0245 128 0.0121 47 0.0084 37 0.1736
51 7 4.52E-04 27 0.0027 27 8.09E-04 13 0.0021 10 0.0006
52 10 6.35E-04 264 0.0181 536 0.0154 13 0.0019 10 0.0009
53 13 0.0027 11 0.0033 11 0.0024 13 0.0032 12 0.0028
54 12 0.0024 11 0.0024 12 0.0039 13 0.0065 8 0.0017
55 2 2.02E-04 2 2.63E-04 2 2.63E-04 2 2.93E-04 2 0.000179
56 2 1.57E-04 2 2.03E-04 2 1.29E-04 2 0.0041 2 0.00018
57 1 1.32E-04 1 1.82E-04 1 1.64E-04 1 2.40E-04 1 0.000166
58 5 3.45E-04 7 8.31E-04 7 4.69E-04 5 0.0083 7 0.000465
59 11 6.17E-04 11 0.0081 11 6.34E-04 105 0.0064 9 0.000574
60 12 6.17E-04 16 0.0022 16 9.00E-04 68 0.0081 13 0.000806
61 8 0.0132 18 0.0348 18 0.0261 10 0.0109 14 0.0215
62 10 0.022 78 0.0692 96 0.076 50 0.0393 35 0.0451
63 9 0.0917 47 0.3093 47 0.2884 18 0.1548 26 0.2308
64 9 0.0945 10 0.0883 9 0.0753 11 0.1134 12 0.1087
65 5 0.044 7 0.0345 7 0.0384 5 0.0311 6 0.0529
66 10 0.0541 16 0.0646 40 0.2119 10 0.0477 14 0.0763
67 96 0.0163 116 0.017 116 0.0106 200 0.0256 86 0.013
68 79 0.0166 1306 0.3108 fail fail 187 0.0315 109 0.0185
69 22 0.0015 180 0.0157 194 0.0062 8117 0.3526 26 0.0019
70 49 0.0044 735 0.0449 736 0.0229 4249 0.1963 57 0.0046
71 24 0.002 27 0.002 27 0.0027 30 0.0046 23 0.002
72 30 0.003 43 0.0038 43 0.005 34 0.0111 29 0.0031

(Continued on next page)

IAENG International Journal of Computer Science, 48:1, IJCS_48_1_08

Volume 48, Issue 1: March 2021

 
______________________________________________________________________________________ 



TABLE II – Continued
Problem SpMMSIS JYJLL MFR SCD NPRP

NOI CPU NOI CPU NOI CPU NOI CPU NOI CPU
73 4 2.84E-04 5 5.72E-04 5 3.36E-04 5 6.25E-04 5 0.000321
74 11 9.83E-04 4710 0.205 6315 0.1435 11 0.0086 14 0.001
75 97 0.0043 10 0.0013 10 6.97E-04 77 0.0089 10 0.000656
76 104 0.0073 10 0.0012 10 6.85E-04 105 0.0102 10 0.00064
77 71 0.0097 38 0.0072 38 0.0054 67 0.0087 38 0.0048
78 74 0.0097 40 0.0041 40 0.0056 75 0.015 40 0.0059
79 317 0.1454 131 0.0532 131 0.0504 234 0.0883 639 0.2417
80 399 0.1821 137 0.0615 137 0.0489 255 0.1001 716 0.265
81 33 0.0231 255 0.141 388 0.1794 46 0.0189 50 0.0216
82 33 0.0269 3690 0.997 490 0.1991 40 0.0205 50 0.0349
83 58 0.1142 1149 3.5478 1217 3.475 87 0.1231 75 0.1262
84 61 0.1237 1763 4.102 1132 3.246 120 0.1653 76 0.14
85 10 5.93E-04 20 0.0022 20 0.001 8 8.67E-04 19 0.0011
86 9 5.52E-04 51 0.0056 51 0.0025 12 0.0092 10 0.0136
87 131 0.008 272 0.0166 272 0.0111 4334 0.2208 1234 0.0551
88 152 0.0106 273 0.0181 273 0.0138 1230 0.0778 1198 0.063
89 1 1.55E-04 1 2.58E-04 1 0.0011 1 0.0011 1 0.000621
90 1 1.75E-04 1 0.003 1 0.0015 1 0.0056 1 0.0085
91 405 0.0225 fail fail fail fail 4295 0.2079 1293 0.0402
92 122 0.0085 33 0.0029 33 0.0015 1346 0.0801 578 0.039
93 15 9.47E-04 16 0.0015 16 8.83E-04 55 0.006 14 0.0015
94 27 0.0033 24 0.0027 25 0.002 105 0.0119 47 0.067
95 1 0.0068 1 0.0083 1 0.0075 1 0.0052 1 0.0095
96 1 0.0062 1 0.0072 1 0.0043 1 0.0151 1 0.1767
97 53 0.0076 25 0.005 25 0.0054 45 0.0065 25 0.0059
98 72 0.0142 41 0.0048 41 0.0055 77 0.0181 41 0.8284

TABLE III: Numerical results of the HMMSIS, HuS, GN, HDY, LS-CD and HJHJ methods.

Problem HMMSIS HuS GN HDY LS-CD HJHJ

NOI CPU NOI CPU NOI CPU NOI CPU NOI CPU NOI CPU
1 16 0.4548 99 2.4769 99 2.51 100 2.7059 100 2.6619 22 0.604
2 39 1.061 32 0.8199 318 7.636 37 0.9531 116 2.8378 50 1.3286
3 16 4.0989 107 26.9841 107 27.0696 108 27.4512 108 27.097 23 5.8905
4 22 6.4689 61 15.2301 74 18.3691 57 14.2066 62 15.4045 33 8.3382
5 16 0.0923 44 0.178 63 0.2525 44 0.1853 44 0.2029 82 0.3409
6 33 0.1686 32 0.1302 28 0.1191 31 0.1275 32 0.1271 67 0.2699
7 16 0.2904 45 0.7621 64 1.073 45 0.7681 45 0.75 88 1.5143
8 23 0.4214 27 0.4756 52 0.8988 31 0.5576 27 0.4566 39 0.6935
9 8 0.0457 9 0.0316 15 0.053 9 0.0384 9 0.0369 9 0.048
10 8 0.0449 9 0.0457 fail fail fail fail fail fail 20 0.1996
11 13 0.3884 105 2.9226 105 2.9519 105 2.9001 105 3.0178 102 2.8863
12 12 0.3969 81 2.1649 81 2.177 81 2.1602 81 2.1578 81 2.3531
13 14 3.829 87 24.5308 87 24.6839 87 24.5671 87 24.0999 87 23.5478
14 12 3.3952 87 23.4729 87 23.5523 87 23.5355 87 23.5402 87 23.6365
15 35 0.1022 91 0.2026 91 0.1935 91 0.1892 91 0.1956 107 0.2716
16 153 0.3601 131 0.2781 210 0.4461 175 0.3667 268 0.5812 234 0.5488
17 17 0.0635 19 0.0475 19 0.0504 19 0.0479 19 0.0464 19 0.0839
18 42 0.1343 39 0.1017 36 0.0916 38 0.0966 39 0.097 35 0.1138
19 72 0.2311 74 0.237 74 0.2315 73 0.2475 74 0.2358 72 0.2345
20 121 0.4071 163 0.4696 163 0.4662 165 0.485 165 0.4638 158 0.446
21 68 1.0224 676 9.7927 676 9.7493 676 9.988 676 9.8306 544 8.0939
22 171 2.4796 44 0.6683 616 8.9069 44 0.6395 44 0.6697 58 0.874
23 88 2.4783 782 23.3245 782 23.8477 782 35.4964 782 25.0315 644 17.6239
24 92 2.9348 782 21.2006 782 21.136 782 21.2476 782 21.092 644 17.2066
25 3 0.0188 5 0.0302 5 0.031 5 0.0332 5 0.0297 5 0.0394

(Continued on next page)
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TABLE III – Continued
Problem HMMSIS HuS GN HDY LS-CD HJHJ

NOI CPU NOI CPU NOI CPU NOI CPU NOI CPU NOI CPU
26 3 0.0185 5 0.0252 5 0.033 5 0.0307 5 0.0316 5 0.0334
27 3 0.0239 5 0.0303 5 0.0366 5 0.0369 5 0.035 5 0.0297
28 3 0.0235 5 0.0359 5 0.0326 5 0.0348 5 0.0368 5 0.0357
29 7 0.0481 16 0.0937 16 0.0961 16 0.094 16 0.1695 13 0.0782
30 6 0.0412 6 0.0471 6 0.0466 6 0.0433 6 0.0447 8 0.0491
31 10 0.2142 9 0.1859 10 0.2068 9 0.1933 9 0.1868 13 0.262
32 7 0.1528 17 0.3097 17 0.3248 17 0.3247 17 0.3325 17 0.3301
33 42 0.1321 52 0.1152 52 0.1214 52 0.1219 52 0.1196 52 0.1484
34 29 0.0897 30 0.0741 30 0.0772 30 0.0764 30 0.0846 30 0.0915
35 188 0.9336 5892 44.9293 5892 37.8607 5892 36.9626 5892 37.674 5594 23.747
36 202 0.9828 5047 31.6929 6399 40.8155 4998 31.9683 5054 37.4891 5048 21.5379
37 9 0.042 28 0.0648 28 0.0639 28 0.0646 28 0.064 12 0.0521
38 16 0.066 36 0.0888 14 0.0362 36 0.0867 36 0.0882 74 0.2007
39 5 0.0222 9 0.0246 9 0.024 9 0.026 9 0.0242 9 0.0463
40 8 0.0366 11 0.03 11 0.032 11 0.0327 11 0.0301 10 0.0435
41 9 0.0441 12 0.0456 12 0.0332 12 0.0442 12 0.0352 11 0.0444
42 11 0.0503 9 0.0295 9 0.0273 9 0.0279 9 0.0291 11 0.0511
43 17 0.0655 11 0.0279 17 0.0428 11 0.0271 11 0.0297 13 0.0607
44 7 0.0338 14 0.0462 14 0.0476 14 0.0402 14 0.0393 14 0.0608
45 9 0.0449 fail fail 14 0.2003 14 0.0467 13 0.04 fail fail
46 10 0.0512 fail fail 28 0.0754 fail fail 27 0.0728 30 0.2636
47 12 0.0516 11 0.0305 11 0.03 11 0.0289 11 0.0351 11 0.0525
48 18 0.0746 18 0.0477 18 0.054 18 0.0478 18 0.0474 19 0.0918
49 56 0.1644 39 0.1533 23 0.0835 fail fail 39 0.1206 21 0.0871
50 25 0.0865 41 0.1501 28 0.0917 29 0.103 28 0.1594 30 0.0932
51 7 0.0348 7 0.0341 9 0.0406 7 0.0328 7 0.0327 10 0.0529
52 6 0.0301 6 0.0301 6 0.0329 6 0.0201 6 0.03 9 0.0436
53 9 0.0441 9 0.0389 8 0.0395 9 0.0425 9 0.043 9 0.0491
54 11 0.0526 15 0.0713 8 0.0395 11 0.0542 15 0.0631 15 0.0639
55 3 0.0126 3 0.0152 3 0.014 3 0.0144 3 0.0145 3 0.0176
56 3 0.0155 3 0.0152 3 0.0159 3 0.016 3 0.0155 3 0.0183
57 1 0.0051 1 0.0054 1 0.0062 1 0.0059 1 0.0082 1 0.0121
58 5 0.0258 5 0.0261 5 0.0261 5 0.0259 5 0.0258 9 0.0497
59 11 0.0513 9 0.0417 20 0.0877 9 0.0405 9 0.0402 12 0.0567
60 11 0.0518 12 0.056 12 0.0553 12 0.0568 12 0.0491 12 0.0557
61 7 0.0484 18 0.1009 18 0.0868 18 0.099 18 0.1238 18 0.0943
62 11 0.0695 12 0.082 21 0.1773 12 0.0668 12 0.0634 15 0.0777
63 8 0.1656 47 0.8346 47 0.8379 47 0.9283 47 0.8251 47 0.8137
64 9 0.1741 43 0.7445 43 0.7624 43 0.7771 43 0.738 43 0.7219
65 5 0.0367 5 0.0213 6 0.0248 5 0.0204 5 0.0228 6 0.0516
66 7 0.0461 7 0.0305 9 0.0385 7 0.0355 7 0.0318 9 0.0671
67 71 0.1942 71 0.1631 71 0.1612 71 0.1603 71 0.1718 71 0.2199
68 65 0.1777 60 0.1482 60 0.139 60 0.1393 60 0.1406 62 0.1872
69 20 0.0657 9 0.0327 9 0.0218 12 0.0307 9 0.0328 61 0.1743
70 19 0.0678 49 0.1113 83 0.1776 29 0.0713 59 0.1331 36 0.123
71 22 0.0794 22 0.0851 22 0.0893 23 0.0932 23 0.0899 23 0.0905
72 24 0.0874 27 0.1212 27 0.107 27 0.1005 27 0.1135 27 0.106
73 4 0.0182 5 0.0243 5 0.0203 5 0.0241 5 0.0238 5 0.0351
74 10 0.0429 11 0.2056 15 0.0541 11 0.0491 11 0.0444 14 0.0571
75 24 0.0778 23 0.0692 23 0.132 20 0.0827 20 0.0751 23 0.0811
76 25 0.0796 23 0.1203 23 0.0933 22 0.0738 21 0.0862 23 0.0902
77 38 0.1117 38 0.0961 38 0.0957 38 0.0909 38 0.0967 39 0.1376
78 41 0.1224 41 0.1137 41 0.1017 41 0.102 41 0.1051 41 0.1303
79 313 1.8818 131 0.6837 131 0.6259 131 0.5597 131 0.5944 144 1.017
80 342 2.2016 137 0.5641 137 0.5707 137 0.6007 150 0.9507 151 0.8641
81 27 0.1164 55 0.173 35 0.126 16 0.0599 73 0.2517 64 0.2531
82 39 0.1577 27 0.0996 60 0.1715 32 0.1077 63 0.201 58 0.2245

(Continued on next page)
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TABLE III – Continued
Problem HMMSIS HuS GN HDY LS-CD HJHJ

NOI CPU NOI CPU NOI CPU NOI CPU NOI CPU NOI CPU
83 73 0.6299 174 1.9825 93 0.7327 47 0.4501 48 0.4327 74 0.673
84 74 0.6557 66 0.8412 53 0.7323 49 0.5871 41 0.3818 109 0.9309
85 7 0.0328 20 0.0868 20 0.0912 20 0.0573 20 0.0984 20 0.0734
86 9 0.0432 19 0.0557 19 0.0706 19 0.079 19 0.0816 19 0.0754
87 48 0.1518 271 1.4919 271 1.7813 271 2.1317 271 1.8957 271 0.7489
88 60 0.1857 266 0.8987 266 0.9015 266 1.5651 266 2.1936 273 0.7322
89 1 0.0051 1 0.006 1 0.0047 1 0.0057 1 0.005 1 0.01
90 1 0.0058 1 0.0058 1 0.0055 1 0.007 1 0.0049 1 0.0059
91 173 0.4015 200 0.6743 277 1.3688 151 0.7055 330 1.5364 145 0.3672
92 27 0.0845 56 0.1771 63 0.2003 56 0.1891 56 0.1973 49 0.2294
93 10 0.042 10 0.0453 14 0.0639 10 0.0371 10 0.0452 14 0.0635
94 29 0.0902 21 0.0703 31 0.1 21 0.0725 21 0.0748 31 0.0913
95 1 0.0181 1 0.0316 1 0.0227 1 0.0226 1 0.0219 1 0.0367
96 1 0.0169 1 0.0183 1 0.0194 1 0.0192 1 0.0189 1 0.0204
97 26 0.0832 26 0.0829 26 0.0896 26 0.1235 26 0.3061 26 0.0835
98 42 0.1252 42 0.169 42 0.1519 41 0.1606 42 0.1695 45 0.1368

(a) Based on Number of Iterations. (b) Based on CPU time.

Fig. 1: Comparison performance of SpMMSIS, JYJLL, and NPRP methods.

(a) Based on Number of Iterations. (b) Based on CPU time.

Fig. 2: Comparison performance of SpMMSIS, MFR, and SCD methods.
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(a) Based on Number of Iterations. (b) Based on CPU time.

Fig. 3: Comparison performance of HMMSIS, GN, and HDY methods.

(a) Based on Number of Iterations. (b) Based on CPU time.

Fig. 4: Comparison performance of HMMSIS, LS-CD, and HJHJ methods.

(a) Based on Number of Iterations. (b) Based on CPU time.

Fig. 5: Comparison performance of HMMSIS and HuS methods.
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Based on the numerical results in Table II and Table III,
we can illustrate the performance profile curves of the all
method, in this case we will use the performance profile
proposed by Dolan and Moré [41]. We plot the performance
profile curve using the formula as follows:

rp,s =
ap,s

min{ap,s : p ∈ P and s ∈ S}
,

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ},

where rp,s is the performance profile ratio used to compare
the s solver performance method with the best performance
for any p problem solver. ρs(τ) is the probability that the
best possible ratio is a consideration for solvers.

The performance profile curve shows that the percentage
of test issues that are successfully solved by each system is
the right side of 98 problems; the left side of the figure shows
the percentage of test problems for which the procedure is the
fastest. The best solver is usually represented by the solver
whose output profile plot is on the top right.

From Fig. 1 and Fig. 2 we can see that the proposed
SpMMSIS method performs more efficient than the JYJLL,
NPRP, MFR, and SCD methods both in terms of number of
iterations and CPU time.

Meanwhile, the performance profile results of HMMSIS
method are presented for both NOI and CPU time in Fig. 3
to Fig. 5. For each figure, the plot shows that the proposed
HMMSIS method performed more efficient than the GN,
HDY, LS-CD, HJHJ, and HuS methods both in terms of
number of iterations and CPU time.

VI. CONCLUSION

In this article, we have proposed the new parameter of the
spectral conjugate gradient method (SpMMSIS method) and
a new coefficient for the hybrid conjugate gradient method
(HMMSIS method). The new spectral conjugate gradient
method satisfies the global convergence properties by using
the strong Wolfe line search and has the required descent
condition without relying on any line search. Similarly, the
new hybrid conjugate gradient approach uses an exact line
search to satisfy the sufficient descent condition and global
convergence properties. The numerical results based on NOI
and CPU time of 98 problems shows that the new method
both SpMMSIS and HMMSIS conjugate gradient methods
are very competitive and most efficient compared with other
methods.
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ical Analysis-Modélisation Mathématique et Analyse Numérique, vol.
3, no. R1, pp. 35-43, 1969.

[9] Z. Wei, S. Yao, and L. Liu, “The convergence properties of some new
conjugate gradient methods,” Applied Mathematics and Computation,
vol. 183, no. 2, pp. 1341-1350, 2006.

[10] L. Zhang, “An improved Wei-Yao-Liu nonlinear conjugate gradient
method for optimization computation,” Applied Mathematics and Com-
putation, vol. 215, no. 6, pp. 2269-2274, 2009.

[11] R. Pytlak, “Conjugate gradient algorithms in nonconvex optimization,”
Springer Science & Business Media, vol. 89, 2008.

[12] J. Barzilai, and J. M. Borwein, “Two point step size gradient methods,”
IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988.

[13] M. Raydan, “The Barzilai and Borwein gradient method for the
large scale unconstrained minimization problem,” SIAM Journal on
Optimization, vol. 7, no. 1. pp. 26-33, 1997.

[14] E. G. Birgin, and J. M. Martinez, “A spectral conjugate gradient
method for unconstrained optimization,” Applied Mathematics and
optimization, vol. 43, no. 2, pp. 117-128, 2001.

[15] L. Zhang, W. Zhou, and D. Li, “Global convergence of a modi-
fied Fletcher-Reeves conjugate gradient method with Armijo-type line
search,” Numerische Mathematik, vol. 104, no. 4, pp. 561-572, 2006.

[16] J. Liu, and Y. Jiang, “Global convergence of a spectral conjugate
gradient method for unconstrained optimization,” Abstract and Applied
Analysis, vol. 2012, Article ID 758287, 2012.

[17] J. Jian, L. Yang, X. Jiang, P. Liu, and M. Liu, “A Spectral Conjugate
Gradient Method with Descent Property,” Mathematics, vol. 8, no. 2,
p. 280, 2020.

[18] Y. H. Dai, “Nonlinear conjugate gradient methods,” Wiley Encyclope-
dia of Operations Research and Management Science, 2010.

[19] D. Touati-Ahmed, and C. Storey, “Efficient Hybrid Conjugate Gradient
Techniques,” Journal of Optimization Theory and Applications, vol. 64,
no. 2, pp. 379-397, 1990.

[20] Y. F. Hu, and C. Storey, “Global Convergence Result for Conjugate
Gradient Methods,” Journal of Optimization Theory and Applications,
vol. 71, no. 2, pp. 399-405, 1991.

[21] J. C. Gilbert, and J. Nocedal, “Global Convergence Properties of
Conjugate Gradient Methods for Optimization,” SIAM Journal on
Optimization, vol. 2, pp. 21-42, 1992.

[22] Y. H. Dai, and Y. X. Yuan, “An Efficient Hybrid Conjugate Gradient
Method for Unconstrained Optimization,” Annals of Operations Re-
search, vol. 103, no. 1-4, pp. 33-47, 2001.

[23] X. Li, and X. Zhao, “A Hybrid Conjugate Gradient Method for
Optimization Problems,” Natural Science, vol. 03, no. 01, pp. 85-90,
2011.

[24] J. Jian, L. Han, and X. Jiang, “A Hybrid Conjugate Gradient Method
with Descent Property for Unconstrained Optimization,” Applied Math-
ematical Modelling, vol. 39, no. 3-4,pp. 1281-1290, 2015.

[25] Issam A. R. Moghrabi, “A New Preconditioned Conjugate Gradient
Method for Optimization,” IAENG International Journal of Applied
Mathematics, vol. 49, no.1, pp29-36, 2019.

[26] Omid Kardani, Andrei V. Lyamin, and Kristian Krabbenhoft, “A Com-
parative Study of Preconditioning Techniques for Large Sparse Systems
Arising in Finite Element Limit Analysis,” IAENG International Journal
of Applied Mathematics, vol. 43, no. 4, pp195-203, 2013.

[27] Dharminder Kumar, Sangeeta Gupta, and Parveen Sehgal, “Improved
Training of Predictive ANN with Gradient Techniques,” Lecture Notes
in Engineering and Computer Science: Proceedings of The International
MultiConference of Engineers and Computer Scientists 2014, IMECS
2014, 12-14 March, 2014, Hong Kong, pp394-399.

[28] Z. Wan, S. Zhang, and Y. Wang, “Penalty algorithm based on conjugate
gradient method for solving portfolio management problem,” Journal of
Inequalities and Applications, vol. 2009, pp. 1-16, 2009.

[29] J. Cao, and J. Wu, “A conjugate gradient algorithm and its applications
in image restoration,” Applied Numerical Mathematics, vol. 152, pp.
243-252, 2020.

[30] K. Yang, Gh. Jiang, Q. Qu, Hf. Peng, and Xw. Gao, “A new
modified conjugate gradient method to identify thermal conductivity
of transient non-homogeneous problems based on radial integration
boundary element method,” International Journal of Heat and Mass
Transfer, vol. 133, pp. 669-676, 2019.

[31] J. K. Liu, Y. M. Feng, and L. M. Zou, “A spectral conjugate gradient
method for solving large-scale unconstrained optimization,” Computers
& Mathematics with Applications, vol. 77, no. 3, pp. 731-739, 2019.

[32] M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, Sukono, and
A. T. Bon, “Solving Unconstrained Minimization Problems with a
New Hybrid Conjugate Gradient Method,” Proceedings of the 5th

IAENG International Journal of Computer Science, 48:1, IJCS_48_1_08

Volume 48, Issue 1: March 2021

 
______________________________________________________________________________________ 



NA International Conference on Industrial Engineering and Operations
Management Detroit, Michigan, USA, ID 497, 2020.

[33] M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, Sukono, and
A. T. Bon, “Comparison of Conjugate Gradient Method on Solving
Unconstrained Optimization Problems,” Proceedings of the 5th NA
International Conference on Industrial Engineering and Operations
Management Detroit, Michigan, USA, ID 500, 2020.

[34] Maulana Malik, Mustafa Mamat, Siti Sabariah Abas, Ibrahim Mo-
hammed Sulaiman, and Sukono, “A New Coefficient of the Conjugate
Gradient Method with the Sufficient Descent Condition and Global
Convergence Properties,” Engineering Letters, vol. 28, no.3, pp704-714,
2020.

[35] G. Zoutendijk, “Nonlinear programming, computational methods,”
Integer and nonlinear programming, pp. 37-86, 1970.

[36] N. Andrei, “An unconstrained optimization test functions collection,”
Adv. Model. Optim, vol. 10, no. 1, pp. 147-161, 2008.

[37] M. Malik, M. Mamat, S. S. Abas, and Sukono, “Convergence analysis
of a new coefficient conjugate gradient method under exact line search,”
International Journal of Advanced Science and Technology, vol. 29, no.
5, pp. 187-198, 2020.

[38] M. Malik, S. S. Abas, M. Mamat, Sukono, and I. S. Mohammed,
“A new hybrid conjugate gradient method with global convergence
properties,” International Journal of Advanced Science and Technology,
vol. 29, no. 5, pp. 199-210, 2020.

[39] M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, and Sukono, “A new
spectral conjugate gradient method with descent condition and global
convergence property for unconstrained optimization,” J. Math. Comput.
Sci., vol. 10, No. 5, pp. 2053-2069, 2020.

[40] M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, and Sukono, “A
new modification of NPRP conjugate gradient method for unconstrained
optimization ,” Advances in Mathematics: Scientific Journal, vol. 9, No.
7, pp. 4955-4970, 2020.
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