TAENG International Journal of Computer Science, 48:1, IJCS 48 1 16

Secure Password Storing Using Prime
Decomposition

Chaovalit Somboonpattanakit and Nawaporn Wisitpongphan

Abstract—Nowadays, passwords are widely used for authenti-
cation and they are the main targets of many hackers. Over the
past few years, there were several unfortunate major password
leak incidents. Billions of passwords were exposed to public due
to unsecured password storing methods. To further exacerbate
the situation, many users prefer to use the same password on
multiple websites or services. Hence, a password leak from one
source will likely cause damage to users’ data in many other
systems. In this study, we proposed a secure method for storing
passwords by incorporating prime decomposition technique.
The novel Prime Decomposition Password Storing (PDPS) tech-
nique does not store original or encrypted password, but allows
the same password to be converted differently on different
systems without adding extra information. We claimed that the
proposed PDPS can protect the confidentiality of the password
in the event of password database leaked.

Index Terms—password, password storing, prime decompo-
sition, secure, authentication.

I. INTRODUCTION

ASSWORD is apparently the most popular authenti-

cation method for modern applications. During system
registration, users have to create a password that is easy to
remember. Most systems force users to create a complex
password, which is composed of numbers, alphabets, and
sometimes special characters, to prevent conventional pass-
word attacking methods. However, users’ ability to remember
deteriorates as the rules for creating passwords get more
complicated. As a result, many users tend to reuse the same
password on different systems. Therefore, besides forcing
the users to create a strong password, service providers have
to also ensure that they provide a secure password storing
system that can protect users’ information in the event of
password database leak.

There many research studies that focused on enhancing
password storing security. The most popular technique is the
use of hash functions [1], [2] or Key Stretching [3], [4].
Example of these techniques are MD5, SHA3, SCRYPT,
ARGON?2, etc.

However, using a pure hash function without additional
protection mechanism such as “salt” for storing passwords
makes this approach vulnerable to time-memory tradeoff
password attack [S] using a pre-computed table, which is
readily available on the Internet [6]. Therefore, adding salt
will only make hacking more time and resource consuming,
but cracking the salted hashed passwords is still plausible.

Manuscript received May 29, 2020; revised January 14, 2021.

C. Somboonpattanakit is a PhD candidate of King Mongkut’s Univer-
sity of Technology North Bangkok, Bangkok, Thailand. He is now with
Department of Information Technology, Rajamangala University, Bangkok,
Thailand. (email: 5907011956126 @email.kmutnb.ac.th)

N. Wisitpongphan is a Assistant Professor of Data Communication and
Networking Department, King Mongkut’s University of Technology North
Bangkok, Bangkok, Thailand. (e-mail: nawaporn.w @itd.kmutnb.ac.th)

Key Stretching [7] is an adjustable hash function used for
enhancing the security of the password stored in the database.
The Key Stretching relies on high computing power and large
memory usage during the hashing process, thus, cracking
or reversing is infeasible. Although Key Stretching is the
best mechanism for storing passwords, the principle of this
method is still the same as a normal hash method with some
additional salt in the plain text format.

Storing hashed or salted hashed passwords may no longer
be secure, hence, we propose another way to securely store
passwords. We claim that the proposed method will be safe
even in the event of password leak.

II. BACKGROUND

According to NIST disclaimer statement [8], most users
reuse the same password on multiple systems when forcing
them to use a complex password. In addition, if a user
has selected a good password, the system should not force
the users to change the password often because users may
simply create a new password that is similar to the old one,
e.g., adding a certain numeric or alphabet pattern at the end
of the old password. Therefore, when the passwords got
leaked to the public, the attacker can use those passwords
to attack other systems. Therefore, forcing users to come
up with a complex password does not always imply that
the users’ password will be secured. To get around this
problem, we proposed a novel technique for securing the
stored passwords. The main idea is to allow users to select
any password they want without imposing strict set of rules
or requirements. Users can use any password that is easy for
them to remember.

A. Authentication mechanisms

Authentication is a mechanism that is used to identify a
person by using a certain set of data. Typically, users have to
provide various personal information to identify themselves
on different systems for security purpose. The set of data
that is commonly used to identify a user can come from
these factors [9]:

1) Something you know: password, pin

2) Something you have: smart card, hardware token

3) Something you are: fingerprint, iris scan

4) Somebody who knows you: human relations
Authentication mechanisms can include one, two, or multiple
factors. Using more than one factor helps increase the secu-
rity level during the validation process but also add burden
to users because it requires extra steps or additional devices,
e.g., using both the password and the finger scan [10] or re-
questing the users to input the OTP (One-time password) sent
to them via SMS and validate within a specified time [11].

Volume 48, Issue 1: March 2021

TAENG International Journal of Computer Science, 48:1, IJCS 48 1 16

B. Password Storing Techniques

Usually systems or application developers have various
ways to protect the stored passwords [12]:

1) Plain text password: This is the most unsecured
method for storing passwords because the password is stored
as is without any encryption. Hence, attackers who get access
to the password database can readily use the leaked password
to exploit other systems. In 2016, roughly 100 million plain
text passwords from the large social media website (vk.com)
was exposed to public [13]. The lesson learned from such
an event is that users should come up with unique password
for each website.

2) Encrypted password: The password is encrypted with
a certain algorithm such as AES, DES or 3DES prior to
storing [14], [15]. The key for encrypting the password is
also stored in the same database because it will be used again
in the validation process. This method can keep the password
secured by making the password unreadable. This, by far, is
the most popular method because of its low complexity and
a slightly higher security level than that of the plain text
method. However, in the event of database leak, there is a
possibility that the attackers can also obtain the key from the
same database.

3) Hashed password: This method works by applying a
one-way hash function such as MDS5 or SHA3 to a password
and stores the hash results in the database instead of storing
the original passwords. When the attackers gain access to the
database, they will see only hash values and will have to put
extra effort to obtain the original passwords. However, this
method is still vulnerable to the rainbow table attack [16].

4) Salted hash password: This method will add a random
string to the password before hashing. The goal of adding salt
to the password [17] is to create a different hashed value of
the same password, thereby preventing Time-Memory Trade-
Offs attack [18]. However, because the salt must be stored
in the plain text format in the database, attackers who know
the salt and the hashed value can still use this information
to crack the password.

5) Key Stretching: This method enhances the one-way
hash function by using adjustable parameters such as number
of hash time, length of result, and encryption algorithm [19].
The added features either increase computational costs or
increase memory usage. Therefore, when attackers have
access to the password database, they cannot easily crack
the passwords because of the extra security which requires
them more time to crack.

C. Prime Decomposition

The prime number decomposition is a method of finding
multiplication factors which are two prime numbers. This
mathematical problem is computationally intensive for a very
large number. Therefore, this prime decomposition principle
is commonly used to design a well-known and widely used
cryptography algorithm such as the RSA asymmetric key
encryption that is widely used in the SSL Certificate and
digital signature [20].

The integer factorization is a difficult problem in computer
science [21]. Nowadays, there is no algorithm that can solve
this problem in polynomial time using the classical computer.
In this work, we applied this technique for storing the
password in the database.

D. Related Work

One of the most popular methods for protecting the pass-
words is to use hash functions such as MD5 or SHA3 [22].
However, these methods are prone to Time-Memory Trade-
Offs attack because of their fast hashing speed. Therefore,
the traditional one-way hash function is not the best way to
keep passwords secured, although in general it is still widely
used. As a result, key stretching techniques are becoming
more popular.

Unlike traditional hash functions, key stretching runs at
a very slow speed and consumes significant amount of
computer resources [3], especially the processing power, in
order to prevent an attacker from using a precomputed table.
However, as the processing speed of the GPU or FPGA
hardware increases, the key stretching technique, which relies
solely on the use of processing power, is no longer safe.

According to the aforementioned problem, there are sev-
eral studies that resorted to other techniques for securing
the password. Colin Percival [4] proposed memory-hard
(SCRYPT) algorithm that uses significant amount of memory
instead of extra processing power to prevent GPU or FPGA
attack. This technique is more appealing because the memory
space is typically limited and the advancement in hard drive
development is usually slower than that of the processor.
However, SCRYPT still has flexibility and complexity prob-
lems, thus, not practical for deploying in a real system.
Despite these problems, this concept has become a model
for many ideas later.

To overcome the challenge faced by memory consumption-
based approach, LYRA?2 algorithm [23] uses cryptographic
sponge function, which allows flexibility in configuring the
size of the input and output independently. By exploiting the
properties of a sponge, i.e., absorbing and squeezing, the user
can adjust the parameters to suit any working environment.

Among the techniques described in this section, the pass-
word hash function together with a key stretching is the most
secured technique for storing the passwords. However, the
most popular method is the plain text salt approach which is
still vulnerable to password leak.

Therefore, we propose a password storing algorithm that
exploits the difficulty of the prime number factorization to
enhance the security of the passwords.

III. PRIME DECOMPOSITION PASSWORD STORING

Stored Database
(username, Z,Y’)

g ©

Provider |

username

D g password

USER l

Hash Key

Prime

Transform Output

Fig. 1. PDPS Framework

In this section, we describe the proposed Prime Decom-
position Password Storing (PDPS) algorithm in detail. The
proposed technique uses mathematical problem which is hard
to solve in a short amount of time.

Volume 48, Issue 1: March 2021

TAENG International Journal of Computer Science, 48:1, IJCS 48 1 16

A. Generating Hash Key from the Hashed Password

The challenge of creating algorithms for storing passwords
is finding an appropriate password representation to be stored
in the database for identifying users when accessing the
system. This stored value must be confidential.

Create HK

— 512 bit Hash Key
SHA3 (password)

Password ——

Fig. 2. Hash Key Generation Process

Therefore, our first step is to prevent the attackers from
recovering the plain text passwords when gaining access to
the password database. For this purpose, we use SHA3-512
to convert the users’ passwords to a 512-bit hash key (H K)
in hex format [24].

HK = SHA3-512 (user’s password) (D)

As an additional protection to the passwords, PDPS will
not store the hash keys in the database directly. Instead,
the result value, H K, will later be used as a parameter for
adjusting the prime number in the later step.

B. Prime Number Generator

In this section, we find the optimal length of the prime
number to be used in PDPS [41]. Similar to the strength
of the private key and public key of RSA [25], [26], the
longer the length of the prime number, the more secure the
password.

However, the length of the prime number can adversely
affect the performance of PDPS. Hence, to find out the opti-
mal prime length, we measured the time taken to randomly
create two large prime number of size 512, 768, 1024, 1536,
and 2048 bits using OpenSSL version 1.1.1g [27] on Intel
Core 17-7700HQ 2.80 GHz with 8GB RAM running 64-bit
Window 10.

To generate a random prime number, we used Miller-Rabin
test [42] described in Algorithm 1 because it is much faster
than other primality tests and is easy to implement [43], [44].
In the experiment, we set Miller-Rabin to use the default
number of iterations, i.e., k = 64, for testing prime number of
different lengths. The experiment was repeated 1,000 times
for each prime length.

Algorithm 1 Miller Rabin Algorithm

1. Find integers k, q, k > 0, godd, so that (n — 1) = 2¥q
. Select a random integer a, 1 <a <n —1

. if a? mod n = 1 then return (maybe prime);
.forj=0tok—1do

. if ¥’ % mod n = n — 1 then return (maybe prime);

. return (composite);

AN N B~ W N

According to the results shown in Figure 3, the time
taken to create a pair of prime numbers ramped up quickly
as the prime length exceeds 1,024 bits. That is the prime
number creation time doubled as prime length increases from
1,024 to 1,536 bits: from 0.1637 seconds to 0.3268 seconds.
Therefore, the optimal prime length chosen for this study is
1,024 bits.

2.5
Min
Average —s—
2+ Max —se—"]
T 15l et -
1= 7
@ -
o A
g ir T i
= _./
e B
05 F .,g/ pyerad
B 7__,_*.-'-""" ;_____-ae/
‘;{-_J;ae———ﬁ_;; Min
0 1 1 1
512 768 1024 1536 2048
Prime length (bits)
Fig. 3. Prime Number Generating Time

C. Prime Decomposition Password Storing

The goal of PDPS is to transform the same password
into different values without using salt. The result of the
transformation will then be stored in the database instead
of storing the hashed password. Therefore, the transform
function has to be hard enough for attackers to solve, i.e.,
either computationally intensive or time-consuming. Large
Prime factorization is a hard problem which cannot be solved
in a short amount of time. While this technique is quite
common in cryptography, we explore how such technique
can be used to protect the stored password.

Create Z Expand Hash Key
(Z=X*Y) HK = (HK * 2512) + HK
Circular Shift
Hash Key (HK’)
— Transform Y to Y’
W Y=Y ®HK
Database

(username, Z, Y’)

Fig. 4. Prime Decomposition Password Storing

According to Figure 4, PDPS generates an integer, Z,
which is a multiplication of the two randomly generated
1024-bit prime numbers, X and Y, as is shown in Equa-
tion (2).

Z = random(X) x random(Y") 2)

The prime number, X, used in the calculation will only
be used in this step to find Z and will not be stored
in the database. The value of Y, on the other hand, will
be transformed to Y’ using substitution technique [29] by
following these procedures:

1) Expanding the hash key (HK): Generate a 1024-
bit HK by concatenating the hash key (HK) obtained
from Equation (1) to itself. This can be done by using the
following equation.

Volume 48, Issue 1: March 2021

TAENG International Journal of Computer Science, 48:1, IJCS 48 1 16

HK = (HK x 2°'?) + HK (3)

2) Obtaining the circular shifted hash key (HK'): The
substitution process can be done by right circular shifting
each hexadecimal digit of the 1024-bit H K from step 1 by
the length of the password to obtain the 1024-bit H K’. For
example, Fig. 5 shows an example of a 10-digit shifted hash
key when password length is equal to 10 characters.

User’s password : mypassword
Password length : 10

Hk[o]1]2[3]4]5]6]7]8]9]A]B]C]DJE]F]

SHIFTED : 10

HK'|A|B|cC|D[E|F[of1]2]3[4[5]6]7]8]9]

Fig. 5. Example of a hash key substitution process with the password
length = 10

3) Transformation of the prime number Y : To secure a
stored prime number Y, PDPS uses a bitwise exclusive OR
operation on Y and the 1024-bit H K’, as shown in Equation
(4). The obtained Y is stored in the database along with Z
from Equation (2).

Y =Y o HK' 4)

According to the Equation (2) — (4), our proposed PDPS
uses a one-way transformation algorithm which is designed
to prevent attackers from recovering the original hash key
or password from Y’ while at the same time allow for
reverse calculation when the input is the correct password.
Algorithm 2 describes the password transformation in detail
while Table I summarizes the output of each password
transformation steps in PDPS.

TABLE I
SUMMARY OF PASSWORD TRANSFORMATION

Description Output

1 | Extracting a password length Password’s length

Hash Key (HK)

2 | Converting a user’s password
into unreadable strings using
SHA3

3 | Expanding the hash key to
1024 bit by concatenate H K
to itself

4 | Converting 1024-bit HK to a
hexadecimal format

1024-bit HK

256 hex character (HK)

5 | Right circular shifting each | 256 hex character (HK')
hexadecimal byte of 256 char-
acter (HK) by the password

length

6 | Randomly generating the first | X
1024-bit prime number

7 | Randomly generating a second | Y
1024-bit prime number

8 | Transforming Y by XOR | Y@ HK' =Y’
with HK’ and store this value
in the database

9 | Multiplying X with ¥ and | X XY =2

store this value to the database

* Only Y’ and Z are stored in the database for verification.

Algorithm 2 Password Transformation
Require: user’s password

1. Extract user’s password length

2. HK = SHA3(user’s password)

3. HKq1924 = HK - HK

4. H K1024decimal — HKasghes

5. Right Shifting HK' = HKosgper < password length
Require: Generate X 1024 bit prime number
Require: Generate Y 1024 bit prime number

6.Y =Y @ HK'

7. Z=XxY

8. Store Y’ and Z to the Database

D. Prime Decomposition Password Verification

Prime Factorization of an Integer is the main challenge
of PDPS password verification process. The Z value is a
product output between X and Y which were not stored
in the database. Therefore, to check whether the entered
password is a valid password, the Z value stored in the
database has to be divisible by Y with no remainder. In
addition, Y cannot be 1 or the same as Z value.

The first five steps of the verification process are the same
as that of the transformation process. After completing these
steps, the result obtained is an H K. If a user enters a correct
password the system will use this password to reverse Y’ to
Y by XOR with the HK' from the previous step. In the final
step, the value Z in the database will be divided by Y. If a
user enters a correct password, the result is the output with
no remainder as shown in the Figure 6

Get Length

SHA3 (P d
(Password) (Password)

Expand Hash Key
HK = (HK * 25%2) + HK

v v

Circular Shift Hash Key (HK’) with
password length

Get Z, Y’ from DB

&

A 4

Verify
ZModY =0

Transform Y to Y
Y=Y ®HK

Fig. 6. Prime Decomposition Password Verification

The verification process can be described by Algorithm 3
and the output of each verification step is shown in Table II.

Volume 48, Issue 1: March 2021

TAENG International Journal of Computer Science, 48:1, IJCS 48 1 16

TABLE 11
SUMMARY OF PASSWORD VERIFICATION PROCESS

Description Output

1 | Extracting a password length Password’s length

Hash Key (HK)

2 | Converting a user’s password
into unreadable strings using
SHA3

3 | Expanding the hash key to | 1024-bit HK
1024 bit by concatenate H K

to itself

4 | Converting 1024-bit HK to a
hexadecimal format

256 hex character (H K)

5 | Right circular shifting each | 256 hex character (HK')

hexadecimal byte of 256 char-
acter (HK) by the password
length

6 | Reading Y’ from the database | Y’

7 | Calculate Y by XORY' with | Y =Y’ @ HK'
HK'

8 | Reading Z from the database Z
9 | Divide Z by Y result = Z/Y

*Y in step 9 must not equal 1 or Z value.

Algorithm 3 Password Verification
Require: user’s password
1. Extract user’s password length
2. HK = SHA3(user’s password)
3. HKy924 = HK - HK
4. H Ki024decimal — HKasghes
5. Right Shifting HK'= H Kosgpes < password length
Require: Y’ from user’s database
Require: 7 from user’s database
6.Y =Y @ HK'
Ensure: Y # l and Y # Z
T.result =721Y
if result = 0 then
return true
else
return false
end if

IV. PERFORMANCE OF PDPS

In this section, we analyzes the performance of the
proposed algorithm by considering speed, storage space,
security, and tolerance.

A. Speed Analysis

The algorithm speed is defined as the time elapsed between
the moment the password is entered to the system and the
time that the access grant confirmation is received.The pass-
words used in this experiment were taken from a collection of
10,000 most popular passwords from xato.net [30]. In the ex-
periment, we compared our proposed Prime Decomposition
algorithm with 7 different techniques: Encryption, Normal
Hash, Double Iteration Hash, Salted Hash, Double Iteration
Hash, Key stretching and Double Iteration Key stretching.
All eight sets of passwords, undergo different protection
algorithms, will be stored in separate tables on the same
machine with MySQL database management version 5.7.15.

Table III shows the important fact about each algo-
rithm [31], [32], [33]

TABLE III
PASSWORD STORING ALGORITHM

Type Notation | Algorithm Salt | Parameter
Encrypted E aes-256 X X
Normal Hash NH sha3(data) X X
Double DIH sha3(sha3(data)) v X
Iteration Hash

Salted Hash SH sha3(data+salt) v X
Double DISH sha3(sha3(v X
Iteration Salted data+salt))

Hash

Key stretching KS argon2(data+salt) | v v
Double DIKS argon2(argon2 v v
Iteration Key (data-+salt))

stretching

Prime Decom- PDPS PDPS X v
position

Verification process of each of the 10,000 passwords was
performed on a 64-bit Window 10 Pro computer running Intel
Core 17-2670QM processor with 2.20 GHz and 8 GB RAM.
The experiment was repeated 10 times in order to find the
average speed of each algorithm.

T T]
Verification time ——+—]

10?

s

c E

S [

(=]

4101}

] E

E F Verification time

= L

Q

g 102k E

@ E El

2 E

= C

102 ¢ E
F | | | | I I 3
E NH DIH SH DISH KS DIKS PDPS
Algorithm
Fig. 7. Verification Time

According to the results shown in Figure 7, In terms of
verification time or time taken to successfully login, Hash
and Salted Hash functions are the fastest among the other
techniques. That is, it usually takes no more than 5 ms to
verify a user. Encryption based technique is the second best
approach in terms of verification time as it requires roughly
0.1 seconds to login. However, it is vulnerable to password
attack in the event of the database leak because the keys
used for decrypting password needs to also be stored in the
system. Key stretching, on the other hand, takes roughly half
a second to verify users because it is specifically designed
to prevent brute force and dictionary attacks. The double
iteration version of the key stretching technique takes twice
as much time, so it is not quite practical in terms of users’
experience. In fact, to enhance security in a system using key
stretching, one should rather adjust parameters such as thread
parallel or amount of allocated memory. Lastly, our proposed
PDPS has similar performance to that of Key Stretching
technique. In particular, verification time is approximately
0.89 s as shown in the Figure 8.

Volume 48, Issue 1: March 2021

TAENG International Journal of Computer Science, 48:1, IJCS 48 1 16

2

Prime lengths
18 —
16 —
E 14 i
[=]
1=
& 12 4
U
£ 1 -
g
0.8 =
0.6 =
0.4 | | |
512 768 1024 1536 2048
Verification Time of PDPS with different prime lengths
Fig. 8. Verification Time of PDPS with different prime lengths

This implies that users only have to wait for no more
than one second to gain access into a system. Hence, this
wait time is still acceptable and can be applied to any online
applications or services.

B. Storage Space Analysis

In terms of password storage space per user, PDPS stored
two values: product of the two random prime numbers (Z2)
and the prime number that were transformed by the password
(Y). Therefore, the storage space of PDPS is proportional to
the prime length. To put this into perspective, we compared
the storage space required by PDPS and that required by
other existing techniques: Hash Function and Key Stretching.
For each technique, we calculated the storage space required
by each technique and varied the number of users from
100,000 to 1,000,000. Hash function techniques (md5, shal,
sha3-512) requires the least amount of storage because they
only need to store the hash value and some additional salt
in the case where salt is being used. Key stretching, on the
other hand, required some extra storage space for keeping
the adjustable parameters. In the case of argon2, the storage
space needed to store the passwords also depends on the
length of the hash value which is configurable.

29

md5 ——
sl pdps
sha3-512
S berypt
27 - scrypt B
argon? —e—
26 ER
— . argon2
o
=25 ~scrypt. l
=
¥ 04 . sha3-512
o B
n
(&}
23
22
21
20 I I I I I | I |
100K 200K 300K 400K 500K 600K 700K 800K 900K M
Number of Users
Fig. 9. Storage Capacity Comparison

According to the results shown in Figure 9, our proposed
PDPS consumes the largest amount of storage space when
compared to the other two main techniques. For one million

users, PDPS requires 366.21 MB while MD-5 only requires
15.6 MB. These results were as expected. This is because
PDPS is designed to consume space and time in order
to discourage hackers from attacking the system, hence,
it requires more space than other conventional techniques.
While this amount of space may seem to be much larger
than the other techniques, it is still considerably small and
very much feasible for implementation [28].

C. Security Analysis

In terms of security, we created test data and environment
for performing password database attack on various storing
techniques. To do this, we select top 1,000 passwords from
10,000 most popular passwords. The passwords were stored
in MySQL database using 8 different techniques: Encryption,
Normal Hash, Double Iteration Hash, Salted Hash, Double
Iteration Hash, Key stretching, Double Iteration Key stretch-
ing, and Prime Decomposition.

We used Offline Dictionary Attack Mechanism [34] to test
the strength of each technique as shown in Figure 10. This
type of attack has been proven to take the least amount
of time when compare to Rainbow Table or Brute Force
approaches [35], [36].

However, the effectiveness of this type of attack relies
solely on the quality of the word list. If any of the passwords
stored in the leaked database is in the word list, this password
is crackable regardless of how strong the password protection
technique is. Therefore, in the case of weak passwords, the
strength of the protection algorithm will depend only on the
time required to decrypt the password. In other words, the
best way that we can protect the password is to increase its
complexity and prevent hackers from successfully decrypting
the passwords in a given amount of time.

Offline Dictionary Attack Target

myuser, password@1

|

f

1 123456
2 password l l @
3 catanddog Dictionary Matching Hacked Database
4 password@1 Process (Hash value)
5 qwerty
Hpsh(n) # Hash value(n)
verify —;—b

Hash(n) = Hash value(n)

: | success I

Fig. 10. Offline Dictionary Attack Mechanism

In the experiment, we constructed the word list using the
same set of 1,000 passwords mentioned earlier to make sure
that the attack will be successful. The size of the dictionary
used in the experiments were 100, 200, 300, 400, 500, 600,
700, 800, 900, and 1,000.

We wrote an attack script using PHP and set the maximum
execution time value to be infinite in order to continuously

Volume 48, Issue 1: March 2021

TAENG International Journal of Computer Science, 48:1, IJCS 48 1 16

attack every password stored in the database. Cracking time
or the time required to crack passwords were recorded and

is shown in Table IV.

TABLE IV
CRACKING TIME

Size

Cracking Time (second)

NH

DIH

SH

DISH

KS

DIKS

PDPS

100

4.47

0.10

0.11

72.06

73.33

693.59

1,415.27

863.44

200

8.70

0.17

0.19

144.29

144.94

1,578.55

2,893.67

1,638.51

300

11.33

0.25

0.29

220.05

221.17

2,245.64

4,153.61

2,560.88

400

15.72

0.32

0.37

279.04

282.55

2,980.12

5,588.64

3,132.41

500

18.96

0.40

0.45

390.99

389.45

3,469.57

7,061.37

3,958.24

600

23.33

0.48

0.52

426.82

427.72

4,158.37

8,120.35

4,933.63

700

26.88

0.53

0.61

547.21

545.70

5,007.11

9,753.20

5,690.22

800

30.14

0.62

0.69

617.98

618.84

5,739.67

11,006.35

6,372.71

900

33.67

0.66

0.78

681.93

680.48

6,374.53

12,537.88

7,185.57

1000

36.00

0.78

0.84

767.67

770.52

7,133.25

13,962.02

7,939.70

According to Table IV, time taken to crack the passwords
stored using the hash or salted hash techniques is much less
than the time taken by the key stretching techniques and
by PDPS. The Normal Hash and the Double Iteration Hash
were the weakest among all the techniques considered in the
experiment. That is they required the least amount of time
and it only took less than 1 second to crack 1,000 passwords.
Additional iteration of hash does not increase the security
level, as is shown in Figure 11.

Normal Hash —s—
; ; ; ; Double Iteration Hash —=—
08| T TR STRTOTEIRE i ; - .)..7_,,--'-:'_
=)
c -
[=]
[
Q
n
7]
E 7
E
0 I I I I I I ! I
100 200 300 400 500 600 700 800 900 1K
Dictionary Size (password)
Fig. 11. Hash Cracking Time

By adding salt, the crack time increases over 700 times
when compared with the Normal Hash approach. However,
doubling the iteration does not give rise to longer crack time.
In fact, it took nearly the same amount of time to crack the
passwords stored in the leaked database using Salted Hash
or Double Iteration Salted Hash techniques, as shown in
Figure 12. Finally, time taken to crack the passwords stored
by Key stretching and our proposed Prime Decomposition
techniques is significantly longer than the other techniques.
Cracking 1,000 passwords requires more than 2 hours.

10* E Double Key Stretching = =
F =t . ©NH]
1031 : roOS . Prime Decompeosition ... DIH -
£ Q E
£ ue(ch\“ : SH
= Fxey S : _ KS —e—
§ 102 ¢ : ; Encryption DIKS —w— -
& F Salted Hash PDPS
£ 10t
= =
100 :_ _DD_UD!E Has_h . -
101 r , | | | | Normal Hash |
100 200 300 400 500 600 700 800 900 1000
Number of Password
Fig. 12. Cracking Time Comparison

D. Time Complexity Analysis

For time complexity experiment, we assumed that an
attacker was able to access the password database which
contained all of the information for password verification
such as username, hashed password, or any other values used
for password verification. In addition, we also assumed that
the attacker got the source code of our algorithm [37]. Given
the above situation, we find the complexity required to revert
the available information back to the plain text passwords.

When the attackers gain access to PDPS password
database, he/she will obtain username, the Y’ value, and the
Z value. Therefore, there are 3 possible scenarios:

1) Brute Force Attack: Gaining access to Z and Y’ do
not give attackers any additional clue to the original pain text
passwords. This is because Y is a function of the password
length and a random number. Therefore, even if the users’
passwords are the same, the generated Y’ values will always
be different if the randomly chosen X values are different.
Figure 13 demonstrates how the same password from the
same or different users can be stored differently in the
database. Hence, the only way to attack is by going through
all the different combination of the plain text passwords in a
brute force manner to find the one that passes the verification
process. This type of attack requires intensive processing
power and time especially when the password length is long.

@ random Y= A9cass..A79

@ Y’ of userl
userl HK’ = A52805...F49 0CEC40...530
. random Y = D2545B...771 Y’ of user2
A ® 777C5E...838

user2 HK' = A52805...F49

Fig. 13. Example of how the same password from the two different users
can get transformed to Y’ and stored in the database differently.

2) Dictionary Attack: To reduce the computing power and
time required to perform the brute force attack, hackers can
use a list of popular passwords to perform a dictionary attack.
However, this approach is still time consuming and does
not guarantee success: weak passwords are vulnerable to the
attacks while strong passwords may be safe from the attacks.
To gain more insight into the performance of PDPS, Table VI
shows the time complexity required to perform the dictionary

Volume 48, Issue 1: March 2021

TAENG International Journal of Computer Science, 48:1, IJCS 48 1 16

attack on PDPS in comparison to other common password
storing techniques [40].

TABLE V
PARAMETERS NOTATION

Symbol Description
Ny the number of elements in a password list
Np the number of passwords to be cracked
Th the time spent on executing a cryptographic hash func-
tion
Tks the time spent on executing a key stretching algorithm
Tpa the time spent on generation surrogate hash key (in our
case is the Y’ value)
Trhash | the time spent on determining whether two hash values
matches
Tonks the time spent on determining whether two passwords
enhanced by a key stretching algorithm match
Trnpd the time spent on modulus testing match
TABLE VI
THE COMPARISONS OF ATTACK COMPLEXITY
Methods Time complexity
Hashed Password O(Ng * Np * (Th+Tmhash))

Salted Hash Password O(Ng * Np * (Th+Tmhash))

(
(
(
(

Key Stretching O(Ng * Np * (Tp+Tmks))

Prime Decomposition®* | O(Ng * Np * (Tp+Tpa + Tinpa)))

According to the complexity analysis shown in Table
VI, the proposed PDPS is more durable than the hashed
password or salted hash password methods. However, we
cannot directly compare the complexity of PDPS with the
Key Stretching method because complexity of such method
is adjustable depending on the parameters used. Hence,
complexity of PDPS can either be lower than, equal to, or
higher than the Key Stretching approach.

3) Prime Number Factorization Attack: Upon obtaining
the Z value, attackers can try to factorize this value into
two prime numbers. Factorization will be successful if the
attackers can find one of the prime numbers that were used
during the password transformation process. The attackers
may bypass authentication system and use one of the prime
factor (X or Y) instead of using the original password.
However, factorizing the Z value is time consuming because
the Z value is the product of two large prime numbers that
were randomly chosen and never got stored in the database.
Due to the difficulty of the large prime number factorization
problem, the attackers have to go through all possible values
(brute force) to find X or Y. More specifically, time taken
to find X or Y is roughly O(b*) [38] where b is the size
of Z (2048 bits) and k is the size of X and Y (1024 bits).
Currently, there is no algorithm that can factor large prime
number efficiently. Even with the most effective algorithm,
General Number Field Sieve (GNFS) [39] which can factor
large numbers of more than 100-bit, cannot be used to factor
2048-bit number. Hence, finding plain text password from

Z value is nearly impossible, given the state of the current
technology.

V. CONCLUSION

This research presents a novel algorithm for securing
stored password using prime decomposition techniques. The
results show that even if the password database is exposed
to public, our proposed PDPS method can securely protect
the password because it is specifically designed so that the
same password will be transformed to different values before
storing in the database. In addition, PDPS does not require
any plain text information, such as salt, to be stored in the
database. As a result, the only efficient way to crack the
password is by using dictionary attack. Thus, PDPS is safe
from Time-Memory Attack because it yields slightly higher
password verification time than that of the key stretching
method.

ACKNOWLEDGMENT

A special thank to the Faculty of Information Technol-
ogy and Digital Innovation, King Mongkut’s University of
Technology North Bangkok and Rajamangala University of
Technology Phra Nakorn for providing necessary facility and
equipment for this research.

REFERENCES

[1] F. E. De Guzman, B. D. Gerardo, and R. P. Medina, “Implementation
of Enhanced Secure Hash Algorithm Towards a Secured Web Portal,”
in 2019 IEEE 4th International Conference on Computer and Commu-
nication Systems (ICCCS), Feb. 2019, pp. 189-192.

[2] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,”
in Advances in Cryptology — EUROCRYPT 2005, Berlin, Heidelberg,
2005, pp. 19-35.

[3] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: New Generation
of Memory-Hard Functions for Password Hashing and Other Applica-
tions,” in 2016 IEEE European Symposium on Security and Privacy
(EuroS P), Mar. 2016, pp. 292-302.

[4] C. Percival, ”Stronger key derivation via sequential memory-hard func-
tions”, Proc. BSDCan, pp. 1-16, 2009-May.

[5] F. van den Broek and E. Poll, “A Comparison of Time-Memory
Trade-Off Attacks on Stream Ciphers,” in Progress in Cryptology —
AFRICACRYPT 2013, Berlin, Heidelberg, 2013, pp. 406—423.

[6] S. Boonkrong and C. Somboonpattanakit, “Dynamic Salt Generation
and Placement for Secure Password Storing,” IAENG International
Journal of Computer Science, vol. 43, no. 1, pp27-36, 2016.

[7] B. Harsha and J. Blocki, “Just In Time Hashing,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS P), Apr. 2018,
pp. 368-383.

[8] P. A. Grassi, M. E. Garcia, J. L. Fenton, "Digital Identity Guidelines”,
standardized by NIST in NIST Special Publication 800-63-3 and
published in June 2017.

[9] S. K. Sood, A. K. Sarje, and K. Singh. “Cryptanalysis of password
authentication schemes.” Proceeding of International Conference on
Models in Computer Science (ICM2CS 2009). pp. 1-7, 20009.

[10] J. Basilio-Ramirez, H. Perez-Meana, and V. Ponomaryov, “Multifactor
authentication system based on biometrics and radio frequency iden-
tification,” in 2016 9th International Kharkiv Symposium on Physics
and Engineering of Microwaves, Millimeter and Submillimeter Waves
(MSMW), 2016, pp. 1-4

[11] S. Janakiraman, K. S. Sree, V. L. Manasa, S. Rajagopalan, K.
Thenmozhi, and R. Amirtharajan, “OTP on Demand - An Embedded
System for User Authentication,” in 2018 International Conference on
Computer Communication and Informatics (ICCCI), Jan. 2018, pp. 1-5,
doi: 10.1109/ICCCI1.2018.8441400.

[12] A. Adukkathayar, G. S. Krishnan, and R. Chinchole, “Secure multifac-
tor authentication using NFC,” in 2015 10th International Conference
on Computer Science Education (ICCSE), 2015, pp. 349-354.

[13] S. Khandelwal, 2016. VK.com HACKED! 100 Million
Clear Text Passwords Leaked Online Available online at
https://thehackernews.com/2016/06/vk-com-data-breach.html

Volume 48, Issue 1: March 2021

TAENG International Journal of Computer Science, 48:1, [JCS 48 1 16

[14] B. Bhat, A. W. Ali, and A. Gupta, “DES and AES performance
evaluation,” in Communication Automation International Conference on
Computing, May 2015, pp. 887-890.

[15] Y. Liu et al., “Design of password encryption model based on AES
algorithm,” in 2019 IEEE Ist International Conference on Civil Aviation
Safety and Information Technology (ICCASIT), Oct. 2019, pp. 385-389.

[16] M. A. D. Brogada, A. M. Sison, and R. P. Medina, “Cryptanalysis on
the Head and Tail Technique for Hashing Passwords,” in 2019 IEEE
7th Conference on Systems, Process and Control (ICSPC), Dec. 2019,
pp. 137-142.

[17] P. Gauravaram, “Security Analysis of salt——password Hashes,” in
2012 International Conference on Advanced Science and Technologies
(ACSAT), 2012, pp. 25-30

[18] M. Hellman, “A cryptanalytic time-memory trade-off,” IEEE Transac-
tions on Information Theory, vol. 26, no. 4, pp. 401-406, Jul. 1980

[19] J. Zhou, J. Chen, K. Pan, C. Zhao, and X. Li, “On the security of key
derivation functions in office,” in and Identification Anti-counterfeiting,
Security, Aug. 2012, pp. 1-5.

[20] K. Balasubramanian, “Variants of RSA and their cryptanalysis,” in
2014 International Conference on Communication and Network Tech-
nologies, Dec. 2014, pp. 145-149.

[21] L. Wu, H. J. Cai, and Z. Gong, “The Integer Factorization Algorithm
With Pisano Period,” IEEE Access, vol. 7, pp. 167250-167259, 2019.

[22] M. Raza, M. Igbal, M. Sharif and W. Haider “A Survey of Password
Attacks and Comparative Analysis on Methods for Authentication”
World Applied Sciences, 2012, pp. 439-444.

[23] E. R. Andrade, M. A. Simplicio, P. S. L. M. Barreto, and P. C. F. d
Santos, “Lyra2: Efficient Password Hashing with High Security,” IEEE
Transactions on Computers, vol. 65, no. 10, pp. 3096-3108, Oct. 2016.

[24] A. Arshad, D.-S. Kundi, and A. Aziz, “Compact implementation of
SHA3-512 on FPGA,” in 2014 Conference on Information Assurance
and Cyber Security (CIACS), Jun. 2014, pp. 29-33.

[25] Y. Wu and X. Wu, “Implementation of efficient method of RSA key-
pair generation algorithm,” in 2017 IEEE International Symposium on
Consumer Electronics (ISCE), Nov. 2017, pp. 72-73.

[26] K. Balasubramanian, ”Variants of RSA and their cryptanalysis,” in
2014 International Conference on Communication and Network Tech-
nologies, Dec. 2014, pp. 145-149.

[27] OpenSSL Management Committee (OMO), 2019.
OpenSSL Strategic Architecture Available online at
https://www.openssl.org/docs/OpenSSLStrategic Architecture.html.

[28] D. Tse, K. Huang, B. Cai, and K. Liang, "Robust Password-keeping
System Using Block-chain Technology,” in 2018 IEEE International
Conference on Industrial Engineering and Engineering Management
(IEEM), Dec. 2018, pp. 1221-1225.

[29] Claude E. Shannon, ”A Mathematical Theory of Cryptography,” Bell
System Technical Memo MM 45-110-02, September 1, 1945.

[30] B. Mark, 2014. 10,000 most common passwords list Available online
at https://xato.net/passwords/more-top-worst-passwords/.

[31] N. Floissac and Y. L’Hyver, "From AES-128 to AES-192 and AES-
256, How to Adapt Differential Fault Analysis Attacks on Key Ex-
pansion,” in 2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography, Sep. 2011, pp. 43-53.

[32] A. Arshad, D.-S. Kundi, and A. Aziz, "Compact implementation of
SHA3-512 on FPGA,” in 2014 Conference on Information Assurance
and Cyber Security (CIACS), Jun. 2014, pp. 29-33.

[33] X. Wu and S. Li, "High throughput design and implementation of
SHA-3 hash algorithm,” in 2017 International Conference on Electron
Devices and Solid-State Circuits (EDSSC), Oct. 2017, pp. 1-2.

[34] L. Bosnjak, J. Sre§, and B. Brumen, “Brute-force and dictionary
attack on hashed real-world passwords,” in 2018 41st International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), May 2018, pp. 1161-1166.

[35] E. Liu, A. Nakanishi, M. Golla, D. Cash, and B. Ur, "Reasoning Ana-
lytically about Password-Cracking Software,” in 2019 IEEE Symposium
on Security and Privacy (SP), May 2019, pp. 380-397.

[36] F. Yu and Y. Huang, ”An Overview of Study of Passowrd Cracking,”
in 2015 International Conference on Computer Science and Mechanical
Automation (CSMA), Oct. 2015, pp. 25-29.

[37] Auguste Kerckhoffs, ”La cryptographie militaire,” Journal des sciences
militaires, vol. IX, pp. 5-83, Jan. 1883, pp. 161-191.

[38] Krantz, Steven G., “The Proof is in the Pudding: The Changing Nature
of Mathematical Proof,” New York: Springer, 2011, p. 203.

[39] H. Yu and G. Bai, “An efficient method for integer factorization,” in
2015 IEEE International Symposium on Circuits and Systems (ISCAS),
May. 2015, pp. 73-76.

[40] W. Luo, Y. Hu, H. Jiang, and J. Wang, “Authentication by Encrypted
Negative Password,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 1, pp. 114-128.

[41] A. K. Tarafder and T. Chakroborty, “A Comparative Analysis of
General, Sieve-of-Eratosthenes and Rabin-Miller Approach for Prime
Number Generation,” in 2019 International Conference on Electrical,
Computer and Communication Engineering (ECCE), Feb. 2019, pp.
14.

[42] Miller, L. Gary, “Riemann’s Hypothesis and Tests for Primality,” in
1976 Journal of Computer and System Sciences, vol. 13, no. 3, Dec,
1976, pp. 300-317.

[43] W. T. Penzhorn, “Fast algorithms for the generation of large primes
for the RSA cryptosystem,” in 1992 Proceedings of the South African
Symposium on Communications and Signal Processing, Sep. 1992, pp.
169-172.

[44] C. Duta, L. Gheorghe, and N. Tapus, “Framework for Evaluation and
Comparison of Primality Testing Algorithms,” in 2015 20th Interna-
tional Conference on Control Systems and Computer Science, May.
2015, pp. 483-490.

Chaovalit Somboonpattanakit received his B.Sc. in Information Systems
from Rajamangala University of Technology Phra Nakorn, where he also
work as a computer and network specialist. He is currently pursuing his
Ph.D. in Information Technology at the Faculty of Information Technology
and Digital Innovation, King Mongkut’s University of Technology North
Bangkok (KMUTNB), Thailand. Chaovalit also hold several Cisco CCNA
and Microsoft certificates. His research interest is mainly on network
security.

Nawaporn Wisitpongphan is an Assistant Professor in the Faculty of
Information Technology and Digital Innovation and also a director of
the Research Center of Information and Communication Technology at
King Mongkut’s University of Technology North Bangkok (KMUTNB),
Thailand. She received her B.S., M.S., and Ph.D., in Electrical and Computer
Engineering from Carnegie Mellon University in 2000, 2002, and 2008,
respectively. Prior to joining KMUTNB, she was a researcher at General
Motor Research Center, Warren, Michigan. While her expertise is in
computer network, vehicle-to-vehicle communication, her current research
focus is on social network analysis, information technology management,
and Smart environments.

Volume 48, Issue 1: March 2021

