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Abstract—Detection of risky driving events using smartphone
based sensing is a growing technology devoted to impact
positively driving behaviors. This technology might improve
traffic and reduce the number of car accidents. However, data
measured from inbuilt smartphone sensors, represented as a
multivariate time series, commonly contains strong temporal
dynamics. As a result, there is a growing need for developing
methods able to handle such dynamics to make any infer-
ence based on the data in hand. In this work, we present
a methodology for discriminating risky driving events from
smartphone sensors using Hidden Markov Models, which are
a well known statistical method for dealing with time-series
comprising time-varying information. The methodology is vali-
dated using a publicly available dataset, where we demonstrated
that the achieved results are comparable with state-of-the-art
approaches, yielding accuracy rates around 90% in a seven
classes problem.

Index Terms—Hidden Markov Models, Driver behavior,
Smartphone sensors.

I. INTRODUCTION

Nowadays, given the uncontrolled population and traffic
volume growth, several cities around the world have been
forced to install Intelligent Transportation Systems (ITSs)
ntended to reduce problems that deteriorate life quality
in large cities as traffic jams [1], feeder bus routes [2].
[3], CO2 emissions, emergencies, and accidents [4]. One
of the variables that might help to mitigate such problems
is the driver behavior pattern. In turn, several studies have
demonstrated that under continuous monitoring, drivers tend
to reduce dangerous and aggressive conducts, reducing as
well the number of accidents on the roads [5]. As a result,
there is a growing need for developing driver behavior
classification systems that feedback motorists by rewarding
or penalizing their driving patterns within a specific time
interval.

One of the biggest challenges for designing ITSs is the
sensing technology needed to collect data from moving
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vehicles, divided into intra vehicular and urban sensing
platforms [6]. Within the first class, some transportation
companies equip their vehicles with GPS sensors and
cameras [7]. However, the high cost of such sensors
limits their use. In the second class, several cities have
installed surveillance cameras and velocity sensors in their
most traveled roads [8]. Nevertheless, the coverage of such
systems is quite limited in large cities. Moreover, smartphone
based sensing systems appear as a low cost solution that can
be used both for companies, cities, and even regular persons
willing to improve their driving performance. Among their
many advantages, smartphone-based systems are scalable,
upgradeable, and the analysis can be performed in real time
[9]. Consequently, smartphone based telematics systems for
profiling driver behavior, mostly based on accelerometers,
gyroscopes, and GPS, are gaining increasing attention [10].

Several approaches based on smartphones have been
proposed to analyze the information provided by their
sensors, as vehicle locations [11], car following models [1],
and driver behavior, obtaining data even by pedestrians and
cyclists [12]. Most of them attempt to identify risky driving
maneuvers to categorize motorists into predefined risk levels.
The most used methodology consists in applying sliding
windows to segments of sensor data, to later calculate several
features from each window. Finally, those features are used
to feed either a fuzzy or a machine learning algorithm
to discriminate among the studied driving events [13],
[14], [15], [16]. However, the selection of features based
on sliding windows requires human expertise to preserve
the strong temporal nature of smartphone sensor data.
Furthermore, fuzzy logic tends to be subjective and sensitive
to noise as it requires set several thresholds. Regarding
machine learning algorithms, their performance varies from
work to work as they highly depend on the set of estimated
features and their parameters, like window size, and sample
rate. To avoid feature extraction procedures, several works
intend using raw sensor data to feed deep neural networks
to identify risky driving events [17], [18]. However,
the success of deep neural networks largely depends on
high information volumes and a proper architecture selection.

In this study, we propose using Hidden Markov models
(HMMs) to classify driving maneuvers only based on a
smartphone accelerometer and gyroscope. As an advantage,
HMMs exploit the time varying nature of sensor data,
making it an ideal tool for this specific task. Specifically, we
first train an HMM model for each desired event. Later, we
evaluate the testing segments on each pre trained model and
assign a label according to the highest reached probability.
We also explore which combination of analyzed sensors
produce the best driving event classification. Furthermore,
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we compare our HMM based approach against i) short time
features and machine learning based classification, and ii)
raw data and deep learning based classification.

II. METHODS

A. Hidden Markov Models

HMMs assume that measured data, in this case,
smartphone sensor data, are generated from hidden discrete
states. Moreover, associated with each state exists an
observation model mapping probabilistically each state to
the observed data [19].

Thus, let X = {Xi ∈ <C×Ti , i = 1, . . . , N} a set
of N observations belonging to an specific driving event,
e.g, sudden acceleration, and consider that each observation
Xi was measured in C sensors at Ti time samples. We
assume for each observation a HMM of length Ti, state space
dimension K, and hidden state variables S = {s1, . . . , sTi

}.
The full posterior probability of the model is given by:

P (Xi,S) = P (s0|π0)
Ti∏
t=1

P (st|st−1,Π)P (xit|st) (1)

where π0 ∈ <K is the initial state probability, Π ∈ <K×K

is the transition probability matrix where its (k, j) element
describes the transition probability from state k to state j
between time t − 1 and t. P (xt|st,Θ) is the observation
model describing the data distribution for each state, with
xit ∈ <C the measurements of all sensors at time instant t.
Here, we assume that the observation model for each state is
a multivariate Normal Distribution (MVN) with parameters
Θk = {µk,Σk} where µk ∈ <K is the mean vector, and
Σk ∈ <K×K is the covariance matrix.

The inference of the model parameters for each observaion
sequence λi = {π0,Π,Θk} is carried out using an iterative
Expectation Maximization (EM) algorithm, known as the
Baum Welch algorithm.

Moreover, in presence of N different observation se-
quences for each driving event, the full probabilistic model
is given by

P (X|λ) =
N∏
i=1

P (Xi|λ) =
N∏
i=1

Pi. (2)

This modification simplifies the model for estimating a single
set of parameters λ for each class [20].

III. EXPERIMENTS

A. Analized data

The data used in this work was collected during four car
trips of approximately 13 minutes. The smartphone used
was a Motorola XT1058 with Android version 5.1. For
reducing the measurement noise, during the entire trip, the
smartphone was fixed to the car windshield. Also, weather
conditions were sunny and the asphalt was dry. The data is
freely available at 1. During the trips, seven different driving

1https://github.com/jair-jr/driverBehaviorDataset

events were labeled, which are summarized along with their
occurrence in table I.

Driving event Occurence
Aggressive breaking 12

Aggressive acceleration 12
Aggressive left turn 11

Aggressive right turn 11
Aggressive left lane change 4

Aggressive right lane change 5
Non-aggressive event 14

Total 69

TABLE I
SUMMARY OF CONSIDERED DRIVING EVENTS ALONG WITH THEIR

OCCURRENCE.

Before the data analysis, sensor measurements were
rotated from the device coordinates system to the standard
earth coordinates. As a result, the analyzed data include
two tridimensional (x, y, and z) time series taken from
the accelerometer and the gyroscope, each recorded with a
sample rate of 50 Hz.

1) Training and Validation of the HMM based
identification: Identification of risky driving events
based on HMMs consists of two main stages, namely,
training and validation. In the training stage, we used all
the segments belonging to a particular driving event for
learning the models of an HMM, as shown in Fig. 1.

Fig. 1. HMM trainin scenario: A model is trained with all the segments
belonging to an specific class.

As an advantage, it is worth noticing that the HMM
training does not require that all the segments have the same
length. To simplify the training stage, we assume diagonal
covariance matrices to reduce the number of parameters to
estimate. As a result, in this stage, we obtain seven HMM
models (one per class).

Later, in the validation stage, when a non labeled segment
arrives, using the forward/backward algorithm, we evaluated
the probability that such segment was generated for each of
the trained models, and we assigned to such segment the
label of the model that produced the highest probability, as
shown in Fig. 2. As in the training procedure, the evaluation
was carried out regardless of the segment length.

IAENG International Journal of Computer Science, 48:1, IJCS_48_1_18

Volume 48, Issue 1: March 2021

 
______________________________________________________________________________________ 



Fig. 2. HMM testing scenario: An unlabeled segment is evaluated in
each model. The assigned label corresponds to the model that generates the
highest probability of generating the testing segment.

For selecting the training and testing sets, we used 5 folds
stratified cross validation with 70% of the data for training
and the remaining 30% for validation. We selected this
strategy to ensure that in each fold, the training and testing
sets comprised segments belonging to all the considered
classes in almost the same proportion.

Here, we analyzed three parameters that influence the
performance of the proposed classification framework,
namely, i) the number of HMM states, ii) the interval of
each segment, and iii) the combination of sensor axes.

IV. RESULTS

A. Number of HMM states

In the first step, we adjusted the optimal number of
HMM states used for the classification of risky driving
events. The experiment was carried out independently
for the accelerometer and the gyroscope, using the three
dimensional time series corresponding to the x, y, and z
axes. The number of states was set from 1 to 9. Achieved
results are shown in Fig. 3.

Fig. 3. Tuning the number of HMM states.

It is clear that for the accelerometer, the optimum number
of parameters is 5. However, there is not a clear difference
among the classification accuracies achieved by the gyro-
scope for all tested number of HMM states. Consequently,
for the gyroscope, we set this parameter as 3.

B. Interval of analyzed segments

In the database, considered driving events are marked
from an initial to a final time point ti and tf respectively,
as shown in Fig. 4.

Fig. 4. Example of a segment with the initial ti and the final tf points.
Furthermore, the remaining starting points at ti − 0.5 and ti − 1, and final
points at ti + 0.5, tf + 1 are shown.

However, to include the transient between regular to
risky driving in the analysis, we considered, besides the
initial time ti, starting points in 0.5 and 1 second before
ti. Also, we considered three different ending points to
see if the segment length affects the performance of the
HMM. These points were 0.5 seconds after the event has
started, the marked ending time, and 0.5 seconds after the
marked ending time. Summarizing, we considered nine
different lengths for each segment, resulting in nine possible
combinations of the initial and final points. Details of the
segments under consideration can be seen in table II

Segment ID Time
seg1 [ti − 1, ti + 0.5]
seg2 [ti − 1, tf ]
seg3 [ti − 1, tf + 0.5]
seg4 [ti − 0.5, ti + 0.5]
seg5 [ti − 0.5, tf ]
seg6 [ti − 0.5, tf + 0.5]
seg7 [ti, ti + 0.5]
seg8 [ti, tf ]
seg9 [ti, tf + 0.5]

TABLE II
SUMMARY OF CONSIDERED EVENT SEGMENTS.

In Fig. 5, we noticed that the longest the analyzed segment,
the better the HMM performance. In turn, the worst result
was achieved with the shortest segment. We also noticed that
including a segment before ti does not improve either worsen
the solution. This can be explained seeing the Fig. 4, where
it is noticeable that the event does not begin at the marked
starting point. Thus, analyzing the entire segment already
includes the transient period that would produce a hidden
state transition in the HMM.
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Fig. 5. Accuracy achieved by the HMM in the testing group, under all the
possible combinations of sensores and segment longitudes.

C. Analyzed sensor

We trained the HMMs using separately each x, y, and z
axis of each sensor (accelerometer and gyroscope). We also
trained the HMMs using the three axes of the accelerometer,
and the three axes of the gyroscope. Lastly, we trained
using all the information from both sensors. We performed
all the combinations of time segments and sensor axes for
training and testing the HMM performance, in order to
obtain its best configuration. Results are shown in Fig. 5. As
expected, a single sensor was not able to properly identify
all the considered events. This can be seen in the first three
bars of the top and the middle figures. However, when
mixing all the axis belonging to the same sensor (fourth
bar of the same figures), the accuracy was dramatically
improved. Moreover, when combining all the used sensors,
the accuracy improved even more. As a result, we obtained
that the more information used to feed the HMM model
of each class, the more accurate the risky driving event
classification. It is worth to notice that when all time series

were mixed, the number of HMM states was set to 5.

1) Comparisson approaches: We compared the proposed
HMM based classification against several state of the art
methodologies for the detection of risky driving events. On
the one hand, we compared with two different recursive
neural networks (RNNs), namely, the Long Short Term
Memory Network (LSTM) and Gated Recurrent Units
(GNU), with the configuration described in [17]. Both
RNNs were trained with 10 units, a softmax activation
function, and RMSprop as the optimization algorithm. These
networks were implemented using the Keras framework 2.
As the RNNs require segments with the same lengths, we
cropped both training and testing observations to have the
shortest length available in the database.

On the other hand, we compared with a sliding window
characterization followed by several machine learning
algorithms to classify the different driving events. As
suggested in [14], we used four windows of one second,
but including 0.25 seconds overlap. For each window, we
computed several statistics, namely, mean, median, standard
deviation, and mode. As a result, we obtained 16 features
for each segment. Later, three different classifiers were
trained: Support Vector Machines (SVMs) with a RBF
kernel, Random Forest, and Neural Network.

The comparison with the state of the art methods was
carried out using all the time series provided by the sensors
within the labeled segments in the database. In all the
comparison scenarios, we used the same cross validation
scheme.

Figure 6 shows the obtained results of the comparisson
described above. Besides the accuracy, we used as
performance metric the area under the curve (auc) of each
class, as suggested in [14], along with an averaged auc for
all classes.

Fig. 6. Driving events comparison with methodologies from the state of
the art.

2https://keras.io
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Regarding the accuracy, the method based on HMM
achieves the highest results with the lowest deviation among
folds. However, this method presented difficulties discrimi-
nating events of class 1 (Aggressive breaking) and class 6
(Aggressive right lane change). The former situation could
be explained seeing the class 2 AUC, close to 1. This might
imply that sudden velocity changes can be confused. A
similar phenomenon could be producing the Aggressive right
lane change miss classification, as the AUC of aggressive
right turn is also close to 1. In the remaining classes, the
HMM produced either better or competitive results compared
with the best state of the art method, in this case, short
time features classified with NNs. A particular behavior is
presented by the RNNs, yielding the lowest results. This
might be explained by the simple configuration used or by
the low number of training segments.

D. Analysis of real driving scenarios

We analyzed real driving scenarios. In this case, an HMM
was trained with the labeled segments of three out of the
four travels recorded in the data acquisition process. Then,
segments lasting one second of the remaining travel were
labeled according to the trained HMM as explained in
section III-A1. Results for each travel are shown in Fig. 7,
where check marks indicate segments that were properly
labeled, whereas x-marks indicate badly labeled segments.
Moreover, white font corresponds to non aggressive event
assigned by our method. In all travels, it can be seen that
non aggressive events correspond to areas of the time series
where the amplitude of the measured data (accelerometer
and gyroscope) presented a soft behavior. Furthermore, our
method identified properly abrupt changes, and, in most
cases, the true label corresponds with the assigned label.

E. Third party data

As the final experiment, we analyzed third party data. To
this end, we trained HMMs with the four travels recorded in
the data acquisition process. Then, we collected data under
similar conditions to the used ones to record the database
mentioned above, namely, the same frequency rate, the same
sensors, and the same fixed location of the phone inside the
car. Later, as in the previous experiment, we passed through
the trained HMM models one second segments of the newly
recorded data, and we labeled such segments according to
the highest probability. Results are shown in Fig. 8, where
blue lines indicate non aggressive events. It can be seen that
our model identified aggressive right and left lanes on right
or left curves on the road. Consequently, we can conclude
that the model properly identifies risky driving events.

Fig. 7. Analysis of real driving scenarios.

Fig. 8. Analysis of third party data.
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V. CONCLUSIONS

In this work, we presented a methodology for detecting
risky driving events based on HMMs using accelerometer
and gyroscope data recorded from a smartphone. We studied
which sensor configuration and what recorded segment
produced the best accuracy results in detecting seven
different types of driving events. We used HMM because
of its intrinsic ability to deal with time series with strong
temporal dynamics. We demonstrated that using as much
information as possible, i.e., the six time series provided
all the axes of both sensors, along with all the recorded
observations, the classification accuracy is dramatically
improved. As an extra benefit of our approach, there is no
need for clipping the recordings to have the same length.
Moreover, we obtained competitive or even better results
compared to some state of the art methodologies.

As future work, we would like to test our approach
with data recorded in different weather conditions and with
different drivers, to validate if the designed system is worth
to be used within an online driving monitoring platform.
Moreover, we would like to expand the probabilistic model
to consider within the estimation of the parameters a wider
range of past values.
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