

Abstract—Obstacle detection based on 3D laser radar plays

an important role on environment perception and safe
operation of intelligent vehicle. The obstacle detection method
based on a 3D 32-line lidar is studied in this paper. Firstly, the
lidar data and the data coordinate system were calibrated. Then,
road boundary suspected points were screened based on road
height and smooth features. Moreover, RANSAC algorithm was
used for data fitting to achieve road boundary extraction. For
point clouds within the road boundary, ground and non-ground
point clouds were identified by ground plane fitting method. In
order to process the non-ground point clouds and realize the
recognition and detection of obstacles, an improved DBSCAN
algorithm was designed, which can perform clustering
processing and generate the bounding boxes representing
obstacles. Finally, vehicle test was carried out. Test results show
that the obstacle detection method proposed in this paper can
extract the road boundary accurately. Furthermore, the
non-ground point cloud within road boundary and the obstacles
in the non-ground point cloud were identified and
distinguished.

Index Terms—intelligent vehicle, 3D laser radar, visual
obstacle detection, improved DBSCAN algorithm

I. INTRODUCTION
he rapid development of modern intelligent technology
has brought new opportunity for the development of

intelligent vehicle, which is of great significance for road
traffic safety [1,2]. Autonomous driving technology of
intelligent vehicle consists of environment perception, path
planning, intelligent decision-making and vehicle motion
control [3-6]. Environmental perception is the foundation for
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intelligent vehicle to realize autonomous driving, which
includes information acquirement based on various sensors
and object identification via data processing. Consequently,
methods to identify and distinguish obstacles for intelligent
vehicle are the key to environment perception [7].
Currently, obstacle detection technology can be divided

into three categories according to sensors used in vehicle,
including machine vision, millimeter-wave radar and lidar
[8]. Vision-based obstacle detection technology mainly relies
on the data collected by the camera. It has the advantages of
large detection range and perfect target information, but is
unable to obtain depth information [9]. Millimeter wave radar
has high resolution and is less influenced by weather, so it
can provide real-time feedback to the relative position,
relative speed, relative distance and other indicators of
obstacles. However, the millimeter wave radar is unable to
obtain target contour due to the high noise [10].
Lidar-based obstacle detection is to obtain obstacle

information according to the time difference between laser
source transmitting and receiving laser beam [11]. As an
active ranging system, lidar has centimeter-level accuracy in
measuring obstacles (centimeter level) and perfect real-time
performance. Lidar plays an important role in such fields as
obstacle detection and segmentation, navigable area
detection, high-precision map drawing and positioning, and
obstacle trajectory prediction [12,13]. Obstacle detection can
be realized based on either 2D lidar or 3D lidar. Because of
the fast scanning speed and small amount of data, 2D lidar is
mostly used for locating vehicles and pedestrians in
structured scenes. Owe to rich information and wide scanning
range, 3D lidar is widely used in obstacle detection under
urban working conditions with high environmental
complexity.
Currently, raster-based method is a common obstacle

detection method of 3D lidar. First of all, the method projects
scanning point cloud into grids. Then, it conducts clustering
analysis based on the information in each grid to determine
whether the corresponding grid is obstacle or ground.
Clustering analysis has a great influence on obstacle
detection [14]. Currently, the prototype-based, the
hierarchical and density-based clustering methods are
commonly used [15]. The prototype-based clustering method
assumes that the clustering structure can be characterized by
a group of prototypes, and then iteratively updated and solved
after initialization. This method is difficult to achieve
irregular sample points. The hierarchical clustering method
divides the sample points into different layers.
According to sample density, the density-based clustering

method is able to determine whether the samples belong to
the same class, so as to achieve the clustering results. This
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method can realize arbitrary shapes and high dimensional
features. At present, DBSCAN is a commonly used density
clustering method to cluster point cloud of arbitrary shape
with a large number of noise points [16]. However, the
application of this method is limited to two shortcomings.
Specially, the distance threshold of the sample neighborhood
and the threshold of the sample number in the neighborhood
cannot be adaptively modified according to the distance
between the detection area and the radar. Furthermore, for the
large data set, the method leads to multiple clustering core
points, long clustering convergence time and large memory
usage.
Consequently, this paper proposes an improved DBSCAN

algorithm to detect obstacle based on lidar. The lidar point
cloud data is preprocessed in chapter 2. Chapter 3 screens the
points of road boundary and fits them by RANSAC algorithm
to achieve road boundary extraction. In chapter 4, the point
clouds within the road boundary are divided into ground
clouds and non-ground clouds based on ground plane fitting.
In chapter 5, an improved DBSCAN algorithm is proposed to
cluster non-ground point clouds and generate contour of
obstacles. Chapter 6 carries out vehicle test and data analysis.

II. LIDAR DATA PREPROCESSING
In this paper, a Velodyne hdl-32e lidar is used, which can

measure seven hundred thousand points per second. Data
preprocessing, data calibration and coordinate system
calibration are necessary for obtaining effective data
information.

A. Lidar Data Calibration
Ideally, the coordinate origin of lidar is the point where the

laser emission source is located inside the radar, that is, the
midpoint of the longitudinal array of 32-line laser beams.
However, due to the deviation of the position and direction
angle of the laser beam source during processing and
installation, each set of laser beams has its own set of
calibration parameters. Consequently, the return value of
lidar is the distance and angle information in polar coordinate
system, which needs to be converted to Cartesian coordinate
system for calibration. In the Cartesian coordinate system,
the coordinate value (Px,Py,Pz) of the measured laser point
can be expressed as follows.
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where D0 is the distance value returned by lidar with noise in
polar coordinate system. Dcor is the distance correction
coefficient, which represents the distance deviation of laser
beam. Dreal is the actual distance from the obstacle to the
origin of lidar in the polar coordinate system.  is the rotation
correction angle, representing the angular deviation of the
plane laser beam and the laser coordinate Y axis. β is the
vertical correction angle, which represents the included angle
between the laser beam and the plane X-O-Y. V0 is the
vertical offset, which represents the offset from the launching

point of X-O-Z plane laser beam to the origin of the radar
coordinate system. Dxy is the projection distance of the end
point of laser beam on the horizontal plane in Cartesian
coordinate system. H0 is the horizontal offset, representing
the offset from the starting point of the horizontal laser beam
to the origin of the radar coordinate system.

B. Calibration of Coordinate System
During the installation of lidar, the lidar coordinate system

has relationship with the vehicle coordinate system due to
pitch, roll and deflection. As the surrounding environment
information obtained by the laser radar provides data basis
for the subsequent decision-planning and motion control, the
lidar coordinate system needs to be unified under the vehicle
body coordinate system.
Therefore, the vehicle body coordinate system is defined

as the world coordinate system (Ow-XwYwZw). The origin of
the coordinate system is the center of mass of the vehicle.
Two coordinate systems, namely the reference coordinate
system of lidar (Olb-XlbYlbZlb) and the actual coordinate
system of lidar (Olr-XlrYlrZlr), are designed for lidar. As
shown in figure 1, the difference between the lidar reference
coordinate system and the vehicle centroid coordinate system
is on the Z-axis. Furthermore, the actual lidar coordinate
system differs from the reference coordinate system by one
side inclination on the X-axis and one pitching angle on the
Y-axis.
According to the lidar geometric model, each laser point

(Di, I) of lidar can be converted into (Px,Py,Pz) in the radar
coordinate system. By establishing the relationship between
the actual coordinate system of the laser radar and the world
coordinate system (body coordinate system), the (Px,Py,Pz) in
the actual coordinate system of the radar can be converted to
(Px’,Py’,Pz’ in the world coordinate system. The actual
coordinate system of the lidar is (Olr-XlrYlrZlr), the origin is
the center point of the lidar transmitter, the longitudinal
direction of the vehicle body is the X-axis, the transverse
direction is the Y-axis, and the vertical direction is the z-axis.
Given the above analysis, the relationship between the actual
coordinate system of lidar and the body coordinate system of
intelligent vehicle is expressed by rotation matrix and
translation vector.
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where R is the rotation matrix. Z is the translation vector from
the lidar reference coordinate system to the actual coordinate
system. T is a translation vector of the lidar coordinate system
origin in the X-axis, Y-axis and Z-axis of the vehicle body
coordinate system, which can be confirmed by installation
position and vehicle body coordinate system origin. Since
both the lidar origin and the world coordinate system origin
are in Z axis, T is defined as [tx,ty,tz]T.
During installation process, the roll angle around the

X-axis, the pitch angle around the Y-axis, and the deflection
angle around the Z-axis show deviations in different degrees.
The error of R directly determines the error of the final return
value of lidar origin, so accurate calibration of the lidar is
necessary. It is assumed that the pitch angle is α, the roll
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angle is β', the deflection angle is γ'. Since the lidar is
installed in the center of the longitudinal vertical plane of the
vehicle body, only α and β' need to be calibrated. As shown in
Fig. 2, by using a rectangular calibration plate, the roll angle
of the lidar is calibrated.

Fig. 1. The calibration of lidar roll angle

According to the rectangular calibration plate, the angle
FOE is the azimuth difference between the edge points E and
F. lOE and lOF are the distance between the two points (E and F)
and the lidar. Based on the cosine theorem, lEF can be
calculated. The roll angle β' is as follow:
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Where lAB is the width of rectangular calibration board.
The lateral inclination transformation matrix Ry of the

radar is:
' '

' '

cos 0 sin
0 1 0

sin 0 cos
yR

 

 

 
   
  

(4)

Furthermore, the pitch angle is calibrated by using an
isosceles triangle calibration plate. As shown in Fig. 2, the
triangular calibration plate is placed at point A1. The angle
F1OE1, lOE1, and lOF1 can be obtained by radar data. Similarly,
lEF1 can be obtained by the cosine theorem.

1 1 1 1

'cosE Z E Fl l  (5)
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Then, the triangle calibration plate is moved to point A2.
Similarly, lBZ2 is obtained. The radar elevation angle is
calculated as:
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Radar inclination transformation matrix Rx is shown as
follow:
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Finally, the point (Px', Py', Pz') in the world coordinate
system can be converted into (Px, Py, Pz) in the lidar coordinate
system:
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Fig. 2. The calibration of lidar pitch angle

III. ROAD BOUNDARY IDENTIFICATION AND EXTRACTION
OF LIDAR POINT CLOUD DATA

In order to segment ground and non-ground point clouds
and deal with fewer point clouds in the non-ground point
cloud, obstacles outside the road boundary line need to be
removed. Consequently, in this section, the road boundary
line is identified and extracted according to the lidar point
cloud data.

A. Road Width Limit
During the operation of the vehicle, the distance between

the left and the right boundary points of the road is defined as
the road width. The distance between the center line of the
vehicle body and the boundary points of the road is less than
the road width. Here, (xl,yl,zl) and (xr,yr,zr) are defined as
candidate left and right boundary points of road, respectively.
The two points should meet the following conditions:
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where W is the transverse distance between the left and right
boundary points of the road, i.e., the road width. ΔW is the
error of road width.

B. Extraction of Height Features and Smooth Features
(1) Extraction of height feature. 3D points of the lidar are

segmented and projected onto the X-O-Y plane by using a
grid. Then in each grid, the height difference between the
highest point Zmax and the lowest point Zmin of the laser spot is
calculated. For a given grid, if D1≤(Zmax - Zmin)≤D2, the points
in the grid are added to the set of height feature points.
(2) Extraction of smooth feature. The smoothing feature of

the point cloud means the smoothing characteristics of the
lidar in a certain scanning area. In the same plane, the
smoothness of the lidar scanning line shows perfect
smoothing feature, while at the junction of different planes,
the smoothness feature is poor. The Velodyne HDL-32E lidar
point cloud data used in this paper is stored separately
according to the 32 laser beam bundles. In a scanning period
T, the point cloud data set of the 32 laser beams is defined as
ST={P0, P1, ..., P31}. The local smoothing feature is obtained
by the point set Pk of each line. In this paper, Pk,i is a random
point on the point set Pk. L is a set of point clouds on the scan
line between Pk and Pk,i. The smoothing feature is:

, , , ,
,

(1 )k i L j i k j k i
k i

P P P
P
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According to the structural pavement smoothness
characteristics, a smoothness threshold S0 is selected for the
experimental road boundary. If S>S0, the smoothing
characteristics are poor, and edge folding occurs in the laser
beam Pk. If S<S0, the smoothing characteristics are good, and
there is no edge folding in the laser beam Pk. Therefore, the
point Pk,i is deleted. Finally, points in the intersection of
height feature point set and smoothness feature point set are
selected as candidate road boundary points.

C. Road Boundary Line Fitting
Since the common least square fitting method is highly

sensitive to noise the road boundary fitting effect will be
deviated when the lidar scanning point is slightly bumped by
the vehicle body. Therefore, in this paper, random sampling
consistency (RANSAC) algorithm is used to fit the boundary
line [17,18]. The algorithm is described as follows:
(1) Suppose there are n significant feature point sets X={X1,

X2... Xn}, the corresponding feature point set in the other view
is Y={Y1, Y2... Yn}. The number of point sets is greater than or
equal to eight.
(2) Initialize the iteration count k=1.
(3) Randomly select eight significant feature points from X

to fit the polar geometry model and obtain the basic matrix F.
(4) Based on the basic matrix F, project all the feature

points in X to another view. The feature point set X'={X1',
X2'... Xn'} is confirmed.
(5) Given a deviation ε, calculate the residuals between the

corresponding feature points point in set X and Y.
Furthermore, calculate the number of the residual errors
within the scope of deviation. If the number of feature points
is greater than a given threshold t, the model is fitted
depending on the same feature point set, and the feature point
set is extracted. Then, the algorithm is terminated.
(6) Set k=k+1. If k is less than a given value, skips to the

step 3. Otherwise, the model with the largest set of consistent
points is adopted, or the algorithm fails.

IV. GROUND AND NON-GROUND SEGMENTATION BASED ON
PLANE FITTING

In view of the huge data load during the transmission and
processing of 3D lidar data, it is necessary to identify and
segment the ground and non-ground in the navigable area so
as to reduce the amount of data processing and improve the
real-time performance of the algorithm. In this paper, the
ground plane is fitted based on the plane fitting method. The
distance between other points and the fitting plane is
compared to the size of the set threshold, in order to
distinguish whether the points are non-ground points or not.
Generally speaking, since the ground points are unable to
form a perfect plane, lidar is easy to generate noise when
measuring distant targets, the single-plane model cannot
represent the real ground. The point cloud is evenly divided
into several segments along the driving direction of the
vehicle, and the ground plane fitting algorithm is applied to
each segment.
As shown in Tab. I, for each point cloud segment, the

ground plane fitting algorithm first extracts a group of seed
points with low height value. Then the algorithm uses these
seed points to estimate the initial plane model of the ground.
Each point in cloud segment P estimates the candidate plane

according to the plane estimation model, and generates the
orthogonal projection distance from the point to the candidate
plane. By comparing such distance with a pre-defined
threshold Thdist value, we can determine determines whether
the point belongs to the ground or not. If the point belongs to
the ground, it is regarded as seed point and used to
re-estimate the new plane by the plane estimation model. The
process discussed above is repeated n times. Finally, the
ground points of each point cloud segment generated by the
algorithm can be connected and integrated into the whole
ground plane.

TABLE I
GPF PSEUDOCODE

GPF pseudocode : Ground plane fitting algorithm

Symbol: Pg : Point on the ground plane
Png : points that are not ground plane
1: Initialization:
2: P:Enter point cloud
3: Niter:number of iterations
4: NLPR:points used to estimate the lowest representative point
5: Thseeds: Initialize seed point threshold
6: Thdist: point to plane distance threshold
7: Main loop:
8: Pg=ExtractInitialSeeds (P, NLPR, Thseeds) ;
9: for i =1:Niter do
10: model=EstimatePlane (Pg) ;
11: clear (Pg, Png) ;
12: for k =1: P do
13: if model (Pk) <Thdist then;
14: PgPk ;
15: else
16: PngPk ;
17: end
18: end
19: end
20: Extract Initial Seeds :
21: Psorted = SortOnHeight (P) ;
22: LPR = Average (Psorted (1:NLPR)) ;
23: for k = 1:P do
24: if Pk.height < LPR.height + Thseeds then
25: seedsPk ;
26: end
27: end
28: return(seeds);

The lowest representative point LPR is introduced to select
the initial seed point, which is the average value of the lowest
height value of NLRP laser points. Once LPR is calculated, it is
considered as the lowest height value point of point cloud P,
and the points within the height threshold Thseeds are used as
the initial seed points for the plane estimation model. For
plane estimation, a simple linear model is used as follows:

0ax by cz d    (12)
Tn x d  (13)

where n=[a, b, c]T, x=[x, y, z]T. The normal vector is obtained
from the covariance matrix c and S of seed point set.

1:
( )( )

T

i i
i S

C s s s s


     (14)

where
3s R is the mean of all Si, Si∈S. Variance matrix C

reflects the dispersion degree of seed points. After singular
value decomposition, three singular values can be obtained,
which represent the three directions of dispersion,
respectively. In addition, as the model is basically a plane, the
normal vector n represents the direction with the smallest
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variance, which can be obtained by the singular vector. The
singular value corresponding to the singular vector is the
minimum.

V. NON-GROUND LASER POINT CLOUD CLUSTERING BASED
ON IMPROVED DBSCAN ALGORITHM

A. The Basic Principle of DBSCAN Algorithm
To improve the DBSCAN algorithm, this paper proposes a

new algorithm, of which the basic principles are as follows:
(1) Define the adaptive domain radius ε. Since the data

density of the lidar point cloud and the distance of the laser
beam scanning are linear, a fixed distance threshold is
adequate to adapt to the point cloud clustering of the close
distance point and the long distance point. Therefore, in this
paper, the x value in the point cloud data is ten meters, the
point cloud selects a fixed threshold ε1 in the region of ten
meter. The region within twenty meter and beyond ten meter
selects another fixed threshold ε2, and so on.
(2) Data set cube partitioning. Due to the traversal of the

entire data set D and the search set S in the DBSCAN
clustering process, the DBSCAN algorithm has the problems
of long time and intensive memory. To solve these problems,
the non-ground point cloud data in the new algorithm is
divided into small cubes with a diagonal length of ε, which is
conducive to finding each small cube and determining the
core point. If the number of points in the cube is greater than
MinPts, the maximum distance between any two points in the
cube is less than or equal to ε. Then all the points in the cube
are directly marked as core points. Any point in the cube is
greater than or equal to MinPts.

B. The Improved DBSCAN Algorithm
(1) Determine the parameters (ε, MinPts ). As shown in Fig.

3, according to the maximum and minimum values   in
the x, y, and z directions on the point cloud map and the
threshold εi, the length, width and height of the cubes are set.
Each laser point corresponds to a small cube. For any point
falling on the border of cube, an extra row or column is added
to include it. For a laser spot with a longitudinal distance of
ten meter, ε1 is set to 0.8. For each subsequent ten meter, εi =
0.8+0.2(i-1) is set. MinPts is 20.

Fig. 3. Cube partitioning of data sets

(2) Traverse non-empty cubes. The number of points in the
small cube is determined in turn. If the number of points in
the small cube is greater than MinPts, the algorithm marks the
point in the cube as the core point. Otherwise, the algorithm
calculates the distance between the point in the cube and the
point in the adjacent cube. If the distance is less than or equal
to ε, the point is set as a core point. The algorithm stops when
all the small cubes are traversed.

(3) Combine the same points between adjacent cubes. The
number of points in the small cube is determined in turn. If
the distance between the two points from the two adjacent
cubes is less than ε, the two points are grouped together. As
shown in Fig. 4, assume that there are five points in each
adjacent cube, MinPts=4, and ten points of the two cubes are
core points. Although point a and point b belong to two cubes,
as the distance between them is less than ε, they still belong to
the same cluster.
For the point cloud cluster after clustering, the algorithm

calculates the centroid to determine the center of the obstacle,
calculates the length and width of the point cloud cluster to
determine the three-dimensional bounding box of the cloud
cluster.

Fig. 4. Shift and Switch Schedules for the MEV

VI. EXPERIMENTAL VERIFICATION

The lidar-based obstacle detection experiment includes the
following steps: radar calibration, removal of invalid point
cloud data, road boundary extraction, ground and non-ground
point cloud segmentation, non-ground point cloud according
to the improved DBSCAN algorithm.

A. Calibration of the Radar
The test vehicle is shown in Fig.5. The vehicle is equipped

with a 32-line lidar, two millimeter wave radars and a
monocular camera. To verify the effectiveness of proposed
method with 32-line lidar, the millimeter wave radars and a
monocular camera are powered off during the test. The
specific parameters of the lidar are shown in Tab. II.

Fig. 5. The test vehicle

The length and width of the selected rectangle are one
thousand millimeter and three hundred millimeters,
respectively. The side length of the right triangle is one
thousand millimeters. Since the pitch angle of lidar is
calibrated in a right triangle, the triangle needs to be set in
two positions. The longitudinal distance between the two
positions is set to five meters.
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TABLE II
VELODYNE HDL-32E PARAMETERS

INDEX PARAMETE UNIT

Precision ±2 cm
Harness 32 Line

Vertical distance 80-100 m
Vertical range -30~10

Update frequency 10 Hz
weight 1 Kg

Number of point clouds 700000 point /s
Horizontal range 360 degree

Power 12 w

Fig. 6 and Fig. 7 show the visualization of the lidar on the
Rviz interface of the ROS robot operating system with two
calibration plates. After calibration, the lidar roll angle β' is
1.09°, the pitch angle α is 3.14°. Consequently, translation
vector T is [0, 0, 1588.9]T, and Z is [0, 0, 6 ]T. Finally, the
conversion relationship is:

Fig. 6. Rectangular calibration plate

Fig. 7. Isosceles right triangle calibration plate
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(15)

B. Removal of Invalid Point Cloud Data
The lidar used in this paper generates seven hundred

thousand points per second. During the process of data
acquisition, there is bound to be a point cloud that is
ineffective for obstacle detection. As shown in Fig. 8, as the
installation height of the lidar is two thousand and two
hundred millimeters, which is lower than the point cloud
whose height exceeds two thousand and five hundred
millimeters.

C. Road Boundary Extraction
The redundant point cloud data on both sides of the road is

removed by using a constraint. Specifically, the distance
between the center line of the vehicle body and the boundary
points on both sides of the road is smaller than the road width.
The driving scene of the test vehicle is two ways and two
lanes. The two-way and two-lane width is nine meters. The
road width error is set to 0.2 meter. The 3D point cloud is
projected onto the X-O-Y plane. Furthermore, grid with
twenty centimeters in width and twenty centimeters in length
is used to generate the grid map. The height feature of point
cloud is extracted on the grid map. Test result shows that the
zmax of the road edge is the height of the roadside stone. The
threshold D2 is tested to be ten centimeters. Since the lowest
point needs to be greater than the highest slope of the ground,
D1 is set to five centimeters.
Figs. 9(a) shows the top view of the original 3D point

cloud data collected by the lidar. The 3D point cloud data is
visualized under the ROS system. The white point in figure
9(c) diagram is the point that satisfies the height feature. The
white point in figure 9(d) is the point that satisfies the
smoothness feature. In the figure 9(b), the white line segment
is the road boundary line after the height feature and the
smoothness feature are simultaneously extracted and fitted by
the RANSAC algorithm.

(a) Original area of laser point cloud

(b)Original area of laser point cloud
Fig. 8. Reflection of the point cloud area that the lidar needs to filter
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(a) Original 3D point cloud of laser (b) Road boundary lines extracted by RANSAC fitting

(c) Height characteristic point (d) Smooth feature point

Fig. 9. Lidar point cloud data road boundary extraction

D. Segmentation of Ground and Non-ground Point Clouds
During test, the number of segment divided by the point

cloud is 3(Nsegs=3), the number of iteration is 3(Niter=3), the
number of candidate lowest representative point is
20(NLPR=20), the threshold of seed point is 0.4 meter
(Threseds=0.4m), the distance threshold from the fitting plane
is 0.2 meter (Thdist=0.2. m). As shown in figure 10, compared
with the ray ground filter (RGF) method, the ground plane
filter (GPF) method shows better real-time performance.
Fig. 11 shows the comparison of the non-ground effect of

GPF and RGF. As shown in figure 11(a), the original point
cloud data collected by lidar has ground and non-ground
point clouds. Figure 11(b) shows the non-ground effect of
RGF method segmentation, where ground and non-ground
point clouds still exist. In figure 11(c), owing to GPF method,
the ground point cloud separates from the non-ground point
cloud.

Fig. 10. Time performance of GPF and RGF method

E. Non-ground point cloud based on improved DBSCAN
algorithm clustering
Fig. 12 shows the real-time performance of the improved

DBSCAN and the traditional DBSCAN clustering algorithms.
With the increase of the number of three-dimensional points,

the algorithm based on DBSCAN consumes exponentially.
The improved DBSCAN algorithm shows perfect real-time
performance compared with DBSCAN method.
Figs. 13 (a) and (b) show the bounding box renderings

generated by two clustering algorithms. As the improved
DBSCAN algorithm takes the change of point cloud density
into account, its clustering effect is much better. However, as
the original DBSCAN algorithm clusters the whole clustering
process with a given radius without taking the change in the
density of the obstacle into consideration, its segmentation
effect is worse than that of the improved DBSCAN.

Fig. 12. Real-time performance of DBSCAN and RANSAC algorithms

F. Lidar-based classification detection of obstacles
The data values returned by the lidar are obtained by

clustering the width and height of the projected rectangle of
the bounding box formed on the Y-O-Z plane. The aspect
ratio of the car profile in the Y-O-Z plane is smaller than that
of the pedestrian profile. In order to distinguish pedestrians
from vehicles quickly and effectively, the aspect ratio
threshold (λ) is set to 2.2. If λ is smaller than the threshold, the
bounding box is classified as vehicle. Otherwise, it is
classified as a pedestrian.
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(a) Original point cloud (b) Ray ground filtering method (c) Ground plane fitting method

Fig. 11. Non-ground segmentation effect between RGF and GPF

(a) Improved DBSCAN clustering and generation of Bounding Box (b) DBSCAN clustering and generating Bounding Box

Fig. 13. Segmentation effect of the improved DBSCAN and the original RANSAC algorithm

Table 3 shows the classification results of obstacles by
using lidar alone. As the number of obstacles in the test scene
is less than the number of pedestrian targets, and the point
cloud density is higher than that of the pedestrian. The
detection accuracy of the obstacle vehicle is 5.02% higher
than that of pedestrian. However, single type obstacle
detection still has high false detection rate. Consequently,
multi-type sensors are required to improve the accuracy of
obstacle detection and classification.

TABLE III
LIDAR OBSTACLE DETECTION RESULTS

Obstacle
type

Total number of
targets Checkout number Number of false

detection
Vehicle 893 741 152
Pedestrian 1257 980 277
Obstacle
type

Detection
rate

False detection
rate

Vehicle 82.98% 17.02%
Pedestrian 77.96% 22.04%

VII. CONCLUSION
Based on a 3D 32-line lidar, this paper studies radar data

calibration, invalid point cloud data removal, road boundary
extraction, ground and non-ground point cloud segmentation,
and non-ground point cloud clustering. Following
conclusions are obtained:
(1) Compared with the RGF method, the GPF method

shows better real-time performance and higher accuracy in
segmentation of the ground and non-ground point cloud.
(2) Compared with the traditional DBSCAN clustering

algorithm, the improved DBSCAN clustering algorithm

proposed in this paper considers the change of point cloud
density caused by the distance between the obstacle and the
lidar. By defining the adaptive domain radius and data set
cube segmentation, the new method has significantly
improved real-time performance and accuracy of clustering.
(3) High false detection rate is still a problem in

lidar-based obstacle detection and classification. It is
necessary to cooperate with machine vision and millimeter
wave radar to improve the accuracy in obstacle detection and
classification. On the basis of this study, the future work will
focus on multi-sensor obstacle detection and data fusion
methods based on lidar, machine vision and millimeter wave
radar.
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