
 

  

Abstract— The distribution of power flow can be effectively 

improved by optimizing the configuration of Distributed 

Generators (DGs) and Shunt Capacitors (SCs). Proper 

placements and capacities of DGs or SCs for real power loss 

minimization at the radial distribution network (RDN) is 

attracting more attention as people become more and more 

dependent on electric power resources. In order to overcome 

the slow convergence and poor effect of intelligent algorithms in 

this problem, Particle Swarm Optimization with Orientation 

and Shrinking factor （PSO-OS） is proposed in this paper. In 

the suggested PSO-OS algorithm, sensitivity analysis sort of 

distribution network is introduced to guide the direction of 

variation to simplify the search space, and shrinking factor is 

introduced to balance search capabilities in various RDN 

systems. The proposed method is applied to IEEE-33, IEEE-69 

and IEEE-119 systems to solve the problem of simultaneous 

allocation of DGs and SCs. Simulation results show that the 

energy loss of the system is reduced and the stability is 

improved after reconfiguration. By repeating the experiment 

independently with the traditional PSO algorithm, the 

comparative analysis of the results proves the superior 

performance of the improved algorithm. By comparing with the 

results in recent literature, it reveals the effectiveness of the 

proposed PSO-OS algorithm in finding the optimal position and 

capacity of DGs and SCs in the distribution network. 

 

Index Terms—Radial distribution network, sensitivity 

analysis, Distributed Generators (DGs), active and reactive 

power loss, PSO-OS algorithm. 

I. INTRODUCTION 

N recent years, with the large increase of electric energy 

consumption, the power grid system should not only 

ensure the safe operation of the power grid, but also meet the 

needs of users through reasonable design. However, the cost 
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of constructing or upgrading transmission lines and 

distribution networks is very high, so the installation of 

distributed generations (DGs) set in the distribution network 

system is one of the feasible solutions to provide users with 

greater load capacity [1]. 

Because the distribution network has the characteristics of 

low voltage and high current, the energy loss in the power 

system is relatively large. In this respect, it has been proved 

that one of the most cost-effective solutions to this problem is 

to use DG [2]. The research shows that DG can effectively 

reduce the active power loss during the operation of power 

grid [3]. The main goal of judging the size and position of DG 

is to minimize the active and reactive power loss in the 

distribution network system [4]. On the other hand, voltage 

quality is also very important for distribution facilities [5, 6].  

As a common basic device in power system, shunt 

capacitors (SCs) have the ability to decrease the network loss 

of the system, increase the power factor, and improve the 

node voltage level [7-9]. Consequently, SCs and DGs are 

often combined to optimize the power grid. If the location or 

capacity of DGs and SCs are not properly selected, the grid 

system will be negatively affected [10, 11]. Therefore, the 

reasonable installation of SCs and DGs unit plays a crucial 

role in the operation of the power systems. 

Various heuristic algorithms have been applied to recent 

research to optimize power system problems, such as 

Imperialist Competitive Algorithm (ICA) [12], Hybrid 

Particle Swarm Optimization (HPSO) [13] and 

Quasi-oppositional Cuckoo Search Algorithm (QCSA) [14] 

are used to optimize power flow. Artificial Bee Colony (ABC) 

[15], Generic Algorithm (GA) [16], and Analytical Method - 

Particle Swarm Optimization (AM-PSO) [17] are used to 

study the optimal placements of multiple DGs. In most recent 

papers, Intelligent Water Drop (IWD) [18], Backtracking 

Search Optimization Algorithm (BSOA) [19], GA [20] are 

used for finding the most suitable DGs and SCs placement 

and capacity parameters and have achieved good results. 

Moreover, the sensitivity factor is also proposed to help find 

the optimal solution [21, 22]. 

In this paper, an improved algorithm PSO-OS is proposed 

to solve the problem of optimal DGs and SCs configuration. 

It successfully solves the problems commonly encountered in 

the previous literature. (1) The iterative convergence of 

traditional intelligent algorithms in complex power systems 

takes a long time, and the calculation results are not accurate 

enough. (2) Although many improved or hybrid algorithms 

can produce effects on some specific systems, their general 

applicability is not strong. (3) Directly refer to the sensitivity 

factor to sort and select the candidate nodes, resulting in the 

optimization effect cannot reach the best when multiple DGs 

and SCs are jointly optimized. 
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In order to solve these problems: (1) The conventional 

sensitivity factor analysis method is innovatively introduced 

into the algorithm update mechanism, rather than blindly 

sorting and then selecting. This not only optimize the search 

space, reduce the computational complexity but also avoids 

the problems caused by the collaborative optimization of 

multiple DGs and SCs. (2) The shrinkage factor is introduced, 

so that traditional intelligent algorithms can still maintain 

good general applicability in a variety of computing 

environments. This makes the PSO-OS algorithm more 

accurate and efficient for different radial distribution 

networks. 

Meanwhile, three radial distribution networks of IEEE-33, 

IEEE-69 and IEEE-119 are selected for experimental 

simulation. The superior performance of the algorithm is 

verified by comparing and analyzing the calculation results 

of past literature. On the other hand, the independent repeated 

experiment comparison between PSO and the improved 

PSO-OS algorithm proves the success of the algorithm 

improvement. 

II. PROBLEM FORMULATION 

A. Power Flow Formulation 

The common RDN with n nodes can be represented by the 

model shown in Fig. 1. 
 

1 2 i-1 i i+1 n

1 1P jQ+
2 2P jQ+ 1 1i iP jQ− −+ i iP jQ+

1 1i iP jQ+ ++
n nP jQ+

2 2L LP jQ+ 1 1Li LiP jQ− −+ Li LiP jQ+ 1 1Li LiP jQ+ ++ Ln LnP jQ+
 

Fig. 1. Abstract diagram of RDN 
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where Pi and Qi are the real and reactive power flowing out of 

bus i; PLi+1 and QLi+1 are the real and reactive load powers at 

bus i+1. Ri,i+1 and Xi,i+1 are the resistance and reactance of the 

line section between buses i and i+1. |Vi| represents the 

voltage of bus i. 

The power loss in the section of line connecting buses i and 

i+1 can be computed by the following equations: 
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where Ploss is the power loss and Qloss is the reactive power 

loss. The total power loss of the system, TPloss and TQloss can 

be determined by summing up the power losses and the 

reactive power losses of all line sections of the system, which 

are given as: 
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Considering that the research objects are all radial 

distribution network systems, shown in Fig. 2, the impedance 

between the preceding node i and the backward node i+1 is 

expressed as Z=Ri,i+1+jXi,i+1.  
 

    

Vi
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Fig. 2. Abstract diagram between node i and i+1 
 

The influence of active and reactive power on the RDN is 

represented with the sensitivity factor. And the active and 

reactive power are injected by the DGs and SCs unit at each 

node. 

The loss sensitivity factors can be calculated by: 
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By analyzing the sensitivity of the system and calculating 

the sensitivity factor of each node, the complexity of optimal 

selection of the algorithm can be reduced and the 

optimization time can be saved. 

B. Constrains 

Power balance: the flow of active and reactive power in all 

the branches of the system should satisfy Eq. 1 and Eq. 2 

respectively. For all branches in the system, the voltage 

magnitudes at sending and receiving nodes must satisfy Eq. 

3. 

Any bus voltage must be within the specified maximum 

and minimum voltage range. Mathematically, it can be 

expressed as: 

 
min maxiV V V    (10) 

where Vmin and Vmax are the minimum and maximum voltages 

allowed by all nodes in the system. The values of these 

parameters at the systems are set to 0.9 p.u. and 1.05 p.u. 

respectively. 
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where cosφ is the power factor of distribution network. It 

will be improved when optimal capacity SCs and DGs are 

placed in the most suitable locations. Pi
L is active load and 

Qi
L is reactive load at node i. Pi

DG is the capacity of ith DG 

and Qi
SC is the capacity of ith SC. 
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The DGs used in this paper are all generators that can only 

produce active power (e.g. micro turbines, fuel cells) [23]. 

The capacity of DGs should not exceed 80 percent of the total 

active load of the original system, and the reactive power of 

SCs should never exceed 80 percent of the total reactive load 

of the original system [24]. 

III. METHODS 

A. Particle Swarm Optimization (PSO) 

Proposed in [25], PSO is a global random search algorithm 

based on swarm intelligence, which is proposed by 

simulating the migration and clustering behavior of birds in 

the process of foraging and building its swarm model on the 

computer to solve the optimization problems. 

PSO was inspired from the model of bird foraging and 

used to solve optimization problems. The potential solution 

to each optimization problem can be regarded as a bird 

(particle) in the search space, and each particle has a speed 

that determines the direction and distance. The particles then 

follow the current optimal particle and search in the solution 

space, all of which have a fitness determined by the 

optimized function. 

Step1: For the target search space with dimension D, PSO 

is the first initialized as a group of random particles (random 

solutions), including position (Xi) and velocity (Vi). 

 
1 2( , ,..., ),    1,2,...,i i i iDX x x x i N= =   (14) 

 
1 2( , ,..., ),    1,2,...,i i i iDV v v v i N= =   (15) 

Step2: Calculate the fitness value (F[i]) of all particle in 

the current population. The optimal position searched so far 

by particle i is called individual extreme value (Pbest), and the 

optimal position searched so far by the whole particle swarm 

is global extreme value (gbest).  

 1 2( , ,..., ),    1,2,...,best i i iDP p p p i N= =   (16) 

 1 2( , ,..., ),    1,2,...,best i i iDg g g g i N= =   (17) 

Step3: Update the velocity and position according to the 

particle update formula. Where c1 and c2 are learning factors, 

also known as acceleration constant, ω is inertia factor, r1 

and r2 are uniform random numbers within the range of [0,1]. 
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Step4: Determine whether the end condition is satisfied 

(generally the convergence of the target function or the upper 

limit of the number of iterations), otherwise return to the 

Step2. 

B. Particle Swarm Optimization with Orientation and 

Shrinking factor（PSO-OS） 

In the original PSO algorithm, multiple location and 

capacity parameters of the DGs and SCs will be incorporated 

into the research process, which will increase the dimension 

and complexity. Moreover, since the alternate locations of 

DGs/SCs are discrete values, it is even more difficult for the 

algorithm to determine the optimal locations and optimal 

capacities at the same time. 

(1). Orientation variation based on sensitivity analysis 

results 

In the conventional PSO algorithm, we often add a random 

variation to improve the global search ability of the algorithm, 

which can avoid falling into the local optimal situation due to 

the random initialization of the population. However, this 

kind of undifferentiated variation without orientation cannot 

meet the needs of the problem. In this paper, a new guidance 

variation method based on network loss sensitivity analysis 

results is proposed, which can be used to select the optimal 

combination of DGs/SCs placement node locations. 

Through Eq. 8 and Eq. 9, the loss sensitivity factors can be 

calculated. They can indicate the effect of the nodes to 

decrease the power loss of the radial distribution system 

when injecting active/reactive power by DGs/SCs. But it 

doesn't mean that picking the first and second most sensitive 

nodes is the best combination.  

Although the selection of node locations cannot be simply 

based on the order of sensitivity, the best combination of 

locations is made up of nodes with high sensitivity. Therefore, 

the nodes are sorted from high to low in terms of active 

power/reactive power network loss sensitivity and divided 

into 3 classes on average: class-1, class-2 and class-3. Every 

time the variations of locations are identified, the probability 

of choosing one of the three classes is 60% for class-1, 30% 

for class-2 and 10% for class-3. 

This new strategy not only considers the ranking of the 

sensitivity factors of each bus, which improves the search 

efficiency of the algorithm, but also considers the nodes with 

lower priority to ensure that no feasible solutions are missed. 

(2). Shrinking factor 
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The learning factors c1 and c2 determine the influence of 

the experience information of the particle itself and other 

particles on the particle trajectory, reflecting the information 

communication between the particle swarm. If a larger value 

of c1 is set, the particle will linger in the local scope for a long 

time, while a larger value of c2 will cause the particle to 

converge to the local minimum value prematurely. By 

introducing the compression factor and selecting appropriate 

parameters, the flying speed of particles can be controlled 

effectively, so the algorithm can achieve an effective balance 

between global detection and local mining. Update the 

formula as Eq. 20 and Eq. 21, and ξ is the shrinking factor. 

 
Fig. 3. Pseudo code of the proposed method 

Input: objective function: F[i],  

Initial population:  pop = [CDG1,…, LSCj] 

initialize the parameters of PSO-OS: c1,c2,max 

Sensitivity ranking matrix: R = [nodefist , … ,nodelast ] 

Begin 

Part1: Generate candidate node or combination 

for Cycle =1:max 

while (k < iter_number) 

Update F[i], Pbest, gbest 

Guaranteed to meet constraints 

                end while 

                      Records of the results 

end for 

Part2: Generate capacity for each candidate node 

Select the candidate results from part1 

while (k < iter_number) 

Update F[i], Pbest, gbest 

Guaranteed to meet constraints 

        end while 

End 
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C.  Method realization flow 

The pseudo-code of optimization algorithm and flow chart 

are shown in Fig. 3 and Fig. 4 respectively. The whole 

algorithm process will be divided into two parts. The first part 

will generate three alternative node combinations, and the 

second part will conduct optimal DGs/SCs capacity 

configuration for these candidate node combinations. Finally, 

the combination with minimum active power network loss 

will be selected as the output result. 

Specifically, the sensitivity analysis of active/reactive 

power loss is performed for a given radial distribution 

network system. In the first optimization, the population is 

initialized as Eq. 22 randomly, and fitness value is given as 

Eq. 23. 
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where CDGi is the capacity of ith DG and CSCj is the capacity 

of jth SC. LDGi is the location of ith DG and LSCj is the location 

of jth SC. Then, individual extreme value (Pbest) and global 

extreme value (gbest) are recorded for minimum real power 

loss. If the number of iterations is not reached after the results 

are treated out of bounds, the location data will be subject to 

instructive variation, and the capacity data will be subject to 

random variation to enter the next round of update iteration. 

Through the loop control of variable cycle, multiple groups 

of maximum connection capacity and position combination 

will be generated, and the three combined positions with the 

minimum network loss will be taken as the position data of 

the next round of optimization. In the second round of 

optimization, since the position of DGs/SCs has been fixed, 

only the optimal capacity needs to be obtained, so it is easier 

to get accurate results. Finally, the minimum real power loss 

in the three independent optimization results is selected as the 

final output. 

The advantages of this method are as follows: 

(1) It avoids the difficulty of exponential growth of search 

space due to the large dimension. (2) Separate locations and 

capacities to reduce the difficulty of calculation and improve 

the accuracy of results. (3) The analysis result of network loss 

sensitivity is introduced as a guide, which makes the search 

direction develop towards the region with higher possibility 

and improves the search efficiency. 
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Fig. 4.  Flow chart for PSO-OS 
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Fig. 5.  IEEE-33 bus test system 
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IV. SIMULATION RESULTS AND DISCUSSION  

The method proposed in this paper is verified by three 

systems, which are IEEE-33 bus, IEEE-69 bus and IEEE-119 

bus system respectively. And the total range of DGs/SCs for 

each system and the individual range of DGs/SCs are given in 

TABLE Ⅰ, Ⅳ, and Ⅶ. 

A. IEEE-33 bus radial distribution network 

The line data and load data in the test system are obtained 

from [26]. The system is a balanced three-phase radial 

network composed of 33 nodes and 32 branches. The 

reference voltage of the system is 12.66KV, the total active 

load of the system is 3.7MW, and the reactive load is 

2.3MVAR. The single line diagram of the IEEE-33 bus test 

system is shown in Fig. 5. The detailed information of 

DGs/SCs on IEEE-33 nodes under various research 

conditions is provided in TABLE Ⅰ. 

 
TABLE I  

INTRODUCTION OF VARIOUS CASES FOR IEEE-33 SYSTEM  

 case 

no. 

number 

of DGs 

number 

of SCs 

size range 

of DGs 

size range 

 of SCs 

IEEE 
-33 

case-1 0 1 -- 0-1.84MVAR 
case-2 0 3 -- 0-1.84MVAR 

case-3 1 0 0-2.96MW -- 

case-4 2 0 0-2.96MW -- 
case-5 3 0 0-2.96MW -- 

case-6 1 1 0-2.96MW 0-1.84MVAR 
case-7 2 2 0-2.96MW 0-1.84MVAR 

case-8 3 3 0-2.96MW 0-1.84MVAR 

 

PLSF
QLSF

 
Fig. 6. Distribution of sensitivity factors in IEEE-33 

 

 
Fig. 7.  Active/reactive network loss reduction of each case in IEEE-33 

systems 

By calculating the loss sensitivity factor of IEEE-33 node 

test system, the result is shown in Fig. 6. As the original node, 

the number of nodes in the remaining 32 nodes is roughly the 

same as that of the active/reactive network loss sensitivity 

factors of each node. Node 6 has the highest sensitivity of 

active/reactive power loss and it is considered as the best 

candidate node in case-3 and case-6. Other selected nodes, 

such as 13, 24 and 30, are also the nodes with relatively high 

sensitivity. 

In order to verify the effectiveness of the hybrid method, a 

variety of tests are carried out for the small-scale distribution 

network with 33 nodes. In the original IEEE-33 system, the 

real power loss and reactive power loss are 211KW and 

143.1KVAR respectively, and the lowest node of the system 

voltage is 0.9037 p.u. (at node 18). 

TABLE Ⅱ shows the data of multiple test results. It can be 

clearly seen from the results that only SCs configuration of 

the system can improve the grid node voltage and reduce the 

active/reactive power loss, but the amplitude is limited and 

the real power loss reduction can only reach 31.56% for 3 

SCs. As the number of DG increases, the active power loss of 

the system decreases significantly, and the worst voltage can 

be further improved when the system is configured only for 

DGs. In case-5, both active and reactive power loss of the 

system decrease by 65.5% and 64.57%, and the lowest 

voltage is 0.9687 p.u. at bus 33.  

Furthermore, the optimization effect is further improved 

when both the DG and SC are considered as optimization 

units. It is easy to see from case-6 that when only one DG and 

one SC are added to the system, the effect is similar to that of 

adding DGs with different capacity in three nodes at the same 

time. In case-8, the 13, 25 and 30 nodes are all placed in DGs 

and SCs. At this time, the active/reactive power loss of the 

system is reduced to 6.02% and 6.99% of the original system, 

and the voltage distribution is greatly improved. The 

minimum voltage deviation of case-8 is also well improved to 

0.9924 p.u. at bus 8. 

It can be observed from Fig. 7 that the active/reactive 

power injected into the system changes the power flow 

distribution and reduces the active and reactive power loss of 

the original power system. Among them, the optimization 

effect is the best when the DGs and SCs are put into the 

system at the same time. In addition, because of the high 

installation cost of a single DG, it is not feasible to place large 

number of DGs in the actual distribution network 

optimization. Therefore, DGs and SCs are usually configured 

in the system at the same time to improve the network 

performance. 

The voltage distribution of all nodes under partial test 

conditions is shown in Fig. 8. It can be observed that, in 

addition to the significant improvement in the voltage of the 

node where the DGs/SCs are placed, the voltage amplitude of 

other nodes is also increased differently (and all voltages are 

within the constraint range). What’s more, since the active 

load of the original system is 3.7WM and the reactive load is 

2.3MVAR, adding DGs can better improve the performance 

index of the grid system than adding SCs. However, 

considering the installation, maintenance and related 

supporting costs of DG, the best solution should be to jointly 

optimize the distribution network system for DGs and SCs. 

TABLE Ⅲ compares the proposed algorithm with other 

algorithms, PSO-OS has better performance for real/reactive 

power loss and improving the minimum voltage of the test 

system than other algorithms. For example, when the total 
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size of the capacitors is similar, in the same test system where 

only the SCs are configured, the active network loss of the 

system is 7.3KW which is less than that of the BPSO method 

Furthermore, when only the DGs are configured, PSO-OS 

and HYBRID select the same installation nodes 30,24 and 14, 

but PSO-OS selects better in specific capacity configuration, 

with lower active network loss (72.79 KW vs. 72.81 KW) and 

higher minimum voltage (0.9687 p.u. vs. 0.9684 p.u.). 

Similarly, the method proposed in this paper is still superior 

in terms of active power network loss and minimum voltage 

when faced with different DGs configuration schemes of 

installation node given by BFOA. For case-7, when the DGs 

and SCs are selected simultaneously (two DGs of 1085KW at 

node 30 and 846KW at node 13, two SCs of 1073KVAR at 

node 30 and 388KVAR at node 13), the system active 

network loss is reduced to 28.6 KW with a minimum voltage 

of 0.9801 p.u. at node 25. Compared with the scheme 

proposed by IMED, both the network loss (32.08 KW) and 

the minimum voltage (0.979 p.u.) show that the proposed 

PSO-OS algorithm gives much better performance. In the 

same way, in the face of three DGs and three SCs, the method 

proposed in this article is still able to give a better solution 

than IPSO and BFOA, which reflects the superiority of 

PSO-OS. 

 

base case-1

case-2
case-3

case-4

case-5

case-6
case-7

case-8

Fig. 8.  Voltage distribution in IEEE-33 
 

 

TABLE II  

COMPARISON OF PSO-OS AND OTHER LITERATURE ALGORITHMS FOR IEEE-33 SYSTEM 

case  PSO-OS BPSO[27] IPSO[28] IMDE[29] HYBRID[30] BFOA[31] 

SC only 

real power loss (KW) 144.4 151.7     

size of SC in KVAR (node) 
651(7), 291(29) 

720(30) 
610(14) 
920(33) 

    

min voltage in p.u.(node) 0.9231(18) 0.935(18)     

case-3 

(single 

DG) 

real power loss (KW) 111    111.03  

size of DG in KW (node) 2579(6)    2598(6)  

min voltage in p.u.(node) 0.9427(18)    0.9425(18)  

case-4,5 

(multiple 

DG) 

real power loss (KW) 72.79 111.5  84.28 72.81 98.3 

size of DG in KW (node) 
1066(30) 

1098(24),772(14) 
520(8) 

1300(33) 
 

840(14) 
1130(30) 

1068(30), 
1073(24),755(14) 

633(7),90(18) 
947(33) 

min voltage in p.u.(node) 0.9687(33) 0.919(18)  0.971(33) 0.9684(33) 0.9645 

case-7 

(2DG 

+2SC) 

real power loss (KW) 28.6   32.08   

size of DG in KW (node) 
1085(30) 

846(13) 
  1080(10) 

896.4(31) 
  

size of SC in KVAR (node) 
1073(30) 

388(13) 
  254.8(16) 

932.3(30) 
  

min voltage in p.u.(node) 0.9801(25)   0.979(25)   

case-8 

(3DG 
+3SC) 

real power loss (KW) 12.7  13.4   41.41 

size of DG in KW (node) 
1002(30) 

828(13),804(25) 
 831(14),1005(24) 

1128(30) 
  542(17),160(18) 

895(33) 

size of SC in KVAR (node) 
1020(30),404(13) 

405(25) 
 300(14),600(24) 

1200(30) 
  163(18),541(30) 

338(33) 

min voltage in p.u.(node) 0.9924(8)  0.9783   0.9783 
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TABLE III  
SIMULATION RESULTS OF VARIOUS CASES FOR IEEE-33 SYSTEM 

Control  

variables 
base case-1 case-2 case-3 case-4 case-5 case-6 case-7 case-8 

DG1(KW) -- -- -- 2579 (6) 1159 (30) 1066 (30) 2560(6) 1085 (30) 1002 (30) 

DG2(KW) -- -- -- -- 852 (13) 1098 (24) -- 846 (13) 828 (13) 

DG3(KW) -- -- -- -- -- 772 (14) -- -- 804 (25) 

SC1(KVAR) -- 1258 (30) 651 (7) -- -- -- 1762(6) 1073 (30) 1020 (30) 

SC2(KVAR) -- -- 291 (29) -- -- -- -- 388 (13) 404 (13) 

SC3(KVAR) -- -- 720 (30) -- -- -- -- -- 405 (25) 

V1(p.u.) 1 1 1 1 1 1 1 1 1 

V2(p.u.) 0.997014 0.997435 0.997561 0.998593 0.998268 0.998811 0.999120 0.998702 0.999233 

V3(p.u.) 0.982882 0.985521 0.986315 0.992915 0.990843 0.994299 0.996196 0.993547 0.996908 

V4(p.u.) 0.975372 0.979652 0.980945 0.991670 0.988302 0.991373 0.996965 0.992668 0.995779 

V5(p.u.) 0.967946 0.973935 0.975751 0.990777 0.986052 0.988722 0.998150 0.992138 0.994988 

V6(p.u.) 0.949468 0.961562 0.965284 0.986513 0.978879 0.980683 1.001510 0.991338 0.993591 

V7(p.u.) 0.945943 0.958085 0.964435 0.983130 0.976562 0.978279 0.998182 0.990574 0.992936 

V8(p.u.) 0.932287 0.944614 0.951058 0.970024 0.972951 0.973814 0.985286 0.990017 0.992444 

V9(p.u.) 0.925954 0.938368 0.944856 0.963949 0.972592 0.972938 0.979309 0.991447 0.993908 

V10(p.u.) 0.920080 0.932574 0.939103 0.958314 0.972754 0.972573 0.973765 0.993380 0.995871 

V11(p.u.) 0.919211 0.931717 0.938253 0.957480 0.973009 0.972729 0.972945 0.993781 0.996263 

V12(p.u.) 0.917696 0.930223 0.936769 0.956027 0.973628 0.973158 0.971516 0.994676 0.997138 

V13(p.u.) 0.911521 0.924132 0.930722 0.950105 0.975849 0.974633 0.965690 0.999599 1.002122 

V14(p.u.) 0.909230 0.921874 0.928480 0.947909 0.973712 0.975172 0.963530 0.997513 1.000041 

V15(p.u.) 0.907804 0.920467 0.927083 0.946541 0.972380 0.973842 0.962184 0.996213 0.998745 

V16(p.u.) 0.906422 0.919104 0.925730 0.945216 0.971091 0.972555 0.960881 0.994955 0.997490 

V17(p.u.) 0.904373 0.917084 0.923725 0.943252 0.969180 0.970647 0.958949 0.993090 0.995630 

V18(p.u.) 0.903760 0.916479 0.923124 0.942664 0.968607 0.970075 0.958371 0.992531 0.995073 

V19(p.u.) 0.996486 0.996907 0.997033 0.998066 0.997740 0.998284 0.998593 0.998174 0.998706 

V20(p.u.) 0.992908 0.993331 0.993457 0.994494 0.994167 0.994712 0.995023 0.994603 0.995136 

V21(p.u.) 0.992204 0.992626 0.992753 0.993790 0.993463 0.994009 0.994320 0.993899 0.994433 

V22(p.u.) 0.991566 0.991989 0.992116 0.993154 0.992827 0.993373 0.993684 0.993263 0.993797 

V23(p.u.) 0.979296 0.981945 0.982742 0.989367 0.987286 0.993892 0.992659 0.990004 0.996460 

V24(p.u.) 0.972625 0.975291 0.976094 0.982764 0.980670 0.993549 0.986079 0.983402 0.996270 

V25(p.u.) 0.969299 0.971975 0.972780 0.979473 0.977372 0.990294 0.982803 0.980114 0.999316 

V26(p.u.) 0.947538 0.960528 0.964093 0.984660 0.978528 0.980215 0.999687 0.991622 0.993736 

V27(p.u.) 0.944974 0.959216 0.962560 0.982198 0.978172 0.979694 0.997264 0.992148 0.994068 

V28(p.u.) 0.933532 0.955749 0.957625 0.971212 0.975081 0.975988 0.986452 0.995017 0.996079 

V29(p.u.) 0.925312 0.953541 0.954298 0.963320 0.973228 0.973662 0.978686 0.997576 0.997991 

V30(p.u.) 0.921754 0.952226 0.952075 0.959904 0.973625 0.973757 0.975324 0.999466 0.999532 

V31(p.u.) 0.917592 0.948198 0.948047 0.955909 0.969686 0.969819 0.971393 0.995631 0.995697 

V32(p.u.) 0.916676 0.947312 0.947160 0.955030 0.968820 0.968953 0.970528 0.994787 0.994854 

V33(p.u.) 0.916392 0.947038 0.946886 0.954758 0.968552 0.968684 0.970260 0.994526 0.994592 

min voltage 

(node)(p.u.) 
0.9037(18) 0.9165(18) 0.9231(18) 0.9427(18) 0.9686(18) 0.9687(33) 0.9583(18) 0.9801(25) 0.9924(8) 

max voltage 
(node)(p.u.) 

1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1.0015(6) 1(1) 1.0021(13) 

Real power 
loss (KW) 

211 151.4 144.4 111 87 72.79 67.86 28.6 12.7 

Reactive power 

loss (KVAR) 
143.1 103.9 98.5 81.7 59.8 50.7 54.8 20.4 10 
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28 29 30 31 32 33 34 35
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55 56

59 60 61 62 63 64 65 66 67 68 69

Fig. 9. IEEE-69 bus test system 
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B. IEEE-69 bus radial distribution network 

The line data and load data in the test system are obtained 

from [32]. The system is a balanced three-phase radial 

network composed of 69 nodes and 68 branches. The 

reference voltage of the system is 12.66KV, the total active 

load of the system is 3.8MW, and the reactive load is 2.7MW. 

The single line diagram of the IEEE-69 bus test system is 

shown in Fig. 9. The detailed information of DGs/SCs on 

IEEE-69 nodes under various research conditions is provided 

in TABLE Ⅳ. 

 
TABLE IV  

INTRODUCTION OF VARIOUS CASES FOR IEEE-69 SYSTEM 

 case 
no. 

number 
of DG 

number 
of SC 

size range 
of DGs 

size range 
 of SCs 

IEEE 

-69 

case-9 0 1 -- 0-2.16MVAR 

case-10 0 3 -- 0-2.16MVAR 
case-11 1 0 0-3.04MW -- 

case-12 2 0 0-3.04MW -- 

case-13 3 0 0-3.04MW -- 

case-14 1 1 0-3.04MW 0-2.16MVAR 

case-15 2 2 0-3.04MW 0-2.16MVAR 
case-16 3 3 0-3.04MW 0-2.16MVAR 
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Fig. 10.  Distribution of sensitivity factors in IEEE-69 

 

 
Fig. 11. Active/reactive network loss reduction of each case in IEEE-69 

systems 

 

By calculating the active and reactive sensitivity factor of 

the IEEE-69 test system, the result is shown in Fig. 10. The 

proposed algorithm avoids taking sensitivity factor ranking 

as the only criterion to determine the final optimization result, 

which makes the improved PSO-OS algorithm have better 

global search capabilities. It can be observed that most of the 

selected nodes belong to nodes with high sensitivity, such as 

node 61, 60 and 15, but there are also nodes with low 

sensitivity, such as node 18. This indicates that the sensitivity 

analysis-oriented variation method is correct and can still be 

considered comprehensively in the selection process. 

In order to prove that this method is also applicable to 

other distribution network systems, this paper adopts the 

same 8 cases for simulation experiments for IEEE-69 system. 

In the original IEEE-69 system, the real power loss and 

reactive power loss are 224.95KW and 102.14KVAR 

respectively, and the lowest voltage is 0.9092 p.u. at node 65.  

Fig. 11 shows the percentage of active/reactive network 

loss reduction in each case. It can be seen, placing the single 

DG (case-11) with the best capacity at the same node (the 

best location) has a better effect than placing the best capacity 

SC (case-9). For cases with SCs only, the distribution of SCs 

in case-10 is more complicated than in case-9, and the total 

capacitance is 34% more than in case-9, but there is little 

improvement in the worst voltage (from 0.9307 p.u. to 0.9315 

p.u.) and only 2.22% reduction in active/reactive network 

loss. This is not economical or feasible in practical 

optimization measures. In the case that the amount of DG is 

the same and the total installed capacity is similar, the 

introduction of reactive power with lower unit cost plays a 

crucial role in the reduction of network loss and contributes 

to the improvement of voltage. 

TABLE Ⅴ shows the data of multiple cases results. It 

should be specially pointed out that in order to control the 

length of the table, the branch voltage is replaced by the 

average voltage of all nodes in the branch. For example, V13-27 

represents the average voltage from node 13 to node 27. 

From case-9 to case-13, it shows that simply increase the 

capacity/number of SCs or DGs cannot further improve the 

optimization effect of the system very well. For example, in 

case-13, three locations are selected to place generators of 

different capacities (634KW at node 11, 348KW at node 21, 

1744KW at node 61), resulting in a 69.1% reduction in the 

active network loss of the system. However, in the case-14, 

only placing one DG and one SC with capacities of 1834KW 

and 1308KVAR at node 61 could reduce the active power 

loss by 89.71%. As a result, the best solution is to combine 

the SCs with the DGs, which is more practical. 

Fig. 12 shows the voltage distribution of each node. 

Although a few nodes have slight overshoot under case-14, 

case-15 and case-16, the voltage of most nodes has been 

greatly improved and the overshoot is within the acceptable 

range. 

The successful optimization is shown in TABLE Ⅵ. The 

PSO-OS algorithm proposed in this paper also has better 

performance in IEEE-69 system. In case-14, when node 61 is 

also selected by MOEA/D as the placement node for SC and 

DG, the PSO-OS algorithm had a smaller network loss 

(23.14KW vs. 23.17KW). Moreover, in case-15, two DGs 

(1700KW at node 61 and 547KW at node 17) and two SCs 

(1256KVAR at node 61 and 421KVAR at node 17) are 

installed with worst node voltage of 0.9943 p.u. and real 

power loss of 7.45KW. In IMED, two DGs and two SCs are 

also installed, but the minimum voltage is 0.9915 p.u. and the 

net loss is 13.83KW. Similarly, the PSO-OS algorithm 

proposed in this paper can also provide a better configuration 

with lower network loss scheme when facing the 

optimization problem of three DGs and three SCs. 

These results clearly certificate that the PSO-OS method 

can give a better performance than other algorithms. 
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Fig. 12. Voltage distribution in IEEE-69 

 
TABLE V  

SIMULATION RESULTS OF VARIOUS CASES FOR IEEE-69 SYSTEM 

Control  

variables 
base case-9 case-10 case-11 case-12 case-13 case-14 case-15 case-16 

DG1(KW) -- -- -- 1867(61) 1790(61) 634(11) 1834(61) 1700(61) 553(11) 

DG2(KW) -- -- -- -- 505(20) 348(21) -- 547(17) 383(18) 

DG3(KW) -- -- -- -- -- 1744(61) -- -- 1686(61) 

SC1(KVAR) -- 1330(61) 471(15) -- -- -- 1308(61) 1256(61) 422(11) 

SC2(KVAR) -- -- 433(60) -- -- -- -- 421(17) 245(18) 

SC3(KVAR) -- -- 880(61) -- -- -- -- -- 1197(61) 

V1(p.u.) 1 1 1 1 1 1 1 1 1 

V2(p.u.) 0.999967 0.999977 0.999981 0.999973 0.999975 0.999976 0.999983 0.999987 0.999990 

V3(p.u.) 0.999933 0.999954 0.999961 0.999947 0.999949 0.999952 0.999967 0.999975 0.999980 

V4(p.u.) 0.999840 0.999892 0.999909 0.999873 0.999880 0.999887 0.999924 0.999944 0.999957 

V5(p.u.) 0.999021 0.999334 0.999439 0.999380 0.999457 0.999532 0.999679 0.999836 0.999939 

V6(p.u.) 0.990086 0.992152 0.992821 0.995110 0.996198 0.997266 0.997017 0.998589 0.999729 

V7(p.u.) 0.980794 0.984687 0.985949 0.990686 0.992829 0.994936 0.994254 0.997299 0.999519 

V8(p.u.) 0.978578 0.982914 0.984320 0.989649 0.992048 0.994407 0.993617 0.997019 0.999501 

V9(p.u.) 0.977445 0.982017 0.983500 0.989146 0.991682 0.994176 0.993327 0.996920 0.999540 

V10(p.u.) 0.972447 0.977043 0.979356 0.984209 0.989401 0.994360 0.988412 0.995593 1.000528 

V11(p.u.) 0.971346 0.975947 0.978450 0.983121 0.988921 0.994443 0.987329 0.995330 1.000794 

V12(p.u.) 0.968187 0.972803 0.976023 0.980001 0.988104 0.992933 0.984222 0.995329 0.999816 

V13-27(p.u.) 0.958222 0.962887 0.969071 0.970159 0.990101 0.991669 0.974423 1.000124 0.999986 

V28-35(p.u.) 0.999602 0.999621 0.999628 0.999613 0.999616 0.999619 0.999633 0.999642 0.999647 

V36-39(p.u.) 0.999704 0.999721 0.999728 0.999713 0.999716 0.999719 0.999733 0.999742 0.999747 

V40-41(p.u.) 0.999192 0.999213 0.999220 0.999206 0.999208 0.999211 0.999225 0.999234 0.999239 

V42-54(p.u.) 0.990978 0.992574 0.993528 0.995035 0.995078 0.996516 0.996497 0.997538 0.998317 

V55-56(p.u.) 0.964758 0.973157 0.974653 0.986659 0.988816 0.991088 0.994262 0.997052 0.999453 

V57-58(p.u.) 0.934570 0.950150 0.951679 0.983498 0.984636 0.986303 0.997079 0.997858 0.999803 

V59-69(p.u.) 0.934346 0.949145 0.950833 0.981135 0.983958 0.986648 0.993892 0.997018 0.999866 

min voltage 0.9092(65) 0.9307(65) 0.9315(65) 0.9683(27) 0.9791(65) 0.9803(65) 0.9726(27) 0.9943(50) 0.9943(50) 

max voltage 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1.00149(17) 1.00086(18) 

Real power 

 loss (KW) 
224.95 152 147 83.2 71.94 69.5 23.14 7.45 4.34 

Reactive power 

loss (KVAR) 
102.14 70.5 68.4 40.5 36 35 14.3 8.1 6.8 

 
TABLE VI  

COMPARISON OF PSO-OS AND OTHER LITERATURE ALGORITHMS FOR IEEE-69 SYSTEM 

case  PSO-OS MOEA/D[21] IMDE[29] IPSO[28] 

case-14 

(1DG+ 
1SC) 

real power loss in KW 23.14 23.17   

size of DG in KW (node) 1834(61) 1829(61)   

size of SC in KVAR (node) 1308(61) 1301(61)   

min voltage in p.u.(node) 0.9726(27) 0.9731(27)   

case-15 
(2DG+ 

2SC) 

real power loss in KW 7.45  13.83  

size of DG in KW (node) 1700(61), 547(17)  1738(62), 479(24)  

size of SC in KVAR (node) 1256(61), 421(17)  1192(61), 109(63)  

min voltage in p.u.(node) 0.9943(50)  0.9915(68)  

case-16 

(3DG+ 

3SC) 

real power loss in KW 4.34   4.37 
size of DG in KW (node) 553(11), 383(18), 1686(61)   557(11), 321(21), 1672(61) 

size of SC in KVAR (node) 422(11), 245(18), 1197(61)   300(11), 300(18), 1200(61) 

min voltage in p.u.(node) 0.9943(50)   0.9943(50) 
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C. IEEE-119 bus radial distribution network 

The system is a balanced three-phase radial network 

composed of 119 nodes and 118 branches. The reference 

voltage of the system is 12.66KV, the total active load of the 

system is 23.68MW, and the reactive load is 17.76MW. The 

single line diagram of the IEEE-119 bus test system is shown 

in Fig. 13. 
TABLE VII  

INTRODUCTION OF VARIOUS CASES FOR IEEE-119 SYSTEM 

 case 
 no. 

number 
of DG 

number 
of SC 

size range  
of DGs 

size range  
of SCs 

IEEE 

-119 

case-17/ 17a 2 2 0-18.9MW 0-14.2MVAR 

case-18/ 18a 3 3 0-18.9MW 0-14.2MVAR 

case-19/ 19a 4 4 0-18.9MW 0-14.2MVAR 

case-20/ 20a 6 6 0-18.9MW 0-14.2MVAR 

With the increase of the nodes, IEEE-119 bus distribution 

network is more complex, so that the configuration of 

multiple DGs and SCs is more difficult. 

In order to verify the superiority of the new improved 

algorithm, four groups of comparative experiments are 

carried out in the IEEE-119 system. The detailed information 

of DGs/SCs on IEEE-119 nodes under various research 

conditions is provided in TABLE Ⅶ.  

Fig. 14 shows the distribution of sensitivity factors of 

reactive power net loss at each node, among them, nodes with 

large sensitivity factors are distributed in a concentrated 

manner, and these points will also be selected preferentially. 

In complex large system computation, the search space and 

computational complexity of intelligent algorithm can be 

greatly reduced in this way. 
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Fig. 13. IEEE-119 bus test system 
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Fig. 14.  Distribution of sensitivity factors in IEEE-119 
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TABLE Ⅷ indicates the design schemes of 2 DGs+2 SCs 

(case-17/case-17a) and 3 DGs+3 SCs (case-18/case-18a) and 

so on. In case-17 and case-18, all nodes selected are from the 

top 30 percent of the sensitivity factors, such as node 111 

ranked 4, node 85 ranked 9 and node 40 ranked 30. In case-20, 

all nodes are in the top 30 percent of sensitivity analysis, 

except node 96, which ranked 51. It proves that introducing 

sensitivity analysis into the algorithm can greatly simplify the 

search space. However, in the traditional PSO algorithm, 

when there are only two DGs and SCs with fewer parameters, 

the same results (case-17 and case-17a) can be obtained as 

the optimized algorithm. With the increase of optimization 

parameters, PSO will choose nodes with relatively small 

sensitivity as candidate points due to the absence of guiding 

factors, which are prone to fall into local optimization and fail 

to get better results.  

Fig. 15 shows a comparison of the voltage levels of each 

node of the system after the optimized configuration. 

Comparing the two algorithms, it can be concluded that the 

PSO-OS algorithm can control the overregulation better 

under the premise of greatly improving the voltage level of 

the grid in the case of the same number of SCs and DGs. For 

example, by comparing the results of case-20 and case-20a, it 

can be found that the voltage result curve of the improved 

PSO-OS algorithm is closer to 1 p.u. and the maximum 

voltage of 1.0037 p.u. at node 40 is better than that of 1.0242 

p.u. at node 44 of the traditional PSO algorithm. 

TABLE Ⅸ details the comparison of the final 

experimental results under various conditions. In case-18 and 

case-18a, the PSO-OS algorithm reduces the active power 

network loss by 3.79% and the reactive power network loss 

by 3.54% compared with PSO algorithm. In case-20 and 

case-20a, the numbers are 10.84% and 6.33%. It is worth 

noting that in case-19 and case-19a, although the PSO 

algorithm has well control of minimum voltage and reactive 

power network loss, excessive voltage oversetting is a fatal 

disadvantage. With the increase of DGs and SCs, the 

optimization parameters increase, which makes the improved 

algorithm more and more advantageous over the traditional 

algorithm.  

 
TABLE VIII  

CONFIGURATION RESULTS FOR IEEE-119 SYSTEM 

case no. 

(PSO-OS) 

active power of DGs 

in KW (node) 

reactive power of SCs 

in KVAR (node) 

case no. 

(PSO) 

active power of DGs 

in KW (node) 

reactive power of SCs 

in KVAR (node) 

case-17 2401(84), 3014(112) 1699(84), 2468(112) case-17a 2401(84), 3014(112) 1699(84), 2468(112) 

case-18 
3343(40), 2309(85) 

3126(111) 

3785(40), 1631(85) 

2554(111) 
case-18a 

3105(42), 1988(82) 

3427(108) 

3912(42), 1652(82) 

2208(108) 

case-19 
3123(40), 1844(64) 

3208(73), 2851(111) 

2703(40), 1203(64) 

2479(73), 2220(111) 
case-19a 

3425(42), 2013(50) 

2920(87), 3008(109) 

2641(42), 1632(50) 

2537(87), 2508(109) 

case-20 

3105(40), 2128(52) 

3215(73), 1860(84) 

1312(96), 2839(111) 

2698(40), 1199(52) 

2485(73), 1181(84) 

1651(96), 2247(111) 

case-20a 

2654(44), 2425(51) 

2984(71), 2035(85) 

1650(98), 2468(111) 

2864(44), 1685(51) 

2168(71), 1349(85) 

1969(98), 2196(111) 

 

TABLE IX  

COMPARISON OF PSO-OS AND PSO ALGORITHMS FOR IEEE-119 SYSTEM 

case no. 
Max bus voltage 

in p.u.(node) 

Min bus voltage 

in p.u.(node) 

Real power 

loss in KW 

Real power 

loss reduction 

reactive power  

loss in KVAR 

Reactive power 

loss reduction 

base 1(1) 0.9293 (113) 978 -- 718.8 -- 
case-17 1.007 (84) 0.9327 (44) 592.8 39.39% 472.2 34.31% 

case-17a 1.007 (84) 0.9327 (44) 592.8 39.39% 472.2 34.31% 

case-18 1.017 (40) 0.9475 (54) 446.8 54.31% 302.2 57.96% 
case-18a 1.024 (42) 0.9473 (54) 483.9 50.52% 327.6 54.42% 

case-19 1.004 (40) 0.9458 (89) 371 62.07% 253.9 64.68% 
case-19a 1.0413 (87) 0.9521 (72) 413.4 57.73% 254.8 64.55% 

case-20 1.0037 (40) 0.9736 (27) 184.7 81.11% 123.9 82.76% 

case-20a 1.0242 (44) 0.9735 (27) 290.8 70.27% 169.4 76.43% 

 

base

case-17

case-18

case-18a
case-19

case-19a

case-20case-20a

 
Fig. 15.  Voltage distribution in IEEE-119 
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TABLE X  
COMPARISON OF PSO-OS AND PSO ALGORITHMS FOR IEEE-119 SYSTEM 

IEEE-119 
case-17  case-18  case-19  case-20 

PSO-OS PSO  PSO-OS PSO  PSO-OS PSO  PSO-OS PSO 

worst result (KW) 593.9 595.5  453.1 510.3  384.6 454.7  187.9 358.8 
best result (KW) 592.8 592.8  446.8 483.9  372.2 413.9  184.7 290.8 

average (KW) 593.3 594.3  449.2 498.8  376.9 425.6  186.1 314.8 

variance 0.1091 0.4127  4.5881 52.58  13.9664 79.248  33.5257 254.09 

 

PSO

PSO-OS

 
Fig. 16. The results' distribution for case-17 and case-17a of IEEE-119 test 

system 
 

PSO

PSO-OS

 
Fig. 17. The optimal convergence curves for case-17 and case-17a 

 
 

PSO

PSO-OS

 
Fig. 18. The results' distribution for case-18 and case-18a of IEEE-119 test 

system 

 

PSO

PSO-OS

 
Fig. 19. The optimal convergence curves for case-18 and case-18a 

 
 

PSO
PSO-OS

 
Fig. 20. The results' distribution for case-19 and case-19a of IEEE-119 test 

system 
 

PSO

PSO-OS

 
Fig. 21. The optimal convergence curves for case-19 and case-19a 
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PSO-OS

PSO
 

Fig. 22. The results' distribution for case-20 and case-20a of IEEE-119 test 
system 
 

PSO-OS

PSO

 
Fig. 23. The optimal convergence curves for case-20 and case-20a 

 

The convergence speed and robustness of the algorithm are 

both important indexes to evaluate the algorithm. In order to 

verify the superiority of the improved algorithm, this paper 

carried out independent repeated experiments on PSO and 

PSO-OS for 30 times respectively, and selected the best 

results for comparative analysis of iterative curves. And the 

specific iteration results are recorded as shown in TABLE Ⅹ 

Fig. 16 shows the results of 30 independent replications for 

case-17 and case-17a of IEEE-119 test system. It can be seen 

that under the premise of fewer control variables, the active 

power network loss of the system obtained by the traditional 

PSO algorithm in only the 11th and 25th experiments are 

slightly better than that of the PSO-OS algorithm. In addition, 

the performance of the improved algorithm in terms of mean 

value, stability and the worst results is superior.  

Fig. 17 illustrates the comparison of the two optimal 

iterative curves. Due to the introduction of the guidance 

factor, the PSO-OS algorithm converges in generation 43, 

while the traditional PSO algorithm gradually converges after 

generation 140.Furthermore, in the convergence process, the 

traditional PSO algorithm mainly relies on random numbers 

to determine the candidate nodes of DGs and SCs. In the 

large system with 119 nodes, most of the search work is 

inefficient, which leads to the difficulty in convergence of 

this algorithm and further causes the algorithm to take too 

long time. 

With the increase in the number of DGs and SCs, the 

improved algorithm obtained from 30 repeated experiments 

has been superior to the traditional PSO algorithm in all 

aspects in Fig. 18 and Fig.20. On the other hand, the 

comparison of two optimal iterative curves in Fig. 19 and Fig. 

21 also shows that PSO-OS algorithm is more suitable for 

this system. 

As the control variables of the system increase, the 

computational complexity of the algorithm increases 

exponentially. The traditional PSO algorithm is easy to fall 

into the local optimal solution and cannot jump out easily. It 

should be noted that in the DG capacity result calculated by 

PSO algorithm in Fig. 22, the capacity will be infinitely close 

to 0 which is obviously the result of failure. In 30 

independently repeated experiments, this happened 6 times, 

which once again proved the necessity of algorithm 

improvement. The experimental results show that the 

proposed PSO-OS algorithm can successfully solve the 

optimization problem in the larger radial distribution system. 

In Fig. 23, it takes 381 iterations for PSO algorithm to 

converge to the active power loss of 290.07 kW, while the 

improved PSO-OS algorithm only took 124 generations of 

iterations to converge to the active power loss of 184.7 kW. It 

can be seen that the performance of both timeliness and 

accuracy algorithms has been greatly improved. 

V. CONCLUSION 

DGs and SCs are playing an increasingly important role in 

power system and with the selection of simultaneous optimal 

capacity and location of DGs and SCs, not only the power 

loss of radial distribution network is reduced, but also the 

voltage profile is enhanced. In this new proposed PSO-OS 

algorithm, an efficient approach that introduce active and 

reactive power loss sensitivity analysis to conduct variation 

of place parameters in standard PSO to increase algorithm 

search efficiency. Shrinking factor is proposed to balance the 

influence of learning factors and control the flying speed of 

particles. The advantages of PSO-OS can be summarized as 

follows: (1) The optimal combination of DGs/SCs positions 

and capacities can be directly calculated by the algorithm. 

The candidate position and capacity are optimized separately 

within the algorithm, which optimizes the search space and 

improves the search efficiency. (2) Sensitivity factor analysis 

is introduced to simplify the search space dimension and 

reduce the convergence time of the algorithm. (3) The 

shrinkage factor is introduced to ensure the accuracy and 

improve the efficiency of optimization. The superiority of the 

PSO-OS is demonstrated on IEEE-33 and IEEE-69 and 

IEEE-119 test system distribution networks and the 

simulation results are presented. By comparing the results of 

various algorithms in the previous literature, it can be known 

that PSO-OS can find solutions with lower active power loss 

and higher voltage level under various cases. Compared with 

the algorithm before the improvement, the PSO-OS 

algorithm has better convergence and stronger optimization 

ability. Thus, this can reduce the loss of electricity and 

improve energy utilization effectively. At the same time, the 

stability of RDN is enhanced. 
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