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Abstract—Due to the complex and dynamic nature of virtual
machine allocation in the cloud, it is difficult to manage and
control the resources or to choose the best allocation of these
resources. In this paper, we propose an optimal model for
allocating computing resources to assess the best management
of system resources where a group of physical machines is
defined as ”reserves”. The controller activates them one by
one when the system has a high number of tasks. The objective
is to maximize the reward of the cloud computing system. This
reward is calculated based on the energy and execution time
of each customer and the characteristics of the system. Finding
the best allocation for such a complex system is a challenge. For
this, we used a heuristic algorithm and dynamic programming
approach. The results analysis showed the advantage of using
our model to control the use of reserve machines to get high
quality of service and low energy consumption.

Index Terms—Cloud computing, Dynamic programming, Re-
sources management, Modeling decision, Reserve machines.

I. INTRODUCTION

CLOUD computing is a new paradigm for the present
and future generation of computing and technology as

it provides appealing services such as flexible services, e-
services and pay-as-use schemes. A cloud computing envi-
ronment can provide a wide variety of resources, including
infrastructure, software and services, to on-demand users. To
have access to these resources, the cloud provider, provides
the requested resources according to their availabilities and
permits the user to access these resources for a specified
period and a specific mission. In contrast to classical ap-
proaches ”own and use”, cloud computing services reduce
the costs of purchasing and managing cloud infrastructure for
cloud customers and allow them to control IT resources in
real-time according to their needs[1]. Besides, dynamically,
cloud resources constitute a heterogeneous and complicated
system and the user’s resource demand can change at any
time. Managing resources in such an environment is a
difficult task[2], but it is an essential function of any dynamic
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system. It demands sophisticated policies and decisions to
manage complex multi-dimensional objectives such as CPU,
memory and network bandwidth. Therefore, for the correct
use of resources, efficient resource management can control
the system resources and try to find an optimal balance
between the QoS requirement and the quantity of energy
consumption [3].

The energy consumption in the cloud data centers has
grown exponentially in the IT sector in recent years. Data
centres, as a principal component of current information and
communication technology, have grown at an unprecedented
rate as IT developers, including Microsoft, IBM, Google and
similar large companies, have developed data centres to sup-
port their cloud and grid computing services[4]. These data
centers are loaded with thousands of servers and switches
that consume huge amounts of energy, increasing operating
costs and carbon dioxide emissions into the environment. On
the other hand, cooling equipment must be used to manage
the heat released by these data centres, which also consume
energy [5], [6]. Hence, the globalization of cloud computing
requires the establishment of large-scale data centers that
contain thousands of computing nodes, which in turn results
in excessive energy consumption and negative environmental
impacts [7], [8].

So, many of the operators have tried to find some algo-
rithms that can minimize energy consumption. The available
algorithms in resource management can be divided into two
groups, depending on whether resource requests are dynamic
or not, and most of the dynamic approaches are heuristic and
lack theoretical performance guarantees.

Therefore, the realistic way to reduce significantly the
energy consumption of a physical machine is to turn on
the machine when this can be justified by the terms of the
request. This is the policy that we propose to improve.

The idea in this paper is to consider a group of physical
machines (PM) as ”reserve”. The reserve status is controlled
by the number of clients in the system on which they are
turned on when the number of tasks in the system becomes
large enough. The question, of course, is how many reserves
we have to use and when we turn on a new PM. The
answer depends on the demand parameters and the cost
function to minimize, and this function should include both
a performance cost (e.g. execution time) and the energy
consumed by the physical machines of the server. Obvi-
ously, there is a compromise between the two parameters,
as performance is improved by increasing the number of
physical machines powered, while power consumption is
improved by increasing the number of physical machines
powered off. That trade-off can be evaluated by analyzing
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and solving a Semi Markov Decision Process (SMDP) model
of the system. The solution provides average performance
and average consumption measurements. This makes it easy
to calculate the cost function and minimize it by maximizing
the total expected reward of the cloud computing system.
However, the resolution of the SMDP problem on a large
scale depends on the dimensionality constraint. Therefore,
we make better use of the problem’s characteristic and
propose a dynamic resource management method. Since the
system model contains a controller for allocation demand,
the optimal policy of the requests is dynamically achieved
by applying the value iteration algorithm (VI) [9], and it
is complicated for a human to predict the best system
configuration (assigning each client as long as the reward
is maximized) without applying an algorithm as proposed
in this document. As an implementation of our algorithm,
we studied the optimal choice of the controller in order
to control the performance of the system and to minimize
energy consumed, and also to answer the question when we
turn on a new physical machine.

The content of this document is organized as follows. It
begins with a literature review in Section 2, followed by
the development of the System Model in Section 3. Section
4 is reserved for the formulation of the system using the
semi-markov decision process. The reward of the system is
calculated and solved in section 5, followed by a numerical
analysis of the performance in section 6. Finally, in section
7 a conclusion and future work are presented.

II. RELATED WORK

In the literature, there are some recent efforts devoted
to managing resources in a cloud computing environment
[10]. Gandhi et al. [11] analyse an ON-OFF policy in which
a server is switched on if there is a pending task and
is switched off if there are no pending tasks. The work
in [12] proposed a novel fitness function to maximize the
energy efficiency (i.e., profit) of cloud data centers while
minimizing the overall energy consumption with reserved
VM requests. Several studies combining the quality of ser-
vice analysis and cloud energy consumption were proposed
recently. Ouammou et al [13] have suggested an energy-
efficient load balancing algorithm. They used a policy to
determine the upper and lower thresholds for each physical
machine. This approach has managed the number of migra-
tions. But the main problem with this approach is that they
used fixed values of the upper and lower thresholds. In [14],
the authors have presented a mathematical queuing model
to study the performance of multi-core virtual machines
hosting SaaS cloud services. The authors in [15] maximize
the use of resources by using two heuristics of consolidation
noted energy-conscious taking into account both active and
inactive energy consumption; the suggested model can be
used to estimate the number of multi-core virtual machine
instances needed to reach the QoS parameters under any
additional workload. other recent works in the research
area have addressed markov chain theory to estimate the
efficiency of queues in the cloud servers. Hanini et al [16]
introduced a continuous markov chain (CTMC) approach
to manage the use of virtual machines with a controlled
system workload. They examined the proposed model on
the base of mathematical analysis of QoS parameters of

the system. Also, there is some published works on the
resources managements as [17], [18] and [19] that formulated
their propositions using the semi markov decision process to
manage the optimal action that will be taken under some
conditions.The authors of [20] are interested in proposing
an algorithm to schedule the client tasks to the resources of
a data center in cloud computing. Their proposed solution,
called OSACO algorithm, is concentrated on client QoS
requirements and aimed to reduce the energy, cost and time.

In general, the majority of dynamic approaches are fo-
cused on heuristics, and consequently do not have sufficient
theoretical guarantees of performance and, to our knowledge,
a dynamic policy of the type proposed here has not been
studied before. and perhaps the model closest to the one
presented here is that examined by Isi mitarini in [21], where
the author studied the problem of energy use when servers
are powered up and down in a frame of the data centers.
This means that after the setup time, all servers start running
simultaneously even if the system does not require all servers.
In [22] focus on an M/M/k queue system with setup costs
M/M/k/Setup.Servers are divided in two types: in run mode
and in sleep mode as a reserve when there is no work to be
done. This gives us reason to reconsider the case where the
configuration time of each server is considered different.

In this paper, we consider resources management as a
stochastic optimization problem. Our purpose in this work
can be summarized as follows:

• To propose a mechanism that helps to manage the
resources by improving QoS and minimizing energy
consumption based on a ”PM reserve” approach.

• To formulate the dynamic virtual machine management
problem as a markov decision process problem, in order
to maximize the reward of the cloud computing system.

Based on the advanced algorithm, we show that our approach
can significantly reduce the evaluation time of VM allocation
solutions in each scalable iteration.

III. SYSTEM MODEL

A. Problem statement

The studied system is a server containing M physical
machines, of which Q are designated as Main Physical
Machines (MPM) and (M − Q) considered as Reserves
Physical Machines (RPM) 0 ≤ Q ≤ M . Considering that
each PM can host many Virtual Machines (VM). In order to
minimize the energy consumption even when we serve many
clients at the same time, we optimally consolidate VMs in
a minimum number of PMs. Clients arrive at the server in a
Poisson process λp and find a controller in front of them that
takes them through a MPM until the system gets n clients
(Jobs) (n is called a ”controller number”). At that time, the
controller sends a feedback to the administrator to informe
him to reduce the rate of clients sent to the servers from
λp to λs, and then the controller must decide whether to
send it to one of the MPMs that contain customers or to
any of the RPM, based on system conditions. The service
times are independent and distributed exponentially with the
following parameters µ1, µ2, ..., µM , such that µi = µp with
i = 1, ..., Q and µj = µs with j = Q+1, ...,M with Q < M .

We notice that when the client arrives, and at least one
of the MPM is available to host this client under some
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Fig. 1. Illustration of the proposed model

conditions related to the workload in these MPMs, the con-
troller send it directly to one of the MPM. In the other case,
when all MPM are noted empties, the controller can either
send the customer to any of the MPMs. In this scenario,
the system controller chooses to allocate multiple customers
to a limited number of MPM in an attempt to reduce the
total energy consumed. Alternatively, the controller can use
a new physical machine from the reserves, thus increasing the
consumption of energy and in return improving the quality
of service. To help the controller to decide what decision
should be made for the benefits of the system, a decision
policy is proposed in this paper. For this, two thresholds are
considered for each PM in order to maintain capacity below
the upper threshold and above the lower, the details of this
idea have been described in [13].So, if a client comes into
the system, a VM describes the request of this client (job)
and it has to be mapped to one of the available MPM as long
as the capacity of this PM after allocation will not exceed the
Upper threshold, and if this client has no place to mapped
to any MPM, then the controller decides to turn on a new
physical machine among the reserves and so on. Figure 1
illustrates the proposed model.

For our analysis, we assumed that the arrival of the clients
follows a poisson process and the service times are exponen-
tially distributed. These assumptions has been usually used
in the literature and can provide adequate approximation of
real systems such cloud computing environment [23] [24]
[25][26].

B. Mathematical formulation

In this sub-section, using integer mixed linear program-
ming, we will mathematically formulate the model that we
have proposed. Table 1 presents the notation used in this
model.
The objective is to reduce as much as possible the number
of machines used from reserves.

The objective function is expressed as follows:

min
zj

M∑
j=1

zj (1)

where zj are integer variables defined by the following

TABLE I
LIST OF IMPORTANT NOTATIONS

.
Notation Meaning

M Number of all physical machines in the server

Q Number of the PMs designated as Main PM

K Maximal number of the VMs that the system can support

l Number of the VMs that each PM can support

n Number of clients used to decide when the system
can turn on a new PM

xpk Number of service requests that have been allocated in the
k PM among the MPM

xrk Number of service requests that have been allocated in the
k PM among the RPM

λp Arrival rate of a VM in MPM

µp Service rate of a VM in MPM

λs Arrival rate of a VM in RPM

µs Service rate of a VM in RPM

Cij Capacity of the VM i located in jth PM

Upperj Upper threshold for PM j

Lowerj Down threshold for PM j

equation

∀j ∈ [1,M ] zj =

{
1, The jth PM is used
0, Otherwise (2)

This optimization is based on linear constrains; each VM can
be hosted just on a PM, and each PM is able to host VMs
not only based on the amount of remaining capacity but also
on the impact of hosting them on the performance of the
system [27]. These constraints are modelled as follows:

• Cj : The total capacity of all VMs located in a PMd

must be between its Upper and Lower thresholds.

Lowerjzj ≤ Cj =

l∑
i=1

CijVij ≤ Upperjzj ,∀j ∈ [1,M ],

(3)
where Vij are decision variables defined by

Vij =

 1,

{
The VM i is mapped to jthPM
∀j ∈ [1,M ], ∀i ∈ [1, l]

0, Otherwise
(4)

Note that if for a given i and j Vij = 1 then zj = 1
• The number of VMs that exist in a physical machines

j, as long as the sum of their capacities do not exceed
the upper threshold, must verify :

nj =
l∑

i=1

Vij ≤ l, ∀j ∈ [1,M ] (5)

• The number of VMs that exist in all MPM, as long as
the sum of their capacities does not exceed the upper
threshold of each PM, must verify:

n =

Q∑
j=1

nj ≤ l ×Q (6)
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• No virtual machine can exist in two physical machines.
M∑
j=1

Vij ≤ 1, ∀i ∈ [1, l], (7)

We can summarize these by adding the objective function to
all the constraints in the follows set of equations:

min
zj

M∑
j=1

zj subject to

Lowerjzj ≤
l∑

i=1

CijVij ≤ Upperjzj ∀j ∈ [1,M ],

M∑
j=1

Vij ≤ 1, ∀i ∈ [1, l].

nj =
l∑

i=1

Vij ≤ l, ∀j ∈ [1,M ].

n =

Q∑
j=1

nj ≤ l ×Q.

(8)
The system must always satisfy the constraints defined

in the above equation. However, taking into account the
dynamic character of the studied environment, it is also
necessary that the chosen actions at any particular time be
designed to minimise the cost caused by the operation of the
system. For this, we will consider an expected reward to be
maximized in the long run of the system. This maximization
makes it possible to determine the optimal policy for deciding
what action to take, this can be done using a markov decision
process [28], [29]. The resolution of such a problem will re-
quire an approach from the theory of dynamic programming.
This is the purpose of the following in this paper.

IV. SYSTEM FORMULATION USING SEMI MARKOV
DECISION PROCESS

A. System states
Let S be the set of states that present the current requests

with a variable number of VMs available in the system :

S = {s|s = (xp, xr, Q, ε) = (xp1, x
p
2, ...x

p
Q, x

r
Q+1, ..., x

r
M , Q, ε)}

Both xpk and xrk are described in Table 1.Let Υ represents the set
of events such as ε ∈ Υ = {Ap, Ar, D} where Ap is the arrival of
the customer when at least one of the MPMs is available, Ar is the
arrival of the customer when all the MPMs already have at least
one customer, and D denotes the leaving of a request allocated to
one of the MPMs or RPMs.

B. Set of actions
We note that in our analysis model, a number of actions are

possible to be taken as part of the set of actions A , i.e:

A = {−1, 0, R, Pr}

At the occurrence of an event, the system controller takes an action
a(s) from the set of actions A under system conditions.

a(s) =

 −1 ε = D ∈ {Dp, Dr}
0 or R ε = Ar
Pr ε = Ap

(9)

When the system receives a new client, the following actions are
determined by the system.

- a(s) = Pr : means that the request was accepted directly into
a MPM before the system had n clients.

- a(s) = R : when the request became after the Q MPMs have
already been used by at least one client, and that client has
been accepted.

- a(s) = −1 : represents the instances when the service request
is terminated and the client leaves the system, and no service
is requested. So, only the information of the number of virtual
machines available in the system must be updated.

- a(s) = 0 : when the request is rejected.

C. Decision time

When a state s and an action a are given, then the service time
to get the next state is indicated by τ(s, a). That is determined by
the average rate γ(s, a) of the events, which is the inverse of the
time interval between two decisions τ(s, a) = γ(s, a)−1.

So the average rate γ(s, a) of the events is the sum of the rate
of all system that can be expressed by:
γ(s, a) =

Qλp +mλs +

Q∑
i=1

µp +

M∑
i=Q+1

µs a(s) = 0, ε = Ar

Qλp +mλs +

Q∑
i=1

ziµp +
M∑

i=Q+1

ziµs a(s) = −1, ε = D

Qλp +mλs +

Q∑
i=1

ziµp +
M∑

i=Q+1

ziµs + µs


a(s) = R, ε = Ar,
Q∑
i=1

Vij > n

Qλp +mλs +

Q∑
i=1

ziµp + µp


a(s) = Pr, ε = Ap
Q∑
i=1

Vij ≤ n

(10)
In Eq (10), if the system does not accept any requests, there is

Q∑
i=1

zi services that exist in the system. Then, the service rate of the

global system is
Q∑
i=1

ziµp. If a request is admitted, then there are

Q∑
i=1

zi+ 1 services in the system, and if the number of clients does

not reach n clients, so the leaving rate is
Q∑
i=1

ziµp +µp. Similarly,

when the system have already received n clients and starts to use

the RPM; then the leaving rate is
Q∑
i=1

ziµp +

M∑
i=Q+1

ziµs + µs

D. Transition Probability

Now that the average event rate is calculated, the transition
probability from the state s to the next state s̄ when the action
a is happens: p(s̄/s, a) can be calculated. In the following we will
discuss possible cases of p(s̄/s, a) according to the s statements as
listed below.

When s = (xp, xr, Q,Ap) and a(s) = Pr :
P (s̄/s, a) =

(xp−Ii)µp

γ(s,a)

{
s̄ = (xp − Ii, x

r, Q,Dp)
a(s) = −1, i = 1, 2, ..., Q.

λs
γ(s,a)

{
s̄ = (xp, xr + Ij , Q,Ar)
a(s) = R, j = 1, 2, ..., (M −Q).

λp

γ(s,a)

{
s̄ = (xp + Ii, x

r, Q,Ap)
a(s) = Pr, i = 1, 2, ..., Q.

(11)

We note that the vector Ii is a null vector with Q elements,
except the ith element which is 1, and the vector Ij is also a null
vector of M −Q elements, except the jth element which is 1.

When s = (xp, xr, Q,Ar) and a(s) = 0 :
P (s̄/s, a) =
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(xp−Ii)µp

γ(s,a)

{
s̄ = (xp − Ii, x

r, Q,Dp)
a(s) = −1, i = 1, 2, ..., Q.

(xr−Ij)µs

γ(s,a)

{
s̄ = (xp, xr − Ij , Q,Dr)
a(s) = −1, j = 1, 2, ..., (M −Q).

λs
γ(s,a)

{
s̄ = (xp, xr, Q,Ar)
a(s) = 0.

(12)

When s = (xp, xr, Q,Ar) and a(s) = R :
P (s̄/s, a) =

(xp−Ii)µp

γ(s,a)

{
s̄ = (xp − Ii, x

r, Q,Dp)
a(s) = −1, i = 1, 2, ..., Q.

(xr−Ij)µs

γ(s,a)

{
s̄ = (xp, xr − Ij , Q,Dr)
a(s) = −1, j = 1, 2, ..., (M −Q).

λs
γ(s,a)

{
s̄ = (xp, xr, Q,Ar)
a(s) = 0.

λs
γ(s,a)

{
s̄ = (xp, xr + Ij , Q,Ar)
a(s) = R, j = 1, 2, ..., (M −Q).

(13)

When the state s = (xp, xr, Ap), and ε = D, no specific action
is required except an update of active VMs, as a(s) = −1,the
associated transition probability is given as follows
P (s̄/s, a) =

(xp−Ii)µp

γ(s,a)

{
s̄ = (xp − Ii, x

r, Q,Dp)
a(s) = −1, i = 1, 2, ..., Q.

(xr−Ij)µs

γ(s,a)

{
s̄ = (xp, xr − Ij , Q,Dr)
a(s) = −1, j = 1, 2, ..., (M −Q).

λs
γ(s,a)

{
s̄ = (xp, xr + Ij , Q,Ar)
a(s) = R, j = 1, 2, ..., (M −Q).

λp

γ(s,a)

{
s̄ = (xp + Ii, x

r, Q,Ap)
a(s) = Pr, i = 1, 2, ..., Q.

(14)

V. COST AND OPTIMAL SOLUTION

The system cost under the state s and the taken action a is noted
by :

c(s, a) = r(s, a)τ(s, a) (15)

The c(s, a) is the system cost estimated by taking the action a
under the state s in the event ε happens.
This combines both the revenue and the cost of the system. The
main benefit of the system is to conserve energy consumption and
ensure the quality of service. The function must reflect the impact
of both [30].
To calculate the energy consumed in the system, the following
equation is used :

Eused = EQ +

M∑
j=1

l∑
i=1

δ × Cijt+

M∑
j=Q+1

Pjzjt (16)

where EQ is the energy needed for monitoring the system when
just the MPM is running, Pj is the power consumption to start a
new PM from RPM, and δ is a powerful weight coefficient.
Besides, r(s, a) is defined by the number of occupied VMs in the
PMs taking into account the total capacity of the system i.e.

c(s, a) =

EQ +
M∑
i=1

Ciδt+

M∑
i=Q+1

Pit a(s) = 0, ε = Ar

EQ +

M∑
i=1

Ciziδt+

M∑
i=Q+1

Pizit a(s) = −1, ε = D

EQ +

M∑
i=1

Ciziδt+
M∑

i=Q+1

Pizit+ Cijδt


a(s) = R, ε = Ar,

j = 1, ..., Q,

Q∑
i=1

Vij ≤ n.

EQ +

Q∑
i=1

Ciδt+ Cijδt


a(s) = P, ε = Ap,

jj = 1, ..., Q,

Q∑
i=1

Vij > n.

(17)

A. Discounted cost model
Let us consider τn = tn − tn−1 the nth time of stay, between

two successive instants of transition, and an is the decision taken
at the moment tn to get the moment tn+1.
For a given policy π, and an instant t, a cost c(st, at) is assumed
and is defined by :

c(st, at) = r(st, at)τ(st, at) (18)

(st)t∈R+ is a markov process of decision making for state spaces.
F = NM and actions A = {−1, 0, P,R}.

V δ(s, π) = Eπ

[∫ ∞
0

e−δtc (st, at) dt/s0 = s

]
(19)

where Eπ is the mean under the policy π, δ > 0 and s is an
initial state of the system. the optimal policy exists because the
cost function is positive so the set of actions is finite; according to
assumption 2 of the proposition in subsection C [31].

B. Discretization of the problem
In this section, we are going to look for a transformation of

the problem into an equivalent dynamic programming problem in
discrete-time as a normalization procedure[32].
let ν = λp + λs +Qµp + (M −Q)µs.
We define 0 < t0 < t1 < ... < tn < ... as the moments
of transition in the state of the system. The time intervals are
independents and exponentially distributed:

P (tk+1 − tk > t) = e−tν k = 0, 1, 2, . . . (20)

Proposition
The cost V δ(s, π) for any policy π and any initial condition s is :

Eπ

(∫ +∞

0

e−δtc (st, at) dt

)
=

1

δ + ν

+∞∑
n=0

(
ν

δ + ν

)n
Eπ (c) (sn, an))

(21)
where sn = stn and an = atn .

Proof: For any couple (s, a), and any policy π and any initial
condition s, the cost V δ(s, π) is :

Eπ
(∫ +∞

0
e−δtc (st, at) dt

)
= Eπ

(∑+∞
n=0

∫ tn+1

tn
e−δtc (st, at) dt

)
=
∑+∞
n=0 Eπ

(∫ tn+1

tn
e−δtc (sn, an) dt

)
=
∑+∞
n=0 Eπ

(∫ tn+1

tn
e−δtdt

)
Eπ (c (sn, an))

(22)

The equality (22) results from the fact that the sequence of
states are independents of the stay times because the policy π is
deterministic: it does not depend on τn.
So, we have:

Eπ
(∫ +∞

0
e−δtc (xt, at) dt

)
=
∑+∞
n=0 Eπ

(∫ tn+1

tn
e−δtdt

)
Eπ (c (sn, an))

(23)

Since the variables τn are independents, so:

Eπ
(∫ tn+1

tn
e−δt

)
= Eπ

(
e−δtn

∫ τn+1

0
e−δtdt

)
= 1

δ
Eπ
(
e−δtn

) (
1− Eπ

(
e−δτn+1

))
= 1

δ

(
ν
δ+ν

)n (
1− ν

δ+ν

)
(24)

Indeed, for all

n ≥ 0, τn+1 ∼ exp(ν) =⇒ Eπ
(
e−δτn+1

)
=

ν

δ + ν

and

Eπ
(
e−δtn

)
= Eπ

(
e−δ(

∑n
k=1 tk−tk−1)

)
=
∏n
k=1 Eπ

(
e−δτk

)
=
(

ν
δ+ν

)n (25)

hence
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Eπ
(∫ +∞

0
e−δtc (st, at) dt

)
= 1

δ+ν

∑+∞
n=0

(
ν
δ+ν

)n
Eπ (c (sn, an))

(26)

Based on this proposal, we can write:

V δ(s, π) =
1

δ + ν
Eπ

(
+∞∑
n=0

(
ν

δ + ν

)n
c (sn, an) /s0 = s

)
(27)

which is an expression of the discrete-time discounted cost under
the policy π, with the discount rate β = v

δ+ν
, (0 < β < 1) and the

cost function c(sn;an)
δ+ν

. Then the cost is defined by:

V βN (s, π) = Eπ

(
N−1∑
n=0

βnc (sn, an) /s0 = s

)
(28)

and the cost β-discounted for infinite horizon is defined by :

V β(s, π) = Eπ

(
+∞∑
n=0

βnc (sn, an) /s0 = s

)
(29)

C. Existence of the optimal policy
Proposition

i.) For all s ∈ F, we have: V βN (s) = min
a∈A(s)

{
c(s, a) + β

∑
s̄∈F

p(s̄/s, a)V βN−1(s̄)

}
, ∀N ≥ 1.

V0(·) = 0

ii.) If the cost is positive and the set of actions is finite, then:

lim
N→+∞

V βN (s) = V β∞(s) = V β(s)

and V β so the only solution is given by the following equation:

V β(s) = min
a∈A(s)

{
c(s, a) + β

∑
s̄∈F

P (s̄/s, a)V β(s̄)

}

For the proof of this proposition, see [31][32].

VI. NUMERICAL RESULTS AND ANALYSIS

In this section, the suggested scheme (SMDP) is compared with
other schemes and the numerical results are obtained using Matlab
and then discussed to support our performance analysis. In the
meantime, the principal parameters of our analysis are given in
Table 2.

Parameter K M n λp λs µp µs Pi ej

Value 64 16 8-32 1-9 7 8 6 40W 15W

TABLE II
SYSTEM PARAMETERS

In order to compare, we evaluate the performance of the follow-
ing two reference schemes.
Greedy Algorithm (GA) scheme: this algorithm is designed to
maximize the reward of the system at each moment in any decision
[33].
Location Precedence (LP) scheme: which is a heuristic algorithm
that applies a priority policy to send requests to the MPM or RPM.
The LP scheme always assignes the more virtual machines in a
physical machine that can support [33].
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Fig. 2. System reward under different arrival rates for studied schemes.

Figure 2 illustrates the system reward under the three compared
schemes. When λp is low, the differences between the schemes
are slight, because the virtual machines in the MPM are sufficient.
However, with the increase of λp, the reward of all schemes
increases gradually and the benefit of the SMDP scheme becomes
more evident. Besides, the LP scheme is less efficient, while the
SMDP scheme is more efficient than the GA scheme. This is
because the LP scheme does not consider the state of the reserves
at all. However, the SMDP scheme sends the request to the RPM,
which reduces the workload of the MPM in order to improve the
quality of service expected from the system.
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Fig. 3. System power consumption of each scheme under different number
of active machines .

In figure 3, we present the mean power consumption in the
system in relation to the number of activated machines. For all the
three schemes, the system starts with a minimum consumption EQ
equal 800 W. According to the decisions made by the algorithms
GA and LP to use a new machine among the reserves, their power
consumption increases rapidly, because even if a machine is not
fully loaded, the algorithm prefers to use a new machine for new
customers until all machines are activated and then it recycles the
possibility to send the incoming customers to the machines that
still have the capacity. For our SMDP approach we observe that the
power consumption remains minimal by using an optimal number
of MPMs, after that the controller decides to use the RPMs one by
one until all machines are activated. The fourth graph shows the
energy consumption without using the concept of reserve machines
and it is clear that the consumption is high even the number of
activated machines is low. From this, we can say that our algorithm
can conserve more energy over time compared to other approaches.
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Figure 4 shows the variation in the system’s power consumption
when the number of reserves m = M−Q is changed and compares
it to the static mode when all PMs are executed for the first time
(there are no reservations). This figure shows that the last case, when
all particles are running even if they are not necessary, is the worst
in terms of energy consumption . In addition, power consumption
becomes lower when a few PM are left in reserve. As shown in
the figure, we notice that when the number of reserves increases,
the power use is saved, and for example, when we use 8 PMs as
reserves, we can save up to 50% of power (with 32 customers) and
37.5% when we reserve 6 PMs and 12.5% when we reserve 2PMs.
This reservation of PM leads to a reduction in energy consumption
and optimal use of resources.
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Fig. 5. Mean power consumption curves as function of set of active
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The variation in power consumption as a function of the set of
active VMs is illustrated in figure 5, this variation is presented in
the form of intervals which present the role numbers of machines
reserved in the system.

This figure confirms the effect of the number of active machines
on system performance as well as the effect of the reservation of
physical machines on energy consumption. But the most important
fact deduced from this figure is that the number of RPMs has a
good effect on the performance when the system load is not very
large. However, the more the number of active machines increases
the more the energy consumption tends to become independent of
the number of reserved physical machines. This can be explained
by the fact that, in order to ensure good performance, and when
the number of requests increases, the system is forced to put RPMs
in on mode, and these RPMs consume energy in the same way as
the MPMs, which increases the energy consumption. In the case,
without reserves (the green bar) the consumption remains high even
if we have only one customer.
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Figure 6 presents the probability to send new clients to MPM
for the three schemes. For our SMDP scheme we notice that the
probability that the controller uses the main machines until the
system has n clients is equal to 1. That means that the only decision
possible for the controller is to use the MPM until he gets n
clients. After that, the possibility to send the customers to any
MPM decreased nearly to 0.3, which means that the probability
to use a machine among the reserves increased to 0.6. This means
that the controller prefer to use new machine from RPM to ensure
the QoS rather than use only the MPM to save energy. When all
the RPM are busy and the customers still arrive, the probability to
send uniformly to one of the PM is increased until all the MPM
are full and then the probability to send to any MPM is equal to
0. For the other two algorithms their probabilities decision results
are presented in the same figure (orange color and red color). It is
clear that the GA algorithm is not stable; it means that it is zigzag
between the choices of decision to maximize the instantaneous cost
of the system until all the MPM are full. For the LP scheme, it is
noted that it has no interest to use new machines reserved, except
the already used, until all MPM are filled and that is obvious in the
figure as the probability to send to MPM equal 1 when all MPM
are full and then the probability is equal to 0.

The probabilities of decision to make each one from the two
possible actions for our proposed scheme are presented in figure
7. This latter shows that before having n customers, the obvious
decision is to choose a MPM with a probability equal to 1 and to
use a RPM with a probability equal to 0. After, when the system has
n clients the controller allows the possibility to turn on the reserve
machines, in this case we notice that the probability of sending a
new client to RPM is increasing. On the contrary, the probability
of sending clients to MPM is decreasing until the system reached a
certain number of clients (when all MPM and RPM machines have
at least l ∗ Q clients) where the controller chooses one more time
to use the MPMs depending on the state of the system and taking
into account the QoS. Towards the end, the probability to send to
RPM is 1 and to send to MPM is 0, and this is normal because all
the MPMs are busy and it only remains the possibility to install the
VMs in RPM.

VII. CONCLUSION

The mapping of virtual machines to physical machines in a cloud
computing system poses several challenges due to the dynamic
nature of such an environment and to energy and performance
constraints in the system. In this paper, we have been interested
in modeling and evaluating the performance of a cloud computing
system where some physical machines were considered as reserves
and a controller turn them on one by one under some conditions.
The optimal resource allocation problem with the objective of
maximizing the expected reward is formulated as a markov decision
process problem. The optimal policy for controlling customer
arrivals has been proven by the theory of dynamic programming.
The numerical results show that the proposed scheme significantly
outperforms all the considered schemes and improves the ex-
pected reward. Moreover, the proposed approach can significantly
reduce the energy consumption of the system. These results are
demonstrated in various scenarios. In perspective, it will be more
interesting to be able to determine the optimal number of physical
machines that should be reserved for a given system workload.
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