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Abstract—Binary particle swarm optimization (BPSO)

algorithm can map the original continuous searching space to
the binary searching space by introducing a new velocity
transfer function. For the 0-1 knapsack problem, a binary
particle swarm optimization algorithm based on the Z-shaped
probability transfer function was proposed. In order to solve
the shortcomings of BPSO algorithm based on S-shaped and
V-shaped probability functions that it is easy to fall into local
optima and slow convergence speed, a new probability function
(Z-shaped transfer function) was proposed. Then a penalty
function strategy is adopted to deal with the violation of the
constraint solutions. In order to verify the effectiveness of the
proposed algorithm, the BPSO algorithm based on the
Z-shaped transfer function with different parameters was used
to solve the typical 0-1 knapsack problems,which is compared
with the BPSO algorithm based on the S-shape and the
V-shape transfer functions. Simulation experiment results
show that the proposed Z-shaped probability transfer function
improves the convergence speed and optimization accuracy of
the BPSO algorithm.
Index Terms—0-1 Knapsack Problem, Binary Particle

Swarm Optimization Algorithm, Transfer Function

I. INTRODUCTION

HE knapsack problem (KP) and its variables are part of
the classic NP-hard combinatorial optimization

problems[1]. The current classification of knapsack
problems includes 0-1 knapsack problem, multi-choice
knapsack problem, multi-constraint knapsack problem,
bounded and unbounded knapsack problems, etc. The most
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basic knapsack problem is 0-1 knapsack problem (0-1 KP),
which plays an important role in many fields, such as
resource allocation, warehouse loading and project selection
[2-3].

With the development of computer technology, many
heuristic algorithms have been used to solve the 0-1
knapsack problems in recent decades. Zou et al. [4] proposed
a new global harmony search algorithm for the 0-1 knapsack
problem (NGHS). The algorithm includes two important
operations: location update and small probability genetic
mutation. The former can make the worst harmony of the
harmony memory quickly move to the global optimal
harmony in each iteration, and the latter can effectively
prevent the NGHS from falling into the local optimal
harmony. Zhang et al. [5] proposed a new bionic model to
solve this problem. There are three main steps in the new
method. First, the 0-1 knapsack problem is transformed into
a directed graph problem using a network conversion
algorithm. Then, the longest path problem is transformed
into the shortest path problem by using the amoeba
biological model. Finally, the amoeba algorithm can be used
to solve the shortest path problem well. Bhattacharjee et al.
[1] proposed an modified discrete shuffled frog leaping
(MDSFL) algorithm to solve the 0-1 knapsack problems.
The proposed algorithm includes two important operations:
the "particle swarm optimization" technology of local search
and the information mixed competitiveness of "shuffle
complex evolution" technology. In order to improve the
performance of the harmony search algorithm in solving
discrete optimization problems, Tuo et al. [6] proposed a
new harmony search algorithm based on teaching-learning
strategies to solve the 0-1 knapsack problem. In the HSTL
algorithm, a method of dynamically adjusting the dimension
of the selected harmony vector in the optimization process is
first proposed. In addition, four strategies, including
harmony memory, teaching-learning strategies, local pitch
adjustment and random mutation, are used to improve the
performance of the HS algorithm. Another improvement of
the HSTL method is the use of dynamic strategies to change
parameters, which effectively maintains the balance
between global exploration and local development. Truong
et al. [7] proposed a new artificial chemical reaction
optimization algorithm based on the greedy strategy for the
0-1 knapsack problem. The artificial chemical reaction
optimization (ACROA) that stimulates the chemical
reaction process is used to realize local and global search.
The repair operator combining greedy strategy and random
selection is used to repair the in-feasible solution. Zhou et al.
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[8] aimed at the problem that many algorithms have low
accuracy in solving 0-1 knapsack problems and are easy to
fall into local optimal solution, a binary version of monkey
algorithm based on greedy strategy was proposed to enhance
the local search ability, which is modified in the process of
transformation to avoid falling into the local optimal
solution, and the cooperative process is adopted to accelerate
the convergence speed of the algorithm. Zhou et al. [9]
proposed a new complex-valued coding bat algorithm
(CPBA), where an effective global optimization
strategy-complex value coding method was introduced.
According to the two-dimensional nature of complex
numbers, the real and imaginary parts of the complex
numbers are updated respectively. This algorithm can
effectively disperse the bat population and improve the
convergence performance. CPBA improves detection
capabilities and is effective for solving small-scale and
large-scale 0-1 knapsack problems.

In the past two years, many scholars have proposed many
other strategies to solve 0-1 KP problems to further improve
the performance of the algorithm. Gao et al.[10] proposed a
quantum-encoding-based wolf packet algorithm (QWPA) to
improve its performance and solve the 0-1 knapsack
problems. There are two important operations in quantum
mechanics: quantum rotation and quantum collapse. The
first step moves the population to the global optimal value,
and the second step helps to avoid individuals from falling
into the local optimal value. Rizk-Allah et al. [11] proposed
a new binary bat algorithm (NBBA) to solve the 0-1
knapsack problems, which combines two important stages
of binary bat algorithm (BBA) and local search scheme
(LSS). Bat algorithm aims to improve the exploration ability
of bats, while LSS aims to improve the utilization trend, so it
can prevent BBA-LSS from falling into local optimum. In
addition, LSS starts searching from the BBA that has been
found so far. In this way, BBA-LSS enhances the diversity
of bats and improves the convergence performance of bats.
Huang et al. [12] proposed a binary multi-scale quantum
harmonic oscillator algorithm (BMQHOA) based on genetic
operators to solve the 0-1 knapsack problems. The
framework consists of three nested stages: energy level
stabilization, energy level drop and scale adjustment. In
BMQHOA, the number of different bits between solutions is
defined as the distance between solutions, which is used to
map a continuous search space to a discrete search space. In
order to ensure the constraint of the knapsack capacity, a
greedy strategy repair operator was used in BMQHOA. This
paper proposes a binary particle swarm optimization
algorithm based on Z-shaped probability transfer function to
solve the 0-1 knapsack problems. The simulation results
verify the effectiveness of the proposed algorithm.

II. 0-1 KNAPSACK PROBLEM

A. Mathematical Model of 0-1 Knapsack Problem
Knapsack problem is a combinatorial optimization

problem with a wide range of applications. It is not only used
in investment decision-making, loading, inventory and so on,
but also often appears in the form of sub problems in the
large-scale optimization problems[1]. The general
description of the knapsack problem is described as follows.

Item set  1 2, , , nU u u u L is a set of items to be put into a
backpack with a capacity of C Z  . Select some items in
U (denoted as set A) and load them into the backpack so
that the total weight

i
iu A
w

 of these items does not exceed
C , and make the total value reach the maximum

i
iu A
v

 .
Generally speaking, the 0-1 KP can be defined as follows
[13].

1
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i ii
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
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The constraints are described as follows:

1

n
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where, 0    1 ,  1,2, ,ix or i n  L . The 0-1 variable ix has
the following meanings:

1,       
0  

i
j

i

if u A
x

if u A


   ， 
(3)

where, iw indicates the weight of the i -th item, iv indicates
the value of the i -th item, and ix indicates whether the i -th
item is put in the backpack.

B. Coding Method and Constraint Handling of 0-1
Knapsack Problem

(1) Coding Method
Based on the characteristics of the 0-1 knapsack problem,

as described in Eq. (3), a binary coding method is used, that
is to say the code 1 means the item is put into the backpack
and the code 0 means the item was not put in the backpack.

(2) Constraint Processing
According to Eq. (3), it can be seen that when solving the

0-1 KP, we will encounter a constraint violation. In this
paper, the punishment function will be adopt to deal with the
solution that violates the constraint.

( )                              
( )

( ) ( )        
i i

i i i i

f x if w x C
f x

f x w x C if w x C


    
(4)

where,  is the penalty factor. After experimental analysis,
the penalty factor is set as 2 in the following simulation
experiments.

III. PARTICLE SWARM OPTIMIZATION
ALGORITHM

Particle swarm optimization (PSO) algorithm is an swarm
intelligent optimization algorithm proposed by J. Kennedy
and R. C. Eberhart in 1995 [14-15]. It simulates the flight
and foraging behavior of birds and optimizes the colony of
birds through collective cooperation between birds. In the
PSO algorithm, the potential solution Is a bird in the
searching space, named as a particle. Later, Y. Shi and R. C.
Eberhart added a new impact factor w to improve detection
and exploration, and formed the current standard PSO
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algorithm [16]. All particles have an appropriate value
determined by the optimization function. Each particle has a
speed, which determines the direction and distance of their
flight,and then the particle follows the current optimal
particle to search in the solution space. The velocity and
position of the particles are updated by:

1 1 2 2( ) ( )id id id id gd idv w v c r p x c r p x      (5)

id id idx x v  (6)

where, idv is the velocity of the i -th particle in the d -th
dimension; idp is the optimal position of the i -th particle so
far; idx is the current position of the i -th particle in the d -th
dimension; gdp is the best position searched by PSO
algorithm so far; w is the inertia weight, and linearly
decreasing weights are used in this article, that is to say

max max min max( ( )) /w t w w t   , where maxw represents the
maximum value of the inertia weight, minw represents the
minimum value of the inertia weight, t represents the
current iteration number, and maxt represents the maximum
number of iterations. This principle is still used in the binary
version PSO algorithm; 1r and 2r are two acceleration
weight coefficients randomly generated between [0,1]; 1c
and 1c are acceleration numbers, and the value 2 is used in
this paper [17].

IV. BINARY PARTICLE SWARM OPTIMIZATION
ALGORITHM

A. Typical Binary Particle Swarm Optimization
Algorithm

In binary particle swarm optimization (BPSO) algorithm,
the velocity update equation has not changed, but a new
velocity transfer function is introduced to map the original
continuous searching space to the binary searching space.
The concept of transfer function was originally proposed by
Kennedy and Eberhart [18], which allows PSO algorithm to
run in a binary searching space. In this version, the particle
position vector can only be 0 or 1.The effect of velocity is
the probability that the indication bit takes 0 or 1, so they
propose a Sigmoid transfer function. As shown in Eq. (7),
this function can convert all real values of velocity into
probability values [0,1].

( )

1( ( ))
1

k
i

k
i v t

T v t
e




(7)

where, ( )k
iv t represents the velocity of the particle i at the

k -th dimension and t -th iteration.
After converting the velocity into a probability value, the

position vector can be updated with the probability of its
velocity described as follows.

0        ( ( ))
( 1)

1        ( ( ))  

k
ik

i k
i

if rand T v t
x t

if rand T v t

   


(8)

where, ( )k
iv t represents the velocity of the particle i at the

k -th dimension and t -th iteration.
This transfer function is called the S -shaped transfer

function, and a set of S -shaped transfer functions are
formed by changing the parameter. Their expressions are
shown in Table 1 [17].

In 2009, Rashedi et al. proposed a new transfer function
named V-shaped transfer function and a new position update
strategy [19], which are shown in Eq. (9).

1( ( 1))        ( ( ))
( 1)

( )                 ( ( ))  

k k
i ik

i k k
i i

x t if rand T x t
x t

x t if rand T x t

    


(9)

where, ( )k
ix t is the position of the i -th particle in the k -th

dimension and the t -th iteration; 1( ( 1))k
ix t  is the

complement of ( )k
ix t .

According to the characteristics of the V-shaped transfer
function, a series of V-shaped transfer functions are
proposed by using different functional equations. Their
expressions are shown in Table 2 [19].

B. Improved Binary Particle Swarm Optimization
Algorithm

According to the characteristics of the BPSO algorithm,
the continuous searching space is mapped to the discrete
binary space. The purpose of the transfer function is to
express the probability of the elements of the position vector
from 0 to 1, so the transfer function must be a bounded
function [0,1]. In addition, when the velocity value is 0, the
probability of change should be relatively small, because
when the particle finds the optimal value, the velocity should
be reduced to 0, and the probability of particle position
change should be 0. According to the characteristics of the
transfer function, a new Z-shaped transfer function is
proposed [20], which is defined as follows.

( )( ( )) 1
k
ix tk

iT x t a  (10)

TABLE 1. S-SHAPED TRANSFER FUNCTIONS

Algorithm name Name Expression

BPSO1 1S 2
1( ) 1/ (1 )xT x e 

BPSO2 2S  2 ( ) 1 / 1 xT x e 

BPSO3 3S  / 2
3( ) 1 / 1 xT x e 

BPSO4 4S  /3
3( ) 1 / 1 xT x e 

TABLE 2. V-SHAPED TRANSFER FUNCTIONS

Algorithm name Name Expression

BPSO5 1V   5( ) / 2T x erf x

BPSO6 2V 6( ) tanh( )T x x

BPSO7 3V   2
7 ( ) / 1T x x x 

BPSO8 4V    8 ( ) 2 / arctan / 2T x  
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where, ( )k
ix t is the position of the i -th particle in the k -th

dimension and the t -th iteration; a is a positive integer. By
changing the value of a , a set of Z -shaped functions are
obtained. Their expressions and curves are shown in Table 3
and Fig. 1 respectively [20].

V. IMPROVED BPSO ALGORITHM TO SOLVE 0-1
KNAPSACK PROBLEMS

This paper has conducted a lot of experimental research to
verify the performance of the improved BPSO algorithm.
We conducted small-scale (Test 1-Test 6), medium-scale
(Test 7-Test 9) and large-scale (Test 10) random tests on
BPSO algorithms. This part is divided into two groups of
experiments. The first group of simulation experiments are
used to test the performance of the Z-shaped transfer
function under different parameters, and the second group of
simulation experiments is based on the first group, that is to
say that the Z-shaped transfer function under the best
parameter in the first group is selected and compared with
the S-shaped and V-shaped transfer function, which verifies
the effectiveness of the improved BPSO algorithm.

A. Solving 0-1 Knapsack Problem by BPSO Algorithm
Based on Z-shaped Transfer Functions with Different
Parameters

In order to make the experimental results more accurate
and objective, in this simulation experiments, each set of 0-1
NP problems are run 10 times, then record the best value
(Best) and worst value (Worst) of the 10 results, and
calculate the average (Ave) and variance (Std) of the results.
The simulation results are listed in Table 4 and the
convergence curves are shown in Fig. 2.

TABLE 3. Z-SHAPED TRANSFER FUNCTIONS

Algorithm name Name Expression

BPSO9 1Z 9 ( ) 1 2 xT x  

BPSO10 2Z 10 ( ) 1 5xT x  

BPSO11 3Z 11( ) 1 8 xT x  

BPSO12 4Z 12 ( ) 1 20 xT x  

Fig. 1 Z-shaped transfer functions.

TABLE 4. 0-1 KNAPSACK PROBLEMS SOLVED BY BPSO ALGORITHMS BASED
ON Z-SHAPED PROBABILITY TRANSFER FUNCTION WITH DIFFERENT

PARAMETERS

Best Worst Ave Std

Test 1

BPSO9 80.00 80.00 80.00 0.00

BPSO10 80.00 80.00 80.00 0.00

BPSO11 80.00 79.00 79.90 0.30

BPSO12 80.00 80.00 80.00 0.00

Test 2

BPSO9 647.40 647.40 647.40 1.14E-13

BPSO10 647.40 647.40 647.40 1.14E-13

BPSO11 647.40 644.50 646.53 1.33

BPSO12 647.40 644.50 647.11 0.87

Test 3

BPSO9 1042.00 1037.00 1040.00 2.45

BPSO10 1042.00 1037.00 1041.50 1.50

BPSO11 1042.00 1027.00 1036.50 5.22

BPSO12 1042.00 1032.00 1038.50 3.20

Test 4

BPSO9 1042.00 1037.00 1040.00 2.45

BPSO10 1042.00 1042.00 1042.00 0.00

BPSO11 1042.00 1032.00 1038.50 3.20

BPSO12 1042.00 1027.00 1038.00 4.36

Test 5

BPSO9 440.00 408.00 431.00 10.06

BPSO10 452.00 440.00 450.30 3.74

BPSO11 452.00 423.00 442.00 9.87

BPSO12 452.00 422.00 436.60 9.40

Test 6

BPSO9 10911.00 10898.00 10905.90 7.00

BPSO10 10913.00 10909.00 10912.00 1.61

BPSO11 10913.00 10906.00 10909.80 2.18

BPSO12 10913.00 10895.00 10908.90 5.19

Test 7

BPSO9 2932.00 2721.00 2797.10 66.84

BPSO10 2997.00 2906.00 2949.20 28.90

BPSO11 2928.00 2825.00 2875.00 29.43

BPSO12 2955.00 2862.00 2903.60 26.50

Test 8

BPSO9 3756.00 3479.00 3652.20 97.92

BPSO10 4002.00 3794.00 3896.20 53.33

BPSO11 3887.00 3696.00 3825.40 56.25

BPSO12 3944.00 3719.00 3837.90 57.25

Test 9

BPSO9 3450.00 3167.00 3327.60 68.52

BPSO10 3671.00 3535.00 3630.70 37.74

BPSO11 3649.00 3456.00 3558.20 51.86

BPSO12 3666.00 3505.00 3573.50 45.32

Test 10

BPSO9 6502.00 6139.00 6349.20 123.92

BPSO10 7032.00 6701.00 6862.40 115.36

BPSO11 6886.00 6533.00 6718.10 94.12

BPSO12 6919.00 6486.00 6752.20 123.58
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(a) Test 1

(b) Test 2

(c) Test 3

(d) Test 4

(e) Test 5

(f) Test 6
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(g) Test 7

(h) Test 8

(i) Test 9

(j) Test 10

Fig. 2 0-1 knapsack problems solved by BPSO algorithms with Z-shaped
Probability Transfer Function with different parameters.

It can be seen from Table 4 that for the small-scale
knapsack problems, changing the parameters of the
Z-shaped transfer function has little effect on the results of
the experiments. Especially for Test 1-Test 4, the results
obtained by the Z-shaped transfer function under different
parameters are the same. However, as the scale increases,
such as Test 5- Test 6, when the parameter of BPSO10 is set
as 5, it shows better performance. For the medium-scale
knapsack problems, as shown in Test 7-Test 9, BPSO10 has
found a better optimal value. It is also seen from the Std data
that the value of BPSO10 is the smallest, that is to say that
when the parameter is set to 5, the algorithm is the best
stable and has better robustness. For the large-scale
knapsack problems, it can be seen from the test results that
the data of BPSO9-BPSO12 first becomes larger and then
smaller, reaching the optimal value at BPSO10, and the best
solution is obtained. It can be seen from Fig. 2 that for
small-scale problems, although the experimental results are
similar, in most cases BPSO10 can find the optimal value
first and has a faster convergence speed. For medium-scale
problems, BPSO10 has the highest convergence accuracy,
and Test 7 and Test 9 have the fastest convergence speed.
For large-scale problems, BPSO10 has the highest
convergence accuracy. In terms of convergence speed,
although it is slower than BPSO9 and BPSO11, it may
converge when the number of iterations is 17, so it is within
an acceptable range.

B. Solving 0-1 Knapsack Problem by BPSO Algorithm
Based on Different Transfer Functions

In the experiments in this section, in order to further
verify the performance of the improved algorithm, the best
Z-shaped transfer function (BPSO10 with parameter 5) was
carried out comparison experiments with S-shaped and
V-shaped transfer function. In the simulation experiments,
the above 10 sets of data are also selected, and each set of
data was run 10 times. The experimental results are shown in
Table 5, and the convergence curves are shown in Fig. 3.
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TABLE 5. 0-1 KNAPSACK PROBLEMS SOLVED BY BPSO ALGORITHMS WITH
DIFFERENT TRANSFER FUNCTIONS

Best Worst Ave Std

Test 1

BPSO1 80.00 80.00 80.00 0.00

BPSO2 80.00 80.00 80.00 0.00

BPSO3 80.00 80.00 80.00 0.00

BPSO4 80.00 80.00 80.00 0.00

BPSO5 80.00 79.00 79.90 0.30

BPSO6 80.00 80.00 80.00 0.00

BPSO7 80.00 80.00 80.00 0.00

BPSO8 80.00 80.00 80.00 0.00

BPSO10 80.00 80.00 80.00 0.00

Test 2

BPSO1 647.40 647.40 647.40 0.00

BPSO2 647.40 647.38 647.39 0.01

BPSO3 647.40 644.50 647.10 0.87

BPSO4 647.40 627.91 645.11 5.82

BPSO5 647.40 635.13 643.45 4.95

BPSO6 647.40 644.50 646.52 1.32

BPSO7 647.40 633.16 644.52 4.02

BPSO8 647.40 634.67 644.29 4.82

BPSO10 647.40 647.40 647.40 0.00

Test 3

BPSO1 1042.00 1016.00 1036.40 7.50

BPSO2 1042.00 1007.00 1026.20 9.95

BPSO3 1037.00 1013.00 1026.70 9.71

BPSO4 1032.00 994.00 1009.10 11.12

BPSO5 1037.00 1008.00 1025.60 9.93

BPSO6 1037.00 1016.00 1025.00 7.80

BPSO7 1037.00 1017.00 1032.10 5.75

BPSO8 1037.00 985.00 1028.00 15.74

BPSO10 1042.00 1042.00 1042.00 0.00

Test 4

BPSO1 1042.00 1016.00 1035.20 7.78

BPSO2 1037.00 1015.00 1027.00 8.38

BPSO3 1027.00 992.00 1012.00 9.15

BPSO4 1042.00 993.00 1016.10 15.51

BPSO5 1037.00 1019.00 1030.00 7.80

BPSO6 1037.00 1009.00 1026.40 9.54

BPSO7 1037.00 1010.00 1023.80 9.05

BPSO8 1037.00 997.00 1021.90 10.18

BPSO10 1042.00 1037.00 1041.50 1.50

Test 5

BPSO1 452.00 423.00 439.80 9.14

BPSO2 452.00 421.00 431.40 8.67

BPSO3 439.00 387.00 418.60 14.16

BPSO4 428.00 392.00 413.00 13.57

BPSO5 376.00 237.00 318.80 38.79

BPSO6 406.00 237.00 343.00 52.69

BPSO7 423.00 322.00 386.30 26.59

BPSO8 435.00 366.00 395.10 21.78

BPSO10 452.00 452.00 452.00 0.00

Test 6

BPSO1 10910.00 10899.00 10903.70 2.90

BPSO2 10910.00 10898.00 10903.50 3.47

BPSO3 10906.00 10891.00 10898.10 5.07

BPSO4 10904.00 10889.00 10896.60 4.90

BPSO5 10911.00 10870.00 10885.95 11.70

BPSO6 10896.00 10873.00 10888.20 6.24

BPSO7 10901.00 10877.00 10891.90 6.77

BPSO8 10904.00 10888.00 10896.90 5.54

BPSO10 10913.00 10909.00 10911.40 1.74

Test 7

BPSO1 2717.00 2584.00 2651.80 42.15

BPSO2 2686.00 2504.00 2578.70 57.29

BPSO3 2661.00 2437.00 2520.70 70.98

BPSO4 2537.00 2436.00 2488.50 33.52

BPSO5 2568.00 2230.00 2382.50 82.31

BPSO6 2537.00 2324.00 2385.70 63.14

BPSO7 2644.00 2329.00 2434.70 86.01

BPSO8 2551.00 2370.00 2444.60 53.90

BPSO10 2952.00 2840.00 2898.50 32.41

Test 8

BPSO1 3645.00 3482.00 3568.40 56.32

BPSO2 3538.00 3414.00 3480.00 31.43

BPSO3 3466.00 3311.00 3384.80 45.11

BPSO4 3535.00 3298.00 3420.20 67.08

BPSO5 3317.00 3144.00 3244.70 52.40

BPSO6 3384.00 3093.00 3230.20 85.83

BPSO7 3455.00 3178.00 3315.30 79.72

BPSO8 3488.00 3272.00 3366.20 65.00

BPSO10 3937.00 3677.00 3830.90 78.73

Test 9

BPSO1 3382.00 3218.00 3292.30 44.77

BPSO2 3301.00 3125.00 3214.00 55.28

BPSO3 3205.00 3047.00 3111.60 49.13

BPSO4 3145.00 2993.00 3050.60 50.43

BPSO5 3094.00 2728.00 2918.90 87.43

BPSO6 3091.00 2850.00 2955.60 69.86

BPSO7 3049.00 2919.00 2990.30 32.98

BPSO8 3166.00 2927.00 3065.20 61.58

BPSO10 3659.00 3417.00 3551.20 82.34

Test 10

BPSO1 6581.00 6357.00 6461.00 63.41

BPSO2 6412.00 6121.00 6277.00 91.67

BPSO3 6276.00 6014.00 6104.40 74.31

BPSO4 6223.00 5997.00 6099.30 64.32

BPSO5 6302.00 5914.00 6066.40 105.03

BPSO6 6264.00 5878.00 6089.20 135.38

BPSO7 6360.00 5884.00 6078.50 118.91

BPSO8 6431.00 6014.00 6177.90 110.52

BPSO10 7023.00 6639.00 6806.60 137.26
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(a) Test 1

(b) Test 2

(c) Test 3

(d) Test 4

(e) Test 5

(f) Test 6
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(g) Test 7

(h) Test 8

(i) Test 9

(j) Test 10

Fig. 3 0-1 knapsack problems solved by BPSO algorithms with different
transfer functions.

It can be seen from Table 5 that for small-scale 0-1 KP
problems, the test data Test 1 and Test 2, BPSO1-BPSO9
and BPSO10 all found the optimal value, but the Std data
shows that the Std value of BPSO10 in the two sets of
experiments is 0, that is to say in 10 experiments, BPSO10
can find the optimal value every time and show the strong
robustness. For the test set Test 3-Test 6, BPSO10 finds the
optimal value, and the Std value is the smallest, especially in
Test 3 and Test 5 with zero. So the improved algorithm has
better stability than other algorithms. For the medium-scale
problems Test 7-Test 9, BPSO10 shows the best effect in the
two sets of data of optimal value and variance, that is to say
it has the highest convergence accuracy and stability. For
large-scale problems, BPSO10 finds a better optimal value
than other algorithms. However, the Std value of this
algorithm is larger, which needs to be further improved in
future learning research. It can be seen from Fig. 3 that for
small-scale, medium-scale and large-scale 0-1 KP problems,
in most cases, BPSO10 is better than other algorithms in
terms of convergence speed, but the convergence speed is
slow and needs further improvement.

VI. CONCLUSIONS

This paper proposes a series of improved binary particle
swarm optimization algorithm based on Z-shaped transfer
functions to solve the 0-1 knapsack problem. Aiming at the
fact that the existing BPSO algorithm is prone to fall into the
local optimal solution, a new Z-shaped probability transfer
function is proposed to map the continuous searching space
to a binary space. The effectiveness of the proposed strategy
is verified by solving the typical 0-1 knapsack problems
based on the proposed Z-shaped probabilistic transfer
function, V-shaped and S-shaped transfer functions.
Simulation experiment results show that the proposed
probability transfer function improves the convergence
speed and optimization accuracy of the BPSO algorithm.
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