
Abstract—Resource-constrained project scheduling

problem (RCPSP) is a kind of representative practical

engineering problem, the purpose is to schedule activities in

the project through rational use of limited resources in the

minimum time. This paper proposes an improved hybrid

cuckoo algorithm (CS&SA) to solve the RCPSP problem.

Firstly, the individual elements are randomly coded into

priority vectors, and the population is decoded using serial

scheduling to convert the individual into a set of task

scheduling sequences. Secondly, the Levy flight is redesigned

to change the algorithm from random walk to adaptive as the

population fitness changes. Then, this article adds three

neighborhood update techniques to meet the update

requirements of the algorithm at different stages. Finally, in

order to prevent the algorithm from falling into a local

optimum, this paper introduces a simulated annealing strategy

to allow the algorithm to accept some individuals with poor

quality with a certain probability in each iteration. In the

testing part, this paper firstly tests the effectiveness and

optimization of three different-scale examples in the classic

example library PSPLIB for RCPSP problems. Among them,

the average error of the CS&SA algorithm in the small-scale

J30 is 0.25%, and the average error in the medium-scale J60 is

11.21%, and the average error of the large-scale J120 is

19.83%. Then, by comparing other intelligent optimization

algorithms, it is proved that NCS&SA is superior to other

algorithms in optimization and accuracy.

Index Terms—Cuckoo Search; Resources constrained

project scheduling; Simulated annealing; combinatorial

optimization.

I. INTRODUCTION

cheduling problem has been a hot research topic in

engineering problems in recent years. Although the

scheduling problems are diverse, most of them can be

regarded as variants of RCPSP [1], that is, an item with N

activities and K renewable resources. Scheduling activities

by allocating limited resources, and there is a priority

relationship between activities. Under the circumstance of

clear task priority and resource limit, the task can be

reasonably scheduled in the minimum time. In terms of

complexity, Blazewicz et al. [2] turned out that RCPSP is

Manuscript received September 19, 2020, revised February 25, 2021.

This work was supported by Project of Liaoning Xincheng Co., Ltd (Grant

No. L20170989).
X. Shen is a Master Student of School of Computer Science and

Software Engineering, University of Science and Technology LiaoNing,

Anshan, 114051, China (e_mail: shenxin_4395@163.com).
X. X. Zhang is a Professor of School of Computer Science and

Software Engineering, University of Science and Technology LiaoNing,

Anshan,11041,China (corresponding author, phone:86-0412-5929812;
e_mail: aszhangxx@163.com).

Z. Q. Yu is a Master Student of School of Computer Science and

Software Engineering, University of Science and Technology LiaoNing,
Anshan, 114051, China (e_mail: 1152899934@qq.com).

an NP-hard engineering scheduling problem. In recent

years, RCPSP has been extensively studied, and has derived

job shop scheduling and assembly line scheduling

problems[3]. At the same time, RCPSP is widely used in

engineering fields, such as medical research, software

development and construction industries[4].

Because the RCPSP problem has a very extensive

research and application, there are many solutions to solve

this very complex problem. Kolisch and Hartmann [5]

roughly divide them into two categories: precise algorithms

and heuristic algorithms. Sprecher [6], Demeulemeester [7]

and Brucker [8] have shown through a large number of

experimental results that the traditional accurate algorithm

can get the best results, but the calculation time is longer,

and it can only solve small-scale problems of 60 activities

at most. Therefore, in order to comply with actual

engineering applications, heuristic algorithms are generally

used to solve this problem.

Early heuristic algorithms mostly used methods based

on priority rules, such as minimum relaxation (MSLK) [9],

earliest start time (EST), shortest processing time (SPT)

[10], etc. Many of these priority rules are developed from

other scheduling problems. According to the priority rules,

each activity in the construction plan is determined, and

then the final construction plan is generated according to

the scheduling. Regarding the scheduling generation

scheme, this article will explain in detail later. Chen et al.

[11] conducted an experimental analysis and summary of

these different scheduling finite rules.

With the development of information technology and

computational intelligence, traditional heuristic algorithms

are no longer satisfied with the study of large-scale and

complex scheduling problems. In order to obtain faster

solution efficiency and higher quality solutions, intelligent

optimization algorithms are widely used in RCPSP [12].

The intelligent optimization algorithm is an algorithm

theory established by simulating biological behavior or

physical movement laws in nature, adopting a suitable

population coding scheme, and then searching and updating

the population through a specific strategy, and finally

finding the problem Optimal solution [13]. In RCPSP, there

are two main ways to encode the population: active list (AL)

and random key (RK). Commonly used search strategies

include genetic algorithm (GA) [14], simulated annealing

(SA) [15], particle swarm optimization (PSO) [16], etc. The

meta-heuristic algorithm can not only solve the RCPSP

with a large amount of data, but also search the solution

space efficiently and find the global optimal solution.

Yang and Deb put forwarded to the cuckoo search

algorithm (CS) in 2009, and proved the success rate of this

A New Hybrid Cuckoo Search for the

Resources-Constrained Project Scheduling Problem

Xin Shen , Xiaoxia Zhang , Ziqiao Yu

S

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

algorithm in global optimization. The proposal of CS has

attracted the attention of experts and scholars in different

fields. Ouaarab et al. [17] solved the traveling salesman

problem through CS, which was the first time that CS

algorithm was applied to a discrete optimization problem.

In addition, studies have shown that the improved CS

algorithm can solve the NP-Hard problem well.

Although CS can solve engineering optimization

problems well, some shortcomings have been found in its

application: the limitations of Lévy Flight and the weak

local search ability, which affects the global optimization

accuracy. Aiming at the deficiencies of CS, this paper uses

the fitness value of the population to influence the search

process of Lévy Flight, so that the search has adaptability.

This paper also adds simulated annealing mechanism to

improve the accuracy of the algorithm's global optimization,

and make the algorithm more competitive in solving

NP-Hard problems.

In this paper, we put forward an improved cuckoo

algorithm CS&SA to solve the RCPSP. Firstly, the task

priority of the population is encoded by random key

method, and the individuals in the population are decoded

into a feasible task scheduling scheme by serial scheduling.

Second, redesign the probability density function that

affects Lévy Flight search to make it adaptive as the

population fitness changes. Then, according to the step

length of adaptive Lévy Flight, this paper designs three

different neighborhood update methods to meet the update

requirements of the algorithm at different stages. Finally,

the algorithm introduces a simulated annealing mechanism,

so that the algorithm accepts some individuals with poor

fitness values with a certain probability in each iteration,

and expands the search range of the population. The rest of

the paper is as follows: Section 2 introduces the RCPSP.

Section 3 introduces CS and its principles. Section 4

introduces the CS&SA algorithm. Section 5 design

experiment and analysis experimental results, Section 6 is

the conclusion.

II. RESOURCE CONSTRAINT PROJECT SCHEDULING

PROBLEM

RCPSP is to schedule tasks through rational use of

resources to minimize the duration of the item. RCPSP has

the following assumptions:

1. For logical constraints, only consider the

situation when a task starts immediately after the previous

task ends.

2. Every task cannot be interrupted.

3. Only consider the renewable resource limit.

Based on the above assumptions, we give the definition

of RCPSP: there are N activities in a limited set of project J,

where each activity is represented as Ji (i=0,1,2, …, N+1).

J0 and JN+1 are two virtual activities in the project,

representing the start and end of the item. There is a

priority relationship between activities in the project, that is,

no new tasks can be started before the scheduled

high-priority activities are completed. Therefore, each

activity j (1≤j≤N) has a period, and we use dj to represent it.

The period of virtual activities is set to d0=dn+1=0.

Renewable resources used in activities are limited when

they are mobilized, and are composed of a finite set R,

where each resource is represented as Rk (k=1,2,…,K). Rjk

represents the amount of resources required by the activity

when it is scheduled. The amount of resources required for

virtual activities is set to r0k=r(N+1)k=0.

Set sj (j=0,1, …, N, N+1) is the start moment, where s0

is the start moment of J0. It represents the beginning of the

project, Set S0=0. fj is the end moment of the activities, and

the relationship between sj, dj and fj is expressed as:

j j js d f+ = (1)

It can be seen from (1) that the follow-up activities

should start after the previous activities are completed and

cannot be interrupted. The objective function is to find the

minimum item duration.

In order to describe RCPSP more appropriately in

mathematical language, we define the state of activity j at

time t as a binary variable xjt:

1

0

i

jt

s t f
x

otherwise

 
= 


 (2)

According to the assumptions we put forward and the

mathematical variables defined, the mathematical model of

RCPSP is expressed as:

1 0 1: ...n nMin f f f f+ = + + + (3)

0 0 10, 0, 0nf d d += = = (4)

1

 1, 2,...,
n

ik jt ki
r x R k K

=
   = (5)

 (,)s s d i j E
j i j

−    (6)

where (3) represents the objective function of RCPSP, (4)

represents that virtual activities do not occupy any time and

resources, and (5) represents the limit of resources, (6)

expresses the time window for executing activities, that is,

the priority relationship between activities.

In the execution of the project, each activity can be

regarded as an activity-on-node (AON) graph [18]. The

topology graph is composed of J activity nodes and R

renewable resources. The directed graph represents the

priority relationship between them.

Fig.1 shows a simple example of a set of 12 activities in

RCPSP (including two virtual activities). Each node

represents an activity, the scheduling time and required

resources of the activity are provided under the node. In

this example, only one renewable resource. Fig.2 is the best

completion time. Among them, the horizontal axis shows

the scheduling time, and the vertical axis shows the

1

3
j

12

11

10

8

7

6

5

4

9

2

(0,0)

(4,3)

(3,2)

(2,3)

(5,1)

(1,3)

(5,4)

(2,3)

(4,1)

(2,1)

(3,2) (0,0)

(d,r)

Fig.1.An example of a project

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

consumption of resources. Under the constraints of

resources and time, a feasible completion time is 20.

III. CUCKOO SEARCH

The idea of cuckoo algorithm comes from the special

way of breeding cuckoos in nature: they lay eggs in other

nests in order to breed offspring [19]. In order for their

offspring to successfully hatch and survive, the eggs

produced by the cuckoo will be as consistent as possible

with the host's eggs in color and size. And if the host bird

finds a foreign egg, they can choose to give up the cuckoo

egg, or give up the nest, and randomly choose another place

to build a new nest. Yang and Deb developed this swarm

intelligence optimization algorithm based on this natural

phenomenon and summarized three basic principles:

1. By default, the cuckoo only produces one egg

and randomly selects a host bird nest.

2. The best nest and bird eggs are retained as the

current optimal solution to the next generation.

3. Cuckoo’s eggs will be found with a certain

probability (Pa). When the cuckoo's eggs were found, the

bird will randomly select a new nest.

The CS’s characteristic is to use Lévy Flight search

strategy [20] to optimize the search method of

understanding space. When the algorithm moves in the

solution space, a new solution of the algorithm is generated

through (7).

 ()
(1)

é
t tx x L vy

i i
 

+
= +  (7)

where the parameter α represents the step size control

amount, and in most cases α=1; Lévy (λ) represents the

Lévy search path, and the value obeys the Lévy probability

distribution:

 ()éL vy t  −= (8)

In Lévy Flight, it is very difficult to generate step length

through algorithm. Now the most widely used method is

known to simulate Lévy Flight distance and step length

based on Mantegna algorithm:

u

s

v


=
−

 (9)

where s is the search step length generated by Lévy Flight,

u and v are two random variables that obey the normal

distribution and affect the flight step length: ()20,u
u

 and

()20,v
v

 .

Fig.3 is a simulation of the search path of 1000 Lévy

Flight. It can be seen that Lévy Flight is a random walk

process. After frequent small-distance flights, it will

occasionally make large-scale jumps. Lévy Flight is

introduced into the cuckoo algorithm. The search can be

maximized in the unknown population range, and avoid

falling into the local optimum.

As an emerging intelligent optimization algorithm, CS

has the advantage of fewer parameters, strong global

optimization capabilities and algorithm scalability.

However, CS also has disadvantages such as fixed

parameters and poor local optimization accuracy [21].

Therefore, finding suitable improvement strategies in

solving RCPSP can better obtain the optimal solution.

Based on the principles defined above and the search

policy pattern, The pseudo-code of CS is shown in Fig. 4.

Fig.3. Lévy Flights trajectory under 1000 iterations

Fig.2. A feasible schedule

Fig.4. Pseudo-code of CS

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

IV. THE CS&SA FOR RCPSP

In this paper, we improve CS by analyzing its

shortcomings. Firstly, the coding and decoding of the

population were designed; secondly, Lévy flight was made

self-adaptive; then three neighborhood update techniques

were added; corresponding neighborhood update was

selected at different stages of the algorithm according to the

adaptive step size of Lévy flight; finally, the simulated

annealing mechanism is introduced to enhance the ability

of the algorithm to find the best solution.

A. ENCODING AND DECODING

Designing populations and solutions is very important

to solve RCPSP. Since various constraints are considered

while coding the population, it is more efficient to perform

subsequent operations after coding the population than

directly operating it.

In CS, individuals in the population are represented by

eggs and nests, expressed in the form of chromosomes.

Each gene in the chromosome represents a task, and the

index of the gene represents the scheduling order of the

task. In the CS&SA proposed in this paper, assuming that

the population scale is N and activity scale is M, the

population is expressed as: P={P1, P2, … , Pi , … , PN}.

Individuals in the population are a set of activity

scheduling sequences:

1,1 1,2 1, 1,

2,2 2,2 2, 2,

,1 ,2 , ,

,1 ,2 , ,

... ...

... ...

... ...

... ...

... ...

... ...

j M

j M

i i i j i M

N N N j N M

p p p p

p p p p

p p p p

p p p p

 
 
 
  
 
 
 
 
  

The index of the individual is the task scheduling

sequence, and Pi is the ith chromosome in the population,

which represents a set of feasible task scheduling schemes.

Pij is the jth gene in the ith chromosome and represents the jth

task number. Through algorithm iteration, the scheduling Pi

with the smallest project duration in the population is

finally obtained as the best solution, which is recorded as

Pbest.

The solution of the algorithm is a set of activity

scheduling sequences with the smallest completion time,

and the index of the sequence is the execution order of the

activities. Meanwhile, the coding and feasible solutions of

individual populations correspond to each other.

When Kolisch and Hartmann solved the RCPSP, there

were two main forms of representation of task scheduling,

namely Random-Key (RK) and Activity-List (AL) [22]. AL

is a list of n activities directly generated, and the index of

the list indicates the scheduling sequence of the activities.

This paper uses RK to generate task priority vector to

encode the population.

Encode the individuals in the population as a disordered

random key vector with a uniform distribution and an

interval of [0,1]. By sorting the random key vector, the

relationship between the priority and the index is converted

into the relationship between the task and the index, and the

priority is converted into the task number to be scheduled.

For example, for a 1*5 chromosome, a random key

vector (0.44,0.16,0.81,0.27,0.34) is generated by rand with

an interval of [0,1], and then (4,1,5,2,3) is obtained by

sorting. The time element indicates the sequence of

activities, and the index indicates the corresponding

activities. As shown in Fig.5.

Then according to the labeling of the elements to the

sequence of activities, the activities are rearranged, and

finally the decoded chromosomes (2,4,5,1,3) are obtained.

At this time, the element represents the corresponding

activity, and the index represents the sequence of the

activity, as shown in Fig.6.

B. SERIAL SCHEDULE GENERATION SCHEME

In RCPSP, the schedule generation mechanism is the

main way to decode the encoded population. The schedule

generation mechanism allows tasks to be scheduled locally

under various constraints, and gradually expands to

generate a complete task scheduling plan globally. The

scheduling generation mechanism is divided into serial

schedule generation scheme (SSGS) and Parallel Schedule

Generation Scheme (PSGS) [23]. In this paper, SSGS is

used to decode and feasibly schedule tasks in the

population.

In SSGS, suppose the number of tasks is M, the task

scheduling moment is T, the list of tasks to be scheduled is

I, the earliest start moment of activity Ii is ESi, the start

scheduling moment is Si, the end moment list is F, the total

amount of resources at the current moment is Rk(t), the set

of scheduled tasks is D, and the priority matrix between

tasks is A. SSGS is divided into three stages:

Stage 1: Add virtual activity I1 to the scheduling

sequence and set both the time demand and resource

demand of I1 to 0.

Stage 2: Iteratively select and schedule the remaining

M-2 activities in the current individual. In each iteration,

the limited set of activities to be scheduled I, the set F with

Fig.5. Generate random keys to sort

Fig.6. Random keys are converted to activities

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

limited activity end time, and the total amount of resources

Rk(t) at the current moment are first updated. Select the

activity Ii with high priority in the current to be scheduled

set and find out all the previous activities of Ii. The

maximum end time in the pre-order activity is taken as the

earliest start moment ESi of Ii, and the moment closest to

ESi is selected, and under the premise of meeting resource

requirements, it is used as the start scheduling time of Ii,

and the occupied resources are deducted. Calculate

completion time based on the duration of Ii. Finally, the Ii is

added to the limited set of scheduling activities D to

complete the current scheduling.

Stage 3: At the current moment, only the active IM is not

scheduled. Take the maximum completion time of all

previous activities is taken as the start time of the active IM

and added to the limited set of scheduled activities D.

When each task in the individual is scheduled in series,

the time and resource constraints specified by the problem

are considered, so there is no invalid scheduling scheme

logically. Therefore, there is no need to verify the

feasibility of the scheduling scheme after the scheduling,

which improves the operating efficiency of the algorithm.

Fig.7 shows the pseudo-code of SSGS

C. ADAPTIVE LéVY FLIGHT SEARCH AND

NEIGHBORHOOD UPDATE

In CS, the search and update of the population is

realized based on Lévy Flight. Equation (7) determines the

movement distance and direction of Lévy Flight, where α

controls the movement distance of CS, and the search

direction depends on (8) and (9). The two normal random

variables  and  [24]. The fixed value of α and the

randomness of  and  cause the algorithm to have great

randomness in the direction and moving distance of Lévy

Flight. A large step size is conducive to the global

optimization of the algorithm in the early stage, but the

search accuracy is low; small step size has It is helpful for

the algorithm to improve the optimization accuracy in the

later stage, but it will reduce the global convergence speed.

In the Lévy Flight, this paper converts two random

variables  and  that obey a normal distribution into

variables that change adaptively as the population fitness

changes:

 () min()iFitness P Fitness = − (10)

 max() min()Fitness Fitness = − (11)

At the same time, the population renewal formula of

cuckoo was redesigned:

1

exp()s





−

= − (12)

It can be seen from (10), (11) and (12) that when the

algorithm begins to iterate, the gap between variables 

and  is large, and the step size s is small, indicating that

the current scheduling scheme has not converged to the

optimum. When the algorithm is iterated to the later stage,

the gap between  and  gradually decreases, and the step

size s approaches 1. At this time, the algorithm changes

from global search to local search.

When CS solves the continuous optimization problem,

it updates every element in the population, which obviously

does not conform to the update idea of the combinatorial

optimization problem. Therefore, this paper designs three

neighborhood update methods, and chooses different

neighborhood update methods according to the calculated

step length at different stages of the algorithm.

Stage 1: Neighborhood exchange. Neighborhood swap

refers to the random selection of two elements in the

neighborhood, exchange the location of two elements. The

influence of neighborhood exchange is not very great, so it

is fit for local optimization in the later stage. For example,

the current activity scheduling sequence is x =

{1,2,3,4,5,6,7,8}, and two activities 3 and 7 are selected.

The scheduling sequence after neighborhood exchange is x

= {1,2,7,4,5,6,3,8}. The operation process is shown in

Fig.8.

Stage 2: Neighborhood insert. Neighborhood insertion

refers to the random selection of two elements in the

neighborhood and the insertion of one element into the

other. For example, the current task scheduling sequence is

x = {1,2,3,4,5,6,7,8}, two activities 3 and 7 are selected,

Fig.7. Pseudo-code of SSGS

Fig.8. Neighborhood exchange

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

and the scheduling sequence after neighborhood insertion is

x = {1,2,4,5,6,7,3,8}. Unlike neighborhood exchange, when

3 is inserted into 7, all the other activities after 3 will move

forward. Therefore, compared with neighborhood exchange,

neighborhood insertion is more complex to neighborhood

exchange, which is suitable for algorithm iteration to

mid-term update. The operation process is shown in Fig.9.

Stage 3: 2-opt. 2-opt is a commonly used neighborhood

update technology. In combinational optimization problems,

2-opt is often applied to such circular path optimization

problems as travel agent problems. In this paper, the 2-opt

technique is added to the RCPSP problem. Unlike the

ring-shaped solution, the solution of the RCPSP problem is

in chain shape, and the last element in the neighborhood is

not related to the first element. 2-opt is a more complex

neighborhood update mode than neighborhood exchange

and neighborhood insertion, which is suitable for the early

global optimization update in the algorithm. For example,

the current task scheduling sequence is x =

{1,2,7,4,5,6,3,8}, select two activities 3 and 7, and reverse

the order of all tasks between the two activities, leaving

other activities unchanged. The task scheduling sequence

after the execution of 2-opt is x = {1,2,7,6,5,4,3,8}, as

shown in Fig.10.

After updating the neighborhood, pay attention to

whether the changed individual meets the timing

constraints and resource constraints, and then reallocate

resources for the new individual.

In order to make the algorithm select the appropriate

neighborhood renewal strategy at different stages, the step

size s of cuckoo after Lévy flight is divided into three parts,

each of which corresponds to a different neighborhood

renewal strategy: when s(0,0.3], the stage is

neighborhood exchange, when s(0.3,0.6], the stage is

neighborhood insert, when s(0.6,1], the stage is 2-opt.

For the updated population, a new scheduling plan shall

be constructed through SGS again. The complete operation

is the pseudo-code shown in Fig.11.

D. SA FOR UPDATING MECHANISM

The simulated annealing algorithm is an intelligent

optimization algorithm proposed by Metropolis et al [25].

based on the annealing phenomenon of crystals. If the

temperature of a high-temperature crystal drops too fast, it

is easy to form a higher-energy amorphous, that is, the

algorithm falls into a local optimum. At this time, add a

little temperature to the amorphous, let the amorphous cool

again, and finally become an energy-stable crystal structure,

corresponding to the algorithm jumping out of the local

optimum, the annealing process is successful, this

phenomenon conforms to the law of conservation of

energy.

SA accepts the update of the solution based on

probability. First, an initial temperature T0 is selected. In

order to obtain the optimal solution, T0 is usually set very

high, and an initial solution (P1) is randomly selected. Then,

a new solution P2 is produced according to the update rule

of the individual, and the fitness of the two solutions are

compared. If the fitness of P2 is better than the fitness of P1,

the new solution is accepted. Otherwise, using the standard

proposed by Boltzman’s probability to propose a

metropolis, if the difference (ΔE) between the evaluation

index of P1 and the evaluation index of P2 is equal to or

greater than 0, one will be generated between [0,1] Obey a

uniformly distributed random number δ seed, if it satisfies

Fig.11. Pesudo-code of Lévy Fights

Fig.9. Neighborhood insert

Fig.10. 2-opt

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

(13), then accept the new solution

 ()/E T
e

−
 (13)

At the current temperature, perform all the algorithm

operations. The termination condition is to perform all

iterations at this temperature, then lower the temperature

according to the temperature update rule, and proceed with

the iteration operation of the next temperature. The final

temperature drops to the preset minimum temperature and

then stops. The temperature update rule is (14).

0() exp()T t T r t=  −  (14)

where r is the cooling rate and T0 is the initial temperature.

To ensure that the global optimum can be searched, the

value of T0 should be set large enough.

Since that Lévy Flight generates new solutions through

neighborhood movement, if the evaluation index of the new

solution is not as good as that of the old solution, cuckoo

will not accept the new solution, which will lead to the

possibility of the algorithm falling into local optimal.

Therefore, after CS&SA produces a new solution, a

simulated annealing mechanism is added to intervene in the

update of the solution. SA selected whether to accept the

new solution or not according to the acceptance probability,

and this mechanism would help the algorithm fall into the

local optimal. A new solution will have a higher acceptance

probability at high temperatures, even if the evaluation

index of the new solution is not as good as the original

solution. With the decrease of temperature, the acceptance

probability decreases gradually, which means that the

algorithm converges from global search to local search. At

the same time, the addition of simulated annealing

mechanism will increase the iteration times of the

algorithm, enhance the searching ability of Lévy Flight, and

ensure the quality of understanding.

After generating a new solution (NewPi) through Levy

flight, calculate its evaluation index. Randomly select a

solution (Pj) for comparison. If the fitness of Pj is less than

the fitness of NewPi, then as long as (9) is satisfied, the new

solution will be accepted. When the fitness of the two

solutions are the same, due to the resource constraints of

RCPSP, we choose a solution with low resource utilization.

The calculation formula for resource utilization is:

 ik

k

r

R
 = (15)

Where rik is the number of resources occupied by the

activity, and Rk is the total amount of resources.

In this way, the population will jump out of the current

search space if it accepts the poor quality solution at the

current temperature, and avoid the algorithm falling into the

local optimal. Then proceed to other operations. The update

pseudocode for the population is shown in Fig.12.

E. PROCESS OF CS&SA FOR RCPSP

In view of the complexity of RCPSP, this paper firstly

redesigned the encoding and decoding mode of CS&SA,

coded the priority of each activity of individuals through

RK, and used SSGS to decode the population. Secondly,

the updating formulas that affect the distance and direction

of Lévy flight are redesigned to make the algorithm

self-adaptive in searching the population.

Then, three neighborhood updating strategies are added

to meet the updating requirements of the algorithm at

different stages, which can enhance the local capability.

Finally, the algorithm is mixed with simulated annealing

mechanism to interfere with the updating of individuals, so

that the algorithm can accept individuals with different

fitness values with a certain probability in each iteration,

which can improve the global optimization ability. In order

to increase the diversity of the population, the algorithm

will discard the poor quality individuals with a certain

probability Pa and replace them with new individuals. The

algorithm pseudo-code is shown in Fig.13.

Fig.12. Pesudo-code of SA

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

V. ANALYSIS AND DISCUSSION OF EXPERIMENTAL

RESULTS

A. Benchmark Instance

In the choice of experimental data, this paper selects the

standard instance library PSPLIB [26]. The PSPLIB is the

RCPSP classic instance data, comprising a total of 2040

projects in four groups of 30,60,90 and 120. At present, the

PSPLIB only provides the optimal solution for the J30

instance through the precise algorithm. Because RCPSP is a

highly complex engineer problem, the optimal solution

after J60 is still unknown, but the lower bound of the

solution is given.

B. Parameter settings

The algorithm proposed in this paper has seven

parameters that can be set, among which three parameters

are from CS: Population size (N), discovery probability (Pa),

total number of iterations (Iter). Three parameters are

derived from SA: The initial temperature (T0), termination

of the temperature (Ts), annealing rate (r). After the initial

test, the specific values in table I are determined. The test

shows that the efficiency and optimization of the algorithm

are better when the current value is set.

C. Performance Evaluation

1) Convergence analysis of CS&SA

First of all, this paper selects a set of data of different

sizes of J30, J60 and J120, and tests the effectiveness and

convergence of CS&SA algorithm under 200 iterations.

Small-scale data analysis. Select the J301_8 instance in

the PSPLIB. J301_8 is a total of 32 tasks, including two

virtual tasks. There are four types of renewable resources,

among which resource R1 is 12, resource R2 is 14, resource

R3 is 12 and resource R4 is 10. The optimal value of the

example is 53 by the precise algorithm. The convergence of

CS and CS&SA after running for 200 times is shown in

Fig.14.

Medium scale data analysis. Select the J601_2 instance

in the PSPLIB. J601_2 has 62 tasks, including two virtual

tasks. There are four types of renewable resources, among

which resource R1 is 13, resource R2 is 15, resource R3 is 14

and resource R4 is 14. The lower bound of the optimal

value is 68. The convergence of basic CS and CS&SA after

running for 200 times is shown in Fig.15.

Large-scale instance testing. Select the J1201_1 instance

in the PSPLIB. J1201_1 is a total of 122 tasks, including

two virtual tasks. There are four types of renewable

resources, in which resource R1 is 14, resource R2 is 12,

resource R3 is 13, and resource R4 is 9. The lower bound of

the optimal value is 104. The convergence of basic CS and

CS&SA after running for 200 times is shown in Fig.16.

Analysis Fig.14-Fig.16. For the convergence of the

algorithm, in the small-scale data J301_8, CS converges to

the optimal value in generation 50. Due to the addition of

simulated annealing strategy to CS&SA, after the algorithm

has converged to 50 generations, the population accepts

individuals with poor fitness values, which leads to a jump.

In the medium-scale data J601_2 and large-scale data

J1201_1, the number of times of simulated annealing

strategy is increased, and the convergence curve starts to

jump frequently due to the increasing data size. As for the

convergence accuracy of the algorithm, because the

algorithm has changed the self-adaptability of Lévy Flights,

the convergence accuracy of CS&SA in different scales is

better than CS, proving that CS&SA can find relatively

good solutions in scheduling problems in different scales,

and the convergence and optimization accuracy are better

than CS.

TABLE I

ALGORITHM PARAMETERS

Parameter Value

Population size (N) 25

Discovery probability (Pa) 0.25

Total number of iterations (Iter) 1000

Initial temperature (T0) e10

Termination of the temperature (Ts) 1

Annealing rate (r) 0.997

Fig.14. J301_8 optimal convergence curve

Fig.13. Pesudo-code of CS&SA

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

2) Algorithm optimization analysis

In this paper, 20 sets of data of different sizes of J30,

J60 and J120 were randomly selected and run

independently for 50 times under 500 iterations, and the

deviation of the algorithm from the best solution was

calculated by (16) [27]:.

 ()
()

.100
solution opt

Dev i
opt

−
= (16)

where Solution is the average of the algorithm. opt is the

optimal solution given by PSPLIB. Since J60, J90, and

J120 do not provide the best solution, we use the lower

bound provided by PSPLIB as a reference for the optimal

value.

According to Table II- IV, for the convergence of the

optimal solution (lower bound), the two algorithms can

converge to the optimal value in the J30 small-scale data,

while in the J60 medium-scale data and J120 large-scale

data, only some instances of the two algorithms converge

to the lower bound due to the complexity of the RCPSP.

But CS&SA is closer to the lower bound than CS.

We compare the average deviation in Table II- IV, as

shown in Fig.17-Fig.19. In the small-scale data of J30,

the average deviation of CS is about 0.5%, and that of

CS&SA is about 0.3%. In the J60 scale data, the average

deviation of CS is about 13%, and that of CS&SA is

about 12%. In the J120 large-scale data, the average

deviation of CS is around 21%, and the average deviation

of CS&SA is around 20%. It can be seen that the average

error of CS&SA in solving scheduling problems of

different scales is smaller than CS, which proves that

CS&SA has better optimization performance than CS.

Table II

Average Deviation of J30 under 500 iterations

Num Data Opt
Value Average Dev%

CS CS&SA CS CS&SA CS CS&SA

1 301-9 49 49 49 49.25 76.59 13.23 12.64

2 305-3 76 76 76 76.40/ 80.71 13.76 12.10

3 305-7 76 76 76 76.41 119.02 14.48 12.29

4 306-2 51 51 51 51.24 82.92 13.24 12.64

5 306-8 39 39 39 39.21 93.18 13.56 12.27

6 309-2 92 92 92 92.48 75.81 14.04 13.15

7 309-5 70 70 70 70.32 92.12 13.44 12.35

8 3010-6 44 44 44 44.18 69.63 13.88 12.31

9 3013-4 72 72 72 72.36 68.46 13.62 12.24

10 3014-3 58 58 58 58.31 95.61 12.68 11.18

Fig.16. J1201_1 optimal convergence curve

Fig.15. J601_2 optimal convergence curve

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

Fig.18. Mean deviation comparison of J60 for CS and CS&SA

Fig.17. Mean deviation comparison of J30 for CS and CS&SA

Table IV

Average Deviation of J120 under 500 iterations

Num Data Opt
Value Average Dev%

CS CS&SA CS CS&SA CS CS&SA

1 1201-3 125 135 132 152.43 151.07 21.95 20.86

2 1201-5 112 121 119 135.81 134.87 21.62 20.42

3 1201-10 108 120 118 131.47 129.99 21.74 20.37

4 1202-1 87 99 96 106.40 105.46 22.31 21.22

5 1202-5 103 113 111 124.87 123.73 21.24 20.13

6 1205-8 78 89 86 94.89 93.76 21.66 20.21

7 1205-10 92 104 102 111.46 110.53 21.16 20.15

8 1206-6 140 155 151 171.06 169.66 22.19 21.19

9 1208-5 99 112 108 120.05 119.08 21.27 20.29

10 1209-7 80 102 100 97.08 96.08 21.35 20.11

Table III

Average Deviation of J60 under 500 iterations

Num Data Opt
Value Average Dev%

CS CS&SA CS CS&SA CS CS&SA

1 601-2 68 70 68 76.99 76.59 13.23 12.64

2 601-7 72 80 72 81.90 80.71 13.76 12.10

3 605-2 106 115 106 121.34 119.02 14.48 12.29

4 605-6 74 79 76 83.97 82.92 13.24 12.64

5 605-9 83 90 84 93.25 93.18 13.56 12.27

6 606-4 67 70 67 76.40 75.81 14.04 13.15

7 609-1 82 88 85 93.02 92.12 13.44 12.35

8 6010-2 62 66 62 70.60 69.63 13.88 12.31

9 6014-1 61 65 63 69.30 68.46 13.62 12.24

10 6017-1 86 89 86 96.60 95.61 12.68 11.18

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

1989.

[11] Z. Chen, E. Demeulemeester, S. Bai, and Y. Guo, "Efficient priority
rules for the stochastic resource-constrained project scheduling

problem," European Journal of Operational Research, vol. 270, no.

3, pp. 957-967, 2018.
[12] J. Rezaeian, F. Soleimani, S. Mohaselafshary, and A. Arab, "Using a

meta-heuristic algorithm for solving the multi-mode

resource-constrained project scheduling problem," International
Journal of Operational Research, vol. 24, no. 1, pp. 1-16, 2015.

[13] B. Roy and A. K. Sen, "Meta-heuristic techniques to solve

resource-constrained project scheduling problem," in International
conference on innovative computing and communications, 2019, pp.

93-99: Springer.

[14] J. Liu, Y. Liu, Y. Shi, and J. Li, "Solving Resource-Constrained
Project Scheduling Problem via Genetic Algorithm," Journal of

Computing in Civil Engineering, vol. 34, no. 2, p. 04019055, 2020.

[15] S. Ghafoori and M. R. Taghizadeh Yazdi, "Proposing a
Multi-Objective Mathematical Model for RCPSP and Solving It

with Firefly and Simulated Annealing algorithms," Modern

Researches in Decision Making, vol. 1, no. 4, pp. 117-142, 2017.
[16] N. Kumar and D. P. Vidyarthi, "A model for resource-constrained

project scheduling using adaptive PSO," Soft Computing, vol. 20,

no. 4, pp. 1565-1580, 2016.

[17] A. Ouaarab, B. Ahiod, X-S. Yang, Neural Computing, and Ap

-plications, "Discrete cuckoo search algorithm for the travelling

 salesman problem," J., vol. 24, no. 7-8, pp. 1659-1669, 2014.
[18] Y. Zhou and Y. Chen, "Business process assignment optimization,"

in IEEE International Conference on Systems, Man and Cybernetics,

2002, vol. 3, p. 6 pp. vol. 3: IEEE.
[19] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in 2009

World congress on nature & biologically inspired computing

(NaBIC), 2009, pp. 210-214: IEEE.
[20] Ilya Pavlyukevich, "Lévy flights, non-local search and simulated

annealing," Journal of Computational Physics, vol. 226, no. 2, pp.

1830-1844, 2007.
[21] G. Viswanathan, E. Raposo, and M. Da Luz "Lévy flights and

superdiffusion in the context of biological encounters and random

searches," Physics of Life Reviews, vol. 5, no. 3, pp. 133-150, 2008.
[22] J. Weglarz, "Handbook on recent advances in project scheduling,"

ed: Kluwer, Amsterdam, 1998.
[23] M. R. Sierra, C. Mencía, and R. Varela "New schedule generation

schemes for the job-shop problem with operators," Journal of

Intelligent Manufacturing, vol. 26, no. 3, pp. 511-525, 2015.
[24] R. N. Mantegna, "Fast, accurate algorithm for numerical simulation

of Lévy stable stochastic processes," Physical Review E, vol. 49, no.

5, p. 4677, 1994.

[25] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H.
Teller, "Equation of state calculations by fast computing machines,"

The journal of chemical physics, vol. 21, no. 6, pp. 1087-1092,

1953.
[26] A. Sprecher, R. Kolisch, and A. Drexl "Semi-active, active, and

non-delay schedules for the resource-constrained project scheduling

problem," European Journal of Operational Research, vol. 80, no. 1,
pp. 94-102, 1995.

[27] S. U. Kadam and S. U. Mane, "A genetic-local search algorithm

approach for resource constrained project scheduling problem," in
2015 International Conference on Computing Communication

Control and Automation, 2015, pp. 841-846: IEEE.

[28] Chen W, Shi Y, Teng H, et al, "An efficient hybrid algorithm for
resource-constrained project scheduling," Information Sciences, vol.

180, no. 6, pp. 1031-1039, 2010.

[29] Valls V, Ballestin F, Quintanilla S. "Justification and RCPSP: A
technique that pays," European Journal of Operational Research,

vol. 165, no. 2, pp. 375-386, 2005.
[30] Bouleimen H Lecocq. "A new efficient simulated annealing

algorithm for the resource-constrained project scheduling problem

and its multiple mode version," European Journal of Operational
Research, vol. 149, no. 2, pp. 268-283, 2003.

[31] Debels D, De Reyck B, Leus R, et al. "A hybrid scatter

search/electromagnetism meta-heuristic for project scheduling,"
European Journal of Operational Research, vol. 169, no. 2, pp.

638-653, 2006.

[32] Nonobe K, Ibaraki T. "Formulation and tabu search algorithm for
the resource constrained project scheduling problem," in Essays and

surveys in metaheuristics: Springer, 2002, pp. 557-588.

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

__

