
Abstract—Resource-constrained project scheduling 

problem (RCPSP) is a kind of representative practical 

engineering problem, the purpose is to schedule activities in 

the project through rational use of limited resources in the 

minimum time. This paper proposes an improved hybrid 

cuckoo algorithm (CS&SA) to solve the RCPSP problem. 

Firstly, the individual elements are randomly coded into 

priority vectors, and the population is decoded using serial 

scheduling to convert the individual into a set of task 

scheduling sequences. Secondly, the Levy flight is redesigned 

to change the algorithm from random walk to adaptive as the 

population fitness changes. Then, this article adds three 

neighborhood update techniques to meet the update 

requirements of the algorithm at different stages. Finally, in 

order to prevent the algorithm from falling into a local 

optimum, this paper introduces a simulated annealing strategy 

to allow the algorithm to accept some individuals with poor 

quality with a certain probability in each iteration. In the 

testing part, this paper firstly tests the effectiveness and 

optimization of three different-scale examples in the classic 

example library PSPLIB for RCPSP problems. Among them, 

the average error of the CS&SA algorithm in the small-scale 

J30 is 0.25%, and the average error in the medium-scale J60 is 

11.21%, and the average error of the large-scale J120 is 

19.83%. Then, by comparing other intelligent optimization 

algorithms, it is proved that NCS&SA is superior to other 

algorithms in optimization and accuracy. 

 

Index Terms—Cuckoo Search; Resources constrained 

project scheduling; Simulated annealing; combinatorial 

optimization. 

I. INTRODUCTION 

cheduling problem has been a hot research topic in 

engineering problems in recent years. Although the 

scheduling problems are diverse, most of them can be 

regarded as variants of RCPSP [1], that is, an item with N 

activities and K renewable resources. Scheduling activities 

by allocating limited resources, and there is a priority 

relationship between activities. Under the circumstance of 

clear task priority and resource limit, the task can be 

reasonably scheduled in the minimum time. In terms of 

complexity, Blazewicz et al. [2] turned out that RCPSP is 
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an NP-hard engineering scheduling problem. In recent 

years, RCPSP has been extensively studied, and has derived 

job shop scheduling and assembly line scheduling 

problems[3]. At the same time, RCPSP is widely used in 

engineering fields, such as medical research, software 

development and construction industries[4]. 

Because the RCPSP problem has a very extensive 

research and application, there are many solutions to solve 

this very complex problem. Kolisch and Hartmann [5] 

roughly divide them into two categories: precise algorithms 

and heuristic algorithms. Sprecher [6], Demeulemeester [7] 

and Brucker [8] have shown through a large number of 

experimental results that the traditional accurate algorithm 

can get the best results, but the calculation time is longer, 

and it can only solve small-scale problems of 60 activities 

at most. Therefore, in order to comply with actual 

engineering applications, heuristic algorithms are generally 

used to solve this problem. 

Early heuristic algorithms mostly used methods based 

on priority rules, such as minimum relaxation (MSLK) [9], 

earliest start time (EST), shortest processing time (SPT) 

[10], etc. Many of these priority rules are developed from 

other scheduling problems. According to the priority rules, 

each activity in the construction plan is determined, and 

then the final construction plan is generated according to 

the scheduling. Regarding the scheduling generation 

scheme, this article will explain in detail later. Chen et al. 

[11] conducted an experimental analysis and summary of 

these different scheduling finite rules. 

With the development of information technology and 

computational intelligence, traditional heuristic algorithms 

are no longer satisfied with the study of large-scale and 

complex scheduling problems. In order to obtain faster 

solution efficiency and higher quality solutions, intelligent 

optimization algorithms are widely used in RCPSP [12]. 

The intelligent optimization algorithm is an algorithm 

theory established by simulating biological behavior or 

physical movement laws in nature, adopting a suitable 

population coding scheme, and then searching and updating 

the population through a specific strategy, and finally 

finding the problem Optimal solution [13]. In RCPSP, there 

are two main ways to encode the population: active list (AL) 

and random key (RK). Commonly used search strategies 

include genetic algorithm (GA) [14], simulated annealing 

(SA) [15], particle swarm optimization (PSO) [16], etc. The 

meta-heuristic algorithm can not only solve the RCPSP 

with a large amount of data, but also search the solution 

space efficiently and find the global optimal solution. 

Yang and Deb put forwarded to the cuckoo search 

algorithm (CS) in 2009, and proved the success rate of this 
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algorithm in global optimization. The proposal of CS has 

attracted the attention of experts and scholars in different 

fields. Ouaarab et al. [17] solved the traveling salesman 

problem through CS, which was the first time that CS 

algorithm was applied to a discrete optimization problem. 

In addition, studies have shown that the improved CS 

algorithm can solve the NP-Hard problem well. 

Although CS can solve engineering optimization 

problems well, some shortcomings have been found in its 

application: the limitations of Lévy Flight and the weak 

local search ability, which affects the global optimization 

accuracy. Aiming at the deficiencies of CS, this paper uses 

the fitness value of the population to influence the search 

process of Lévy Flight, so that the search has adaptability. 

This paper also adds simulated annealing mechanism to 

improve the accuracy of the algorithm's global optimization, 

and make the algorithm more competitive in solving 

NP-Hard problems. 

In this paper, we put forward an improved cuckoo 

algorithm CS&SA to solve the RCPSP. Firstly, the task 

priority of the population is encoded by random key 

method, and the individuals in the population are decoded 

into a feasible task scheduling scheme by serial scheduling. 

Second, redesign the probability density function that 

affects Lévy Flight search to make it adaptive as the 

population fitness changes. Then, according to the step 

length of adaptive Lévy Flight, this paper designs three 

different neighborhood update methods to meet the update 

requirements of the algorithm at different stages. Finally, 

the algorithm introduces a simulated annealing mechanism, 

so that the algorithm accepts some individuals with poor 

fitness values with a certain probability in each iteration, 

and expands the search range of the population. The rest of 

the paper is as follows: Section 2 introduces the RCPSP. 

Section 3 introduces CS and its principles. Section 4 

introduces the CS&SA algorithm. Section 5 design 

experiment and analysis experimental results, Section 6 is 

the conclusion. 

II. RESOURCE CONSTRAINT PROJECT SCHEDULING 

PROBLEM 

RCPSP is to schedule tasks through rational use of 

resources to minimize the duration of the item. RCPSP has 

the following assumptions: 

1. For logical constraints, only consider the 

situation when a task starts immediately after the previous 

task ends. 

2. Every task cannot be interrupted. 

3. Only consider the renewable resource limit. 

Based on the above assumptions, we give the definition 

of RCPSP: there are N activities in a limited set of project J, 

where each activity is represented as Ji (i=0,1,2, …, N+1). 

J0 and JN+1 are two virtual activities in the project, 

representing the start and end of the item. There is a 

priority relationship between activities in the project, that is, 

no new tasks can be started before the scheduled 

high-priority activities are completed. Therefore, each 

activity j (1≤j≤N) has a period, and we use dj to represent it. 

The period of virtual activities is set to d0=dn+1=0. 

Renewable resources used in activities are limited when 

they are mobilized, and are composed of a finite set R, 

where each resource is represented as Rk (k=1,2,…,K). Rjk 

represents the amount of resources required by the activity 

when it is scheduled. The amount of resources required for 

virtual activities is set to r0k=r(N+1)k=0. 

Set sj (j=0,1, …, N, N+1) is the start moment, where s0 

is the start moment of J0. It represents the beginning of the 

project, Set S0=0. fj is the end moment of the activities, and 

the relationship between sj, dj and fj is expressed as: 

 
j j js d f+ =   (1)                         

It can be seen from (1) that the follow-up activities 

should start after the previous activities are completed and 

cannot be interrupted. The objective function is to find the 

minimum item duration. 

In order to describe RCPSP more appropriately in 

mathematical language, we define the state of activity j at 

time t as a binary variable xjt: 

 
1  

0  

i

jt

s t f
x

otherwise

 
= 


  (2) 

According to the assumptions we put forward and the 

mathematical variables defined, the mathematical model of 

RCPSP is expressed as: 

 
1 0 1: ...n nMin f f f f+ = + + +   (3) 
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where (3) represents the objective function of RCPSP, (4) 

represents that virtual activities do not occupy any time and 

resources, and (5) represents the limit of resources, (6) 

expresses the time window for executing activities, that is, 

the priority relationship between activities. 

In the execution of the project, each activity can be 

regarded as an activity-on-node (AON) graph [18]. The 

topology graph is composed of J activity nodes and R 

renewable resources. The directed graph represents the 

priority relationship between them. 

 
Fig.1 shows a simple example of a set of 12 activities in 

RCPSP (including two virtual activities). Each node 

represents an activity, the scheduling time and required 

resources of the activity are provided under the node. In 

this example, only one renewable resource. Fig.2 is the best 

completion time. Among them, the horizontal axis shows 

the scheduling time, and the vertical axis shows the 
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Fig.1.An example of a project 
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consumption of resources. Under the constraints of 

resources and time, a feasible completion time is 20.  

 

 

 

III. CUCKOO SEARCH 

The idea of cuckoo algorithm comes from the special 

way of breeding cuckoos in nature: they lay eggs in other 

nests in order to breed offspring [19]. In order for their 

offspring to successfully hatch and survive, the eggs 

produced by the cuckoo will be as consistent as possible 

with the host's eggs in color and size. And if the host bird 

finds a foreign egg, they can choose to give up the cuckoo 

egg, or give up the nest, and randomly choose another place 

to build a new nest. Yang and Deb developed this swarm 

intelligence optimization algorithm based on this natural 

phenomenon and summarized three basic principles: 

1. By default, the cuckoo only produces one egg 

and randomly selects a host bird nest. 

2. The best nest and bird eggs are retained as the 

current optimal solution to the next generation. 

3. Cuckoo’s eggs will be found with a certain 

probability (Pa). When the cuckoo's eggs were found, the 

bird will randomly select a new nest.  

The CS’s characteristic is to use Lévy Flight search 

strategy [20] to optimize the search method of 

understanding space. When the algorithm moves in the 

solution space, a new solution of the algorithm is generated 

through (7). 

 

 ( )
( 1)

é
t tx x L vy

i i
 

+
= +    (7) 

where the parameter α represents the step size control 

amount, and in most cases α=1; Lévy (λ) represents the 

Lévy search path, and the value obeys the Lévy probability 

distribution: 

 ( )éL vy t  −=   (8) 

In Lévy Flight, it is very difficult to generate step length 

through algorithm. Now the most widely used method is 

known to simulate Lévy Flight distance and step length 

based on Mantegna algorithm: 

 
u

s

v


=
−

  (9) 

where s is the search step length generated by Lévy Flight, 

u and v are two random variables that obey the normal 

distribution and affect the flight step length: ( )20,u
u

  and 

( )20,v
v

 . 

Fig.3 is a simulation of the search path of 1000 Lévy 

Flight. It can be seen that Lévy Flight is a random walk 

process. After frequent small-distance flights, it will 

occasionally make large-scale jumps. Lévy Flight is 

introduced into the cuckoo algorithm. The search can be 

maximized in the unknown population range, and avoid 

falling into the local optimum. 

 

 
 

 
 

As an emerging intelligent optimization algorithm, CS 

has the advantage of fewer parameters, strong global 

optimization capabilities and algorithm scalability. 

However, CS also has disadvantages such as fixed 

parameters and poor local optimization accuracy [21]. 

Therefore, finding suitable improvement strategies in 

solving RCPSP can better obtain the optimal solution. 

Based on the principles defined above and the search 

policy pattern, The pseudo-code of CS is shown in Fig. 4. 

 

 

 
 

Fig.3. Lévy Flights trajectory under 1000 iterations 

 
 

Fig.2. A feasible schedule 

 
Fig.4. Pseudo-code of CS 
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IV. THE CS&SA FOR RCPSP 

In this paper, we improve CS by analyzing its 

shortcomings. Firstly, the coding and decoding of the 

population were designed; secondly, Lévy flight was made 

self-adaptive; then three neighborhood update techniques 

were added; corresponding neighborhood update was 

selected at different stages of the algorithm according to the 

adaptive step size of Lévy flight; finally, the simulated 

annealing mechanism is introduced to enhance the ability 

of the algorithm to find the best solution. 

A. ENCODING AND DECODING 

Designing populations and solutions is very important 

to solve RCPSP. Since various constraints are considered 

while coding the population, it is more efficient to perform 

subsequent operations after coding the population than 

directly operating it. 

In CS, individuals in the population are represented by 

eggs and nests, expressed in the form of chromosomes. 

Each gene in the chromosome represents a task, and the 

index of the gene represents the scheduling order of the 

task. In the CS&SA proposed in this paper, assuming that 

the population scale is N and activity scale is M, the 

population is expressed as: P={P1, P2, … , Pi , … , PN}. 

Individuals in the population are a set of activity 

scheduling sequences: 

1,1 1,2 1, 1,

2,2 2,2 2, 2,

,1 ,2 , ,

,1 ,2 , ,

... ...

... ...

... ...

... ...

... ...

... ...

j M

j M

i i i j i M

N N N j N M

p p p p

p p p p

p p p p

p p p p

 
 
 
  
 
 
 
 
  

  

The index of the individual is the task scheduling 

sequence, and Pi is the ith chromosome in the population, 

which represents a set of feasible task scheduling schemes. 

Pij is the jth gene in the ith chromosome and represents the jth 

task number. Through algorithm iteration, the scheduling Pi 

with the smallest project duration in the population is 

finally obtained as the best solution, which is recorded as 

Pbest. 

The solution of the algorithm is a set of activity 

scheduling sequences with the smallest completion time, 

and the index of the sequence is the execution order of the 

activities. Meanwhile, the coding and feasible solutions of 

individual populations correspond to each other. 

When Kolisch and Hartmann solved the RCPSP, there 

were two main forms of representation of task scheduling, 

namely Random-Key (RK) and Activity-List (AL) [22]. AL 

is a list of n activities directly generated, and the index of 

the list indicates the scheduling sequence of the activities. 

This paper uses RK to generate task priority vector to 

encode the population. 

Encode the individuals in the population as a disordered 

random key vector with a uniform distribution and an 

interval of [0,1]. By sorting the random key vector, the 

relationship between the priority and the index is converted 

into the relationship between the task and the index, and the 

priority is converted into the task number to be scheduled. 

For example, for a 1*5 chromosome, a random key 

vector (0.44,0.16,0.81,0.27,0.34) is generated by rand with 

an interval of [0,1], and then (4,1,5,2,3) is obtained by 

sorting. The time element indicates the sequence of 

activities, and the index indicates the corresponding 

activities. As shown in Fig.5. 

 

 
Then according to the labeling of the elements to the 

sequence of activities, the activities are rearranged, and 

finally the decoded chromosomes (2,4,5,1,3) are obtained. 

At this time, the element represents the corresponding 

activity, and the index represents the sequence of the 

activity, as shown in Fig.6. 

 

 
 

 
B. SERIAL SCHEDULE GENERATION SCHEME 

In RCPSP, the schedule generation mechanism is the 

main way to decode the encoded population. The schedule 

generation mechanism allows tasks to be scheduled locally 

under various constraints, and gradually expands to 

generate a complete task scheduling plan globally. The 

scheduling generation mechanism is divided into serial 

schedule generation scheme (SSGS) and Parallel Schedule 

Generation Scheme (PSGS) [23]. In this paper, SSGS is 

used to decode and feasibly schedule tasks in the 

population. 

In SSGS, suppose the number of tasks is M, the task 

scheduling moment is T, the list of tasks to be scheduled is 

I, the earliest start moment of activity Ii is ESi, the start 

scheduling moment is Si, the end moment list is F, the total 

amount of resources at the current moment is Rk(t), the set 

of scheduled tasks is D, and the priority matrix between 

tasks is A. SSGS is divided into three stages: 

Stage 1: Add virtual activity I1 to the scheduling 

sequence and set both the time demand and resource 

demand of I1 to 0. 

Stage 2: Iteratively select and schedule the remaining 

M-2 activities in the current individual. In each iteration, 

the limited set of activities to be scheduled I, the set F with 

 
 

Fig.5. Generate random keys to sort 

 
 

Fig.6. Random keys are converted to activities 
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limited activity end time, and the total amount of resources 

Rk(t) at the current moment are first updated. Select the 

activity Ii with high priority in the current to be scheduled 

set and find out all the previous activities of Ii. The 

maximum end time in the pre-order activity is taken as the 

earliest start moment ESi of Ii, and the moment closest to 

ESi is selected, and under the premise of meeting resource 

requirements, it is used as the start scheduling time of Ii, 

and the occupied resources are deducted. Calculate 

completion time based on the duration of Ii. Finally, the Ii is 

added to the limited set of scheduling activities D to 

complete the current scheduling. 

Stage 3: At the current moment, only the active IM is not 

scheduled. Take the maximum completion time of all 

previous activities is taken as the start time of the active IM 

and added to the limited set of scheduled activities D. 

 

 
When each task in the individual is scheduled in series, 

the time and resource constraints specified by the problem 

are considered, so there is no invalid scheduling scheme 

logically. Therefore, there is no need to verify the 

feasibility of the scheduling scheme after the scheduling, 

which improves the operating efficiency of the algorithm. 

Fig.7 shows the pseudo-code of SSGS 

 

 

C. ADAPTIVE LéVY FLIGHT SEARCH AND 

NEIGHBORHOOD UPDATE 

In CS, the search and update of the population is 

realized based on Lévy Flight. Equation (7) determines the 

movement distance and direction of Lévy Flight, where α 

controls the movement distance of CS, and the search 

direction depends on (8) and (9). The two normal random 

variables  and  [24]. The fixed value of α and the 

randomness of  and  cause the algorithm to have great 

randomness in the direction and moving distance of Lévy 

Flight. A large step size is conducive to the global 

optimization of the algorithm in the early stage, but the 

search accuracy is low; small step size has It is helpful for 

the algorithm to improve the optimization accuracy in the 

later stage, but it will reduce the global convergence speed. 

In the Lévy Flight, this paper converts two random 

variables  and  that obey a normal distribution into 

variables that change adaptively as the population fitness 

changes: 

 

 ( ) min( )iFitness P Fitness = −   (10) 

 max( ) min( )Fitness Fitness = −   (11) 

 
At the same time, the population renewal formula of 

cuckoo was redesigned: 

 

 
1

exp( )s





−

= −   (12) 

 
It can be seen from (10), (11) and (12) that when the 

algorithm begins to iterate, the gap between variables   

and  is large, and the step size s is small, indicating that 

the current scheduling scheme has not converged to the 

optimum. When the algorithm is iterated to the later stage, 

the gap between  and  gradually decreases, and the step 

size s approaches 1. At this time, the algorithm changes 

from global search to local search. 

When CS solves the continuous optimization problem, 

it updates every element in the population, which obviously 

does not conform to the update idea of the combinatorial 

optimization problem. Therefore, this paper designs three 

neighborhood update methods, and chooses different 

neighborhood update methods according to the calculated 

step length at different stages of the algorithm. 

Stage 1: Neighborhood exchange. Neighborhood swap 

refers to the random selection of two elements in the 

neighborhood, exchange the location of two elements. The 

influence of neighborhood exchange is not very great, so it 

is fit for local optimization in the later stage. For example, 

the current activity scheduling sequence is x = 

{1,2,3,4,5,6,7,8}, and two activities 3 and 7 are selected. 

The scheduling sequence after neighborhood exchange is x 

= {1,2,7,4,5,6,3,8}. The operation process is shown in 

Fig.8. 

 

 
Stage 2: Neighborhood insert. Neighborhood insertion 

refers to the random selection of two elements in the 

neighborhood and the insertion of one element into the 

other. For example, the current task scheduling sequence is 

x = {1,2,3,4,5,6,7,8}, two activities 3 and 7 are selected, 

 
 

Fig.7. Pseudo-code of SSGS 

 
 

 

Fig.8. Neighborhood exchange 
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and the scheduling sequence after neighborhood insertion is 

x = {1,2,4,5,6,7,3,8}. Unlike neighborhood exchange, when 

3 is inserted into 7, all the other activities after 3 will move 

forward. Therefore, compared with neighborhood exchange, 

neighborhood insertion is more complex to neighborhood 

exchange, which is suitable for algorithm iteration to 

mid-term update. The operation process is shown in Fig.9. 

 

 
 

Stage 3: 2-opt. 2-opt is a commonly used neighborhood 

update technology. In combinational optimization problems, 

2-opt is often applied to such circular path optimization 

problems as travel agent problems. In this paper, the 2-opt 

technique is added to the RCPSP problem. Unlike the 

ring-shaped solution, the solution of the RCPSP problem is 

in chain shape, and the last element in the neighborhood is 

not related to the first element. 2-opt is a more complex 

neighborhood update mode than neighborhood exchange 

and neighborhood insertion, which is suitable for the early 

global optimization update in the algorithm. For example, 

the current task scheduling sequence is x = 

{1,2,7,4,5,6,3,8}, select two activities 3 and 7, and reverse 

the order of all tasks between the two activities, leaving 

other activities unchanged. The task scheduling sequence 

after the execution of 2-opt is x = {1,2,7,6,5,4,3,8}, as 

shown in Fig.10. 

 

 

 
After updating the neighborhood, pay attention to 

whether the changed individual meets the timing 

constraints and resource constraints, and then reallocate 

resources for the new individual. 

In order to make the algorithm select the appropriate 

neighborhood renewal strategy at different stages, the step 

size s of cuckoo after Lévy flight is divided into three parts, 

each of which corresponds to a different neighborhood 

renewal strategy: when s(0,0.3], the stage is 

neighborhood exchange, when s(0.3,0.6], the stage is 

neighborhood insert, when s(0.6,1], the stage is 2-opt. 

For the updated population, a new scheduling plan shall 

be constructed through SGS again. The complete operation 

is the pseudo-code shown in Fig.11. 

 

 

 
 

D. SA FOR UPDATING MECHANISM 

The simulated annealing algorithm is an intelligent 

optimization algorithm proposed by Metropolis et al [25]. 

based on the annealing phenomenon of crystals. If the 

temperature of a high-temperature crystal drops too fast, it 

is easy to form a higher-energy amorphous, that is, the 

algorithm falls into a local optimum. At this time, add a 

little temperature to the amorphous, let the amorphous cool 

again, and finally become an energy-stable crystal structure, 

corresponding to the algorithm jumping out of the local 

optimum, the annealing process is successful, this 

phenomenon conforms to the law of conservation of 

energy. 

SA accepts the update of the solution based on 

probability. First, an initial temperature T0 is selected. In 

order to obtain the optimal solution, T0 is usually set very 

high, and an initial solution (P1) is randomly selected. Then, 

a new solution P2 is produced according to the update rule 

of the individual, and the fitness of the two solutions are 

compared. If the fitness of P2 is better than the fitness of P1, 

the new solution is accepted. Otherwise, using the standard 

proposed by Boltzman’s probability to propose a 

metropolis, if the difference (ΔE) between the evaluation 

index of P1 and the evaluation index of P2 is equal to or 

greater than 0, one will be generated between [0,1] Obey a 

uniformly distributed random number δ seed, if it satisfies 

 
 

Fig.11. Pesudo-code of Lévy Fights 

 
 

Fig.9. Neighborhood insert 

 

 

 
 

Fig.10. 2-opt 
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(13), then accept the new solution 

 

 ( )/E T
e

−
   (13) 

 
At the current temperature, perform all the algorithm 

operations. The termination condition is to perform all 

iterations at this temperature, then lower the temperature 

according to the temperature update rule, and proceed with 

the iteration operation of the next temperature. The final 

temperature drops to the preset minimum temperature and 

then stops. The temperature update rule is (14). 

 

 
0( ) exp( )T t T r t=  −    (14) 

 
where r is the cooling rate and T0 is the initial temperature. 

To ensure that the global optimum can be searched, the 

value of T0 should be set large enough. 

Since that Lévy Flight generates new solutions through 

neighborhood movement, if the evaluation index of the new 

solution is not as good as that of the old solution, cuckoo 

will not accept the new solution, which will lead to the 

possibility of the algorithm falling into local optimal. 

Therefore, after CS&SA produces a new solution, a 

simulated annealing mechanism is added to intervene in the 

update of the solution. SA selected whether to accept the 

new solution or not according to the acceptance probability, 

and this mechanism would help the algorithm fall into the 

local optimal. A new solution will have a higher acceptance 

probability at high temperatures, even if the evaluation 

index of the new solution is not as good as the original 

solution. With the decrease of temperature, the acceptance 

probability decreases gradually, which means that the 

algorithm converges from global search to local search. At 

the same time, the addition of simulated annealing 

mechanism will increase the iteration times of the 

algorithm, enhance the searching ability of Lévy Flight, and 

ensure the quality of understanding. 

After generating a new solution (NewPi) through Levy 

flight, calculate its evaluation index. Randomly select a 

solution (Pj) for comparison. If the fitness of Pj is less than 

the fitness of NewPi, then as long as (9) is satisfied, the new 

solution will be accepted. When the fitness of the two 

solutions are the same, due to the resource constraints of 

RCPSP, we choose a solution with low resource utilization. 

The calculation formula for resource utilization is:  

 

 ik

k

r

R
 =   (15) 

 
Where rik is the number of resources occupied by the 

activity, and Rk is the total amount of resources. 

In this way, the population will jump out of the current 

search space if it accepts the poor quality solution at the 

current temperature, and avoid the algorithm falling into the 

local optimal. Then proceed to other operations. The update 

pseudocode for the population is shown in Fig.12. 

 

 

E. PROCESS OF CS&SA FOR RCPSP 

In view of the complexity of RCPSP, this paper firstly 

redesigned the encoding and decoding mode of CS&SA, 

coded the priority of each activity of individuals through 

RK, and used SSGS to decode the population. Secondly, 

the updating formulas that affect the distance and direction 

of Lévy flight are redesigned to make the algorithm 

self-adaptive in searching the population.  

Then, three neighborhood updating strategies are added 

to meet the updating requirements of the algorithm at 

different stages, which can enhance the local capability. 

Finally, the algorithm is mixed with simulated annealing 

mechanism to interfere with the updating of individuals, so 

that the algorithm can accept individuals with different 

fitness values with a certain probability in each iteration, 

which can improve the global optimization ability. In order 

to increase the diversity of the population, the algorithm 

will discard the poor quality individuals with a certain 

probability Pa and replace them with new individuals. The 

algorithm pseudo-code is shown in Fig.13. 

 

 

Fig.12. Pesudo-code of SA 
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V. ANALYSIS AND DISCUSSION OF EXPERIMENTAL 

RESULTS 

A. Benchmark Instance 

In the choice of experimental data, this paper selects the 

standard instance library PSPLIB [26]. The PSPLIB is the 

RCPSP classic instance data, comprising a total of 2040 

projects in four groups of 30,60,90 and 120. At present, the 

PSPLIB only provides the optimal solution for the J30 

instance through the precise algorithm. Because RCPSP is a 

highly complex engineer problem, the optimal solution 

after J60 is still unknown, but the lower bound of the 

solution is given. 

B. Parameter settings 

The algorithm proposed in this paper has seven 

parameters that can be set, among which three parameters 

are from CS: Population size (N), discovery probability (Pa), 

total number of iterations (Iter). Three parameters are 

derived from SA: The initial temperature (T0), termination 

of the temperature (Ts), annealing rate (r). After the initial 

test, the specific values in table I are determined. The test 

shows that the efficiency and optimization of the algorithm 

are better when the current value is set. 

 
C. Performance Evaluation 

1) Convergence analysis of CS&SA 

First of all, this paper selects a set of data of different 

sizes of J30, J60 and J120, and tests the effectiveness and 

convergence of CS&SA algorithm under 200 iterations. 

Small-scale data analysis. Select the J301_8 instance in 

the PSPLIB. J301_8 is a total of 32 tasks, including two 

virtual tasks. There are four types of renewable resources, 

among which resource R1 is 12, resource R2 is 14, resource 

R3 is 12 and resource R4 is 10. The optimal value of the 

example is 53 by the precise algorithm. The convergence of 

CS and CS&SA after running for 200 times is shown in 

Fig.14. 

Medium scale data analysis. Select the J601_2 instance 

in the PSPLIB. J601_2 has 62 tasks, including two virtual 

tasks. There are four types of renewable resources, among 

which resource R1 is 13, resource R2 is 15, resource R3 is 14 

and resource R4 is 14. The lower bound of the optimal 

value is 68. The convergence of basic CS and CS&SA after 

running for 200 times is shown in Fig.15. 

Large-scale instance testing. Select the J1201_1 instance 

in the PSPLIB. J1201_1 is a total of 122 tasks, including 

two virtual tasks. There are four types of renewable 

resources, in which resource R1 is 14, resource R2 is 12, 

resource R3 is 13, and resource R4 is 9. The lower bound of 

the optimal value is 104. The convergence of basic CS and 

CS&SA after running for 200 times is shown in Fig.16. 

Analysis Fig.14-Fig.16. For the convergence of the 

algorithm, in the small-scale data J301_8, CS converges to 

the optimal value in generation 50. Due to the addition of 

simulated annealing strategy to CS&SA, after the algorithm 

has converged to 50 generations, the population accepts 

individuals with poor fitness values, which leads to a jump. 

In the medium-scale data J601_2 and large-scale data 

J1201_1, the number of times of simulated annealing 

strategy is increased, and the convergence curve starts to 

jump frequently due to the increasing data size. As for the 

convergence accuracy of the algorithm, because the 

algorithm has changed the self-adaptability of Lévy Flights, 

the convergence accuracy of CS&SA in different scales is 

better than CS, proving that CS&SA can find relatively 

good solutions in scheduling problems in different scales, 

and the convergence and optimization accuracy are better 

than CS. 

 

TABLE  I 

ALGORITHM PARAMETERS 

Parameter Value 

Population size (N) 25 

Discovery probability (Pa) 0.25 

Total number of iterations (Iter) 1000 

Initial temperature (T0) e10 

Termination of the temperature (Ts) 1 

Annealing rate (r) 0.997 

  

Fig.14. J301_8 optimal convergence curve 

 
 

Fig.13. Pesudo-code of CS&SA 

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_10

Volume 48, Issue 2: June 2021

 
______________________________________________________________________________________ 



 
2) Algorithm optimization analysis 

In this paper, 20 sets of data of different sizes of J30, 

J60 and J120 were randomly selected and run 

independently for 50 times under 500 iterations, and the 

deviation of the algorithm from the best solution was 

calculated by (16) [27]:. 

 ( )
( )

.100
solution opt

Dev i
opt

−
=   (16) 

where Solution is the average of the algorithm. opt is the 

optimal solution given by PSPLIB. Since J60, J90, and 

J120 do not provide the best solution, we use the lower 

bound provided by PSPLIB as a reference for the optimal 

value.  

According to Table II- IV, for the convergence of the 

optimal solution (lower bound), the two algorithms can 

converge to the optimal value in the J30 small-scale data, 

while in the J60 medium-scale data and J120 large-scale 

data, only some instances of the two algorithms converge 

to the lower bound due to the complexity of the RCPSP. 

But CS&SA is closer to the lower bound than CS.  

We compare the average deviation in Table II- IV, as 

shown in Fig.17-Fig.19. In the small-scale data of J30, 

the average deviation of CS is about 0.5%, and that of 

CS&SA is about 0.3%. In the J60 scale data, the average 

deviation of CS is about 13%, and that of CS&SA is 

about 12%. In the J120 large-scale data, the average 

deviation of CS is around 21%, and the average deviation 

of CS&SA is around 20%. It can be seen that the average 

error of CS&SA in solving scheduling problems of 

different scales is smaller than CS, which proves that 

CS&SA has better optimization performance than CS. 

 

Table II 

Average Deviation of J30 under 500 iterations 

 

Num Data Opt 
Value Average Dev% 

CS CS&SA CS CS&SA CS CS&SA 

1 301-9 49 49 49 49.25 76.59 13.23 12.64 

2 305-3 76 76 76 76.40/ 80.71 13.76 12.10 

3 305-7 76 76 76 76.41 119.02 14.48 12.29 

4 306-2 51 51 51 51.24 82.92 13.24 12.64 

5 306-8 39 39 39 39.21 93.18 13.56 12.27 

6 309-2 92 92 92 92.48 75.81 14.04 13.15 

7 309-5 70 70 70 70.32 92.12 13.44 12.35 

8 3010-6 44 44 44 44.18 69.63 13.88 12.31 

9 3013-4 72 72 72 72.36 68.46 13.62 12.24 

10 3014-3 58 58 58 58.31 95.61 12.68 11.18 

 

 

Fig.16. J1201_1 optimal convergence curve 

 

Fig.15. J601_2 optimal convergence curve 
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Fig.18. Mean deviation comparison of J60 for CS and CS&SA 

 

Fig.17. Mean deviation comparison of J30 for CS and CS&SA 

Table IV 

Average Deviation of J120 under 500 iterations 

 

Num Data Opt 
Value Average Dev% 

CS CS&SA CS CS&SA CS CS&SA 

1 1201-3 125 135 132 152.43 151.07 21.95 20.86 

2 1201-5 112 121 119 135.81 134.87 21.62 20.42 

3 1201-10 108 120 118 131.47 129.99 21.74 20.37 

4 1202-1 87 99 96 106.40 105.46 22.31 21.22 

5 1202-5 103 113 111 124.87 123.73 21.24 20.13 

6 1205-8 78 89 86 94.89 93.76 21.66 20.21 

7 1205-10 92 104 102 111.46 110.53 21.16 20.15 

8 1206-6 140 155 151 171.06 169.66 22.19 21.19 

9 1208-5 99 112 108 120.05 119.08 21.27 20.29 

10 1209-7 80 102 100 97.08 96.08 21.35 20.11 

 

Table III 

Average Deviation of J60 under 500 iterations 
 

Num Data Opt 
Value Average Dev% 

CS CS&SA CS CS&SA CS CS&SA 

1 601-2 68 70 68 76.99 76.59 13.23 12.64 

2 601-7 72 80 72 81.90 80.71 13.76 12.10 

3 605-2 106 115 106 121.34 119.02 14.48 12.29 

4 605-6 74 79 76 83.97 82.92 13.24 12.64 

5 605-9 83 90 84 93.25 93.18 13.56 12.27 

6 606-4 67 70 67 76.40 75.81 14.04 13.15 

7 609-1 82 88 85 93.02 92.12 13.44 12.35 

8 6010-2 62 66 62 70.60 69.63 13.88 12.31 

9 6014-1 61 65 63 69.30 68.46 13.62 12.24 

10 6017-1 86 89 86 96.60 95.61 12.68 11.18 
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