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Abstract—This article presents an optimal tuning method
for coupled Fuzzy multivariable controllers. The procedure is
based on optimization using genetic algorithms of a square error
cost function. The controllers tuning method can be applied to
the design of systems required to meet design criteria, taking
into account the system’s inherent dynamics. The proposed
method is evaluated on a two-degree-of-freedom scale helicopter
that models a scale unmanned aerial vehicle system using
the quadratic error as a cost function. The proposed optimal
Fuzzy controller’s performance is compared with a MIMO
PID controller under two distinct structures: coupled and
decoupled, considering the same optimal tuning method with
genetic algorithms. Also, the system is validated by using a
feedback state-space controller with a coupled structure.

Index Terms—MIMO, Fuzzy control, Genetic algorithms

I. INTRODUCTION

THE control of multiple inputs multiple outputs (MIMO)
systems is a complex task that require usually

nonlinear [1], intelligent [2] or adaptive approaches [3].
Control of unmanned aerial vehicles by using PID
multivariable structures has been proved as an efficient
control strategy [4] but where the tuning is a high complex
task. Systems based on fuzzy logic comprise a set of models
and methods that allow us to approximate the actual behavior
of a new system through the use of Fuzzy Logic as a
modeling tool, using expert knowledge to converge on a
series of fuzzy rules that allow obtaining an approximate
linguistic model of a process [5], these rules are represented
by membership functions, which are commonly Gaussian
functions, according to the above, when the system has
an input, it will calculate considering which membership
function will have a high membership to perform an action.
Fuzzy logic helps the academic community find solutions to
industrial control problems in predicting time series, such as
file methodologies and database search, operational research,
strategies predictive maintenance, and other fields[6].

The most common way to use fuzzy logic is through 3
simple stages: The first stage is to convert the signal x into
a set of fuzzy variables; this step is known as fuzzification,
and it consists of assigning values to a group of membership
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functions. Each membership function’s values are identified
and labeled depending on the given signal. These, in turn,
are assigned a level in the rank of membership, which
can vary between (positive-medium-negative). Once this
stage is completed, the fuzzifier element, given an input
signal, provides the values of the fuzzy variables that
correspond to the membership functions; thus, it determines
the membership level connected to a system input signal [7].

In the second stage, the rule base is established. For this,
a set of logical operators or fuzzy decision blocks must
be taken into account, such that (AND-OR-NOT) allows
to build logical rules according to the system’s behavior
according to the expert. This step shows one of the most
significant advantages of fuzzy controllers over other types
of controllers. And that is that they can be designed even
if there is no exact mathematical model of the plant to be
controlled, thanks to the fact that they are based on rules [8].

In the last stage, there is the defuzzification process, which
consists of converting the fuzzy variables generated by the
rule base into values with accurate interpretation [7]. It allows
the transformation of the signals from the previous process
to bring it to a real state required to generate the control
action.

It is then that the objective of fuzzy logic is understood
as a tool that allows many systems to be able to refine the
degrees of the veracity of the output statements as the input
ones are refined. These systems appear to be a learning task
because of these properties, and they are excellent process
control mechanisms. However, they are not perfect, and in
the last decade, they have made significant progress using
various optimization techniques such as genetic algorithms.

Genetic algorithms are based on biological evolution, so
they continuously seek to optimize the individual with better
characteristics. Where the worst features are discarded, and
therefore, the cost function is obtaining better values in each
iteration. They are widely used as techniques optimization
design development of many controllers.

In this work is proposed an optimal fuzzy controller’s
tuned with genetic algorithms. The controller performance
is compared with a MIMO PID controller under coupled
and decoupled structures It considers the same optimal
tuning method with genetic algorithms and uses a feedback
state-space controller. The article structure is as follows:
in section II, the error functions, the control signal,
and the representation of the membership function are
presented. Respectively, in section III, the simulation
and implementation results on the plant are shown. The
optimal Fuzzy coupled system’s performance is evidenced
in comparison with the optimal Fuzzy decoupled system
to reduce oscillations. The proposed optimal Fuzzy coupled
controller system is also compared to a multivariable state
feedback controller. It is worth noting that the proposed
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approach obtains better results in terms of fluctuations around
the reference for tracking performance.

II. THEORETICAL FRAMEWORK

A Sugeno-type Fuzzy MIMO coupled-based control signal
for a system of two inputs. The controller is build-up from
four Sugeno-type fuzzy controllers. Each controller is defined
as follows:

ei[k] = tse[k] + ei[k − 1] (1)

ed[k] =
e[k]− e[k − 1]

ts
(2)

u[k] =

p∑
i=1

q∑
j=1

wijµi(e[k])µj(ed[k])

p∑
i=1

q∑
j=1

µi(e[k])µj(ed[k])

+ wiei[k] (3)

being e[k] the error, ed[k] the error derivative, ei[k] the
error integral, ts the sample time, p the number of
membership functions of the error input, and q the number of
membership functions of the derivative error input and being
the membership function structure defined by a Gaussian
function as follows:

µi(xn) = exp
−(

ci−xn
σi

)2 (4)

with ci the center and σi the width of the membership
functions of the inputs, and being wij the output parameters.

The Fuzzy MIMO controller parameters wij are optimized
by using a genetic algorithm [9] and taking into account the
cost function (5)

J =
N∑

k=0

eT [k]e[k] (5)

The Fuzzy MIMO coupled controller structure is shown
in Fig. 1.

Fig. 1. Block diagram of the Fuzzy MIMO coupled controller structure

A decoupled version of the Fuzzy MIMO controller can
also be proposed, as shown in Fig. 2.

Fig. 2. Block diagram of the Fuzzy MIMO decoupled controller structure

III. RESULTS AND DISCUSSION

The proposed optimal MIMO Fuzzy approach is evaluated
over a multivariable unmanned aerial vehicle system
described by the following state space and output equations:

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t)
(6)

being matrices A, B, C defined by

A =



0 1 0 0 0 0 0
−4.7059 −0.088 0 0 0 1.359 0

0 0 0 1 0 0 0
0 0 0 −5 −50 0 4.5
0 0 0 0 −0.5 0.22 0
0 0 0 0 0 −0.099 0
0 0 0 0 0 0 1


(7)

and

B =



0 0
0 0
0 0
0 0

−0.35 0
1 0
0 0.8


(8)

and

C =

[
1 0 0 0 0 0 0
0 0 1 0 0 0 0

]
(9)

The model of (6) can be discretized by using the backward
operator as

x[k + 1] = Fx[k] +Gu[k]

y[k] = Cx[k]
(10)

being F = A + Its, G = Bts the discrete matrices of the
state-space differences equation.

A sample time of ts = 50 miliseconds is used for the
simulation.

In addition the proposed approach is evaluated with
a multivariable proportional-integral-derivative (PID)
controller defined by:

ei[k] = tse[k] + ei[k − 1] (11)

ed[k] =
e[k]− e[k − 1]

ts
(12)

u[k] = Kpe[k] +Kiei[k] +Kded[k] (13)
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being Kp, Kd and Ki defined as:

Kp =

[
Kp11 Kp12

Kp21 Kp22

]
, (14)

Ki =

[
Ki11 Ki12

Ki21 Ki22

]
, (15)

Kd =

[
Kd11 Kd12

Kd21 Kd22

]
(16)

In Fig. 3 is presented the structure of the PID MIMO
coupled controller.

Fig. 3. Block diagram of the PID MIMO coupled controller structure

The tuning of the PID parameters is performed by using a
simple genetic algorithm with the cost function of (5) used
for the optimal MIMO Fuzzy approach.

The coupled PID parameters obtained by using a genetic
algorithm are presented in (17), (18) and (19).

Kp =

[
2.6842 −1.4075
3.0733 16.2590

]
, (17)

Ki =

[
7.0249 −9.4807
8.2199 14.2184

]
, (18)

Kd =

[
4.7069 0.4789
0.7589 9.4771

]
(19)

It is worth noting, that the positions of the matrices in
(17), (18) and (19) are directly related to the PID controller
of Fig. 3.

The cost function evolution of the coupled PID is shown
in Fig. 4 for 200 generations.

In Fig.4, the cost function needed this number of
generations to see that it begins to get similar results over
the generations; therefore, the PID controller will late more
time while the process of each generation.

The Sugeno-type Fuzzy controller system parameters are
obtained by using a genetic algorithm. The cost function of
the coupled Fuzzy is shown in Fig. 5 for 20 generations.

In Fig.5, the cost function just needed 4 generations to get
behavior similar a constant around one value, these means
that cost function evolution for the fuzzy will late less time
than the cost function evolution for the PID; therefore, this
controller begin to present better response respect to PID
controller.

Reference tracking of the closed-loop system’s pitch for
the coupled PID control and the Sugeno-type Fuzzy are
shown in Fig.6.

Fig. 4. Cost function evolution for the PID

Fig. 5. Cost function evolution for the Fuzzy

Fig. 6. Reference tracking of pitch for the closed loop system: PID and
Fuzzy comparison

In Fig.6, we can compare the tracking to the reference
signal, the pitch output signal of the fuzzy controller, and
the pitch output signal of the PID controller, in the coupled
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Fig. 8. Control signal u1 of pitch: Fuzzy and PID

system. During this tracking can be noticed how the PID
output signal reflects an overshoot of 13% before reaching
the reference; additionally, for each change of reference, an
overshoot is observed in the same output; compared to the
fuzzy output where we have a reference tracking without
overshoot and disturbances.

Reference tracking of yaw for the closed loop system
for the coupled PID control and the Sugeno-type Fuzzy are
shown in Fig.7.

Fig. 7. Reference tracking of yaw for the closed loop system: PID and
Fuzzy comparison

In Fig.7, we can see the yaw output results in the
same coupled system, comparing the PID signal and the
fuzzy signal again, in the tracking to the reference signal.
During this tracking, it can be observed that both output
signals, both the fuzzy controller and the PID controller have
similar behavior and a very similar overshoot; however, the
PID output signal has small oscillations at each reference
change, which denotes some instability of the PID controller
compared to the fuzzy controller signal.

Control signals for pitch and yaw of the Fuzzy and PIDs
are shown in Fig. 8 and Fig. 9.

In Fig.8, it can be analyzed in u1, the pitch control signal,

Fig. 9. Control signal u2 of yaw: Fuzzy and PID

for the fuzzy controller, and the PID controller, with a time of
200 seconds. The control signal from the fuzzy controller is
more precise and less disturbed than the control signal from
the PID controller, in which small oscillations are observed
for each reference change.

As shown in Fig.9, we have the yaw control signal in u2,
for the fuzzy controller and the PID controller, with a time of
200 seconds. Starting from the analysis of the control signal
of the PID controller, which has small oscillations in each
change of reference, certain instability in its behavior can
be observed, compared to the control signal of the fuzzy
controller, which has a signal more accurate, with fewer
oscillations for the same tracking time.

The decoupled closed-loop reference tracking responses
for PID and Fuzzy are shown in Fig. 10 and Fig. 11.

Fig. 10. Reference tracking of pitch for the closed loop decoupled system:
PID and Fuzzy comparison

As shown in Fig.10, the PID controller’s pitch output
signal and the fuzzy controller are found, but this time in
the decoupled system. Analyzing each of the output signals,
it can be observed how the PID signal has the largest
over-impulse present at t = 0 of around 57% of the reference
signal; then the signal presents small dampened oscillations
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before reaching the Steady-state, this is compared to the
output signal of the fuzzy controller, which presents a better
behavior because it does not have oscillations in the output
signal, quickly reaching the steady-state. Now, we track the
Yaw output of both controllers, presented in Fig.11.

Fig. 11. Reference tracking of yaw for the closed loop decoupled system:
PID and Fuzzy comparison

We can notice more significant damped oscillations in
the control signal showing behavior similar to the previous
one for this second output. But with more tremendous
perturbations to the change of reference, noting less stability
in the signal due to a more significant overshoot than for
the evolution of reference at t = 0 it reaches 255% of the
reference signal.

An additional validation is performed by using a feedback
state space controller, where the tracking results are shown
in Fig. 12 and Fig. 13.

Fig. 12. Reference tracking of pitch for the closed loop system: feedback
state space controller

Fig. 13. Reference tracking of yaw for the closed loop system: feedback
state space controller

In addition, the control inputs are shown in Fig. 14.

Fig. 14. Control inputs for pitch and yaw for the closed loop system:
feedback state space controller

IV. CONCLUSIONS

An optimal fuzzy controller is proposed in this work and
compared with a MIMO PID controller under a coupled
and decoupled system. It is possible to conclude that the
fuzzy controller has optimal behavior since fewer oscillations
and less overshoot or zero overshoot are obtained. The PID
showed good behavior but with more fluctuations and a more
significant overshoot in comparison with the fuzzy controller.

The coupled system’s behavior is compared to the
decoupled system that uses the coupled system, and fewer
oscillations are obtained in the PID controller. The method is
also validated using a feedback state-space controller where
a similar response is obtained but with a more significant
amplitude requirement.

Since a similar behavior for both controllers’ output
signals is obtained but with a faster and less oscillatory
response from the fuzzy controller, we can say that this
controller is more optimal for this type of system.
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