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Abstract—For pure-feedback nonlinear system with input
saturation constraint and system internal interference, the prob-
lem of prescribed performance control is considered. Firstly,
a smooth nonlinear function is introduced to approach the
saturation function of the input signal, which solves the design
difficulty caused by nonlinearity of non-differential saturation.
Then, the pure-feedback system is decoupled by using mean-
value theorem, so that the system controller can be constructed
by utilizing the backstepping technique directly. Next, a novel
system controller is proposed by combining prescribed per-
formance control and fuzzy logic control technology. In the
framework of Lyapunov stability theory, the controller can
ensure that all closed-loop signals of the system are uniformly
and ultimately bounded, and the tracking error of the system
converges to the allowable range under the funnel function,
thus the transient and steady-state performance of the system
was guaranteed. Finally, the effectiveness of the control scheme
is verified by a simulation example.

Index Terms—Nonlinear systems, funnel control, backstep-
ping, nonsymmetric input saturation, pure-feedback systems.

I. INTRODUCTION

IN recent years, nonlinear control systems are widely used
in industry, military, aerospace and other fields. The re-

search of nonlinear control system has become an important
frontier direction, and great achievements have been made
in nonlinear control systems [1], [2], [3], [4], [5]. However,
the structure of today’s nonlinear system is becoming more
complex, and the requirements for the control accuracy of the
controller are getting more higher. Therefore, it is significant
to study the control theory and method of nonlinear system.

Backstepping technique is an effective method for control
design of nonlinear systems. Starting from the design of the
Lyapunov function and the intermediate virtual parameters of
the first-order subsystem, the actual control law of the system
can be obtained when ”back” to the last-order system. For
example, Zhou et al. designed a system state observer using
backstepping technology, which guaranteed the steady-state
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performance of the system by estimating and compensating
the unknown state variables in [6]. Furthermore, Chen et
al. used the similar design idea to compensate the actuator
failure of the system in [7]. Alternatively, Zhang et al.
designed the system controller by using RBF and adaptive
backstepping technology in [8]. However, many dynamic
systems have non-affine structures in practical applications,
which we call pure-feedback control systems. The struc-
ture of the pure-feedback system is more general than the
strict-feedback system. In [9], Wang et al. used the mean-
value theorem to deal with non-affine system functions,
and proposed a robust adaptive control scheme based on
the backstepping technology. Subsequently, many scholars
further studied input constraint systems and achieved many
meaningful results in [10], [11], [12], [13], [14], [15]. How-
ever, the backstepping method is difficult to deal with the
nonlinear system with unknown structure or parameters, so
it usually needs to be combined with other control methods.

Adaptive control is another important method to deal
with nonlinear systems. The adaptive control has excellent
approximation ability to unknown parameters and uncertain
model structure. For example, a kind of fuzzy logic control is
introduced to approximate the intermediate variables which
are difficult to calculate directly in backstepping in [16].
Alternatively, a low complexity fault-tolerant controller is
designed for strict feedback systems with unknown nonlinear
functions by using smooth orientation functions and error
transformation functions in [17]. From [16], [17], it is not d-
ifficult to find that fuzzy logic control does not need accurate
system mathematical model. By utilizing this characteristic,
Zhang and Yang solved a class of strict-feedback nonlinear
problems with uncertain structure, unknown control direction
and fault tolerance in [18]. Subsequently, Li et al. introduced
a novel fuzzy sliding surface to suppress the chattering of
the system in [19]. Moreover, a class of robust multivariable
approach based on adaptive control technology is proposed
for a class of multivariable linear systems with time-varying
parameters in [20]. Meanwhile, in [8] [13] and [21], the
system controller designed by using neural network control
strategy not only has strong adaptive ability, but also has
excellent fault-tolerant ability. However, adaptive control
usually takes the asymptotic stability or error stability of the
system as the control goal, without considering the dynamic
performance of the system.

In 2008, prescribed performance control (PPC) was first
proposed and quickly attracted extensive attention of schol-
ars. In [22], [23], [24], [25], the designed controllers based on
PPC method can ensure the system tracking error converges
to a preset range, and improve the transient and steady-
state performance of the system. Unfortunately, due to the
large initial error in [24], [25], the overall performance of
the system cannot be guaranteed. In [26], Han and Lee
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combined PPC technology with neural network control to
realize accurate tracking of system output error.However, not
all system functions can be derived. Liu et al. put forward
further to propose a novel performance constraint function
in [14] and combined with adaptive funnel technology to
design the system controller, it avoids the repeated differen-
tiation in backstepping method. while avoiding the repeated
differentiation of virtual control variable in the backstepping
method.

Inspired by the above discussion, different from the ex-
isting methods, a novel system controller is proposed for
the pure-feedback nonlinear system with input saturation
by using backstepping method, fuzzy logic control and
prescribed performance control. The designed controller not
only guarantees the performance of the system, but also en-
sures that all signals of the closed-loop system are uniformly
bounded.

The reminder of this paper is arranged as follows: Section
II is system description and the introduction of related
basic knowledge. Section III is adaptive fuzzy controller
design. Section IV is simulation and analysis. Section V is
conclusion.

II. SYSTEM DESCRIPTIONS AND BASIC KNOWLEDGE

A. System descriptions

Consider a pure feedback nonlinear system as follows:
ẋi = fi(x̄i, xi+1) + λi(t)

ẋn = fi(x̄i, u) + λn(t)

y = x1

(1)

where x = [x1, x2, · · · , xn]
T ∈ Rn with x̄i =

[x1, x2 · · · , xi]T ∈ Ri and y ∈ R are the state vectors and
system output. Both fi(·) ∈ Ri+1 → R and λi are unknown
smooth nonlinear functions. λi(t) represents for system inter-
nal interference while meeting |λi| < λ̄i, i = 1, 2, . . . n− 1,
where λ̄i is unknown positive constant. For follow-up con-
venience, λi(t) is denoted as λi in the following next. u
denotes the system nonsymmetric saturation input. That is:

u = sat(v) =

umax, v ≥ umax

v, umin < v < umax

umin, v ≤ umin

(2)

where umax > 0 and umin < 0 are unknown constants, and
v represents the input of the saturation nonlinearity.

According to the mean-value theorem, the functions fi(·)
can be described as follows:{

fi(x̄i, xi+1)− fi(x̄i, 0) = gixi+1

fn(x̄n, u)− fn(x̄n, u0) = gn(u− u0)
(3)

where smooth function fi(·, ·) is explicitly analyzed between
fi(x̄i, xi+1) and fi(x̄i, x0), gi = ∂fi(x̄i, xi+1)/∂xi+1|xi+1

and xn+1 = u. Next, substituting (3) to (1) and choosing
u0 = 0, we can obtain

ẋi = fi(x̄i, 0) + gixi+1 + λi

ẋn = fn(x̄n, 0) + gnu+ λn

y = x1

(4)

From (2), there are two sharp corners that v = umax and
v = umin in saturation function. To solve this problem, Let’s

use two smooth functions to approach the saturation function
sat(v) results in

G(v) =

{
umax ∗ tanh( v

umax
), v ≥ 0

umin ∗ tanh( v
umin

), v < 0

=


umax ∗ e

v
umax −e

−v
umax

e

v
umax +e

−v
umax

, v ≥ 0

umin ∗ e
v

umin −e
−v
umin

e

v
umin +e

−v
umin

, v < 0

(5)

Then, the nonsymmetric saturation system input can be
expressed as

u = sat(v) = G(v) + d(v) (6)

where d(v) is a bounded function defined as

|d(v)| = |sat(v)−G(v)|
≤ max{umax(1− tanh(1)), umin(tanh(1)− 1)}
= D

(7)

In addition, by using the mean-value theorem, we can
obtain a constant Gµ(0 < µ < 1) such that

G(v) = G(v0) +Gµ(v − v0) (8)

where Gµ = (∂G(v)/∂v)|v=µ, by choosing v0 = 0, (8) can
be redescribed as

G(v) = Gµv (9)

Substituting (9) and (6) into (4) results in
ẋi = fi(x̄i, 0) + gixi+1 + λi

ẋn = fi(x̄n, 0) + gn(Gµv + d(v)) + λn

y = x1

(10)

Assumption 1. The signs of gi, i = 1, 2, . . . n are known,
gm and gM are unknown constants, it has

0 < gm ≤ |gi| ≤ gM <∞ (11)

Obviously, gi is either positive or negative strictly. Without
affecting the conclusion, we can further assume 0 < gm ≤
gi ≤ gM .

Assumption 2. In (8), there exists an unknown positive
constant Gm such that

0 < Gm ≤ Gµ ≤ 1 (12)

According to 1-2, it has

0 < b ≤ gi, 0 < b ≤ gnGµ (13)

where b = min{gm, gmGm} is an unknown constant.

Lemma 1. [16] Young’s Inequality: For ∀(x, y) ∈ R2, the
following inequality holds

xy ≤ `p

p
|xp|+ 1

q`q
|yq| (14)

where ` > 0, p > 1, q > 1, (p− 1)(q− 1) = 1 and `, p,
q are both constants.

Lemma 2. [9] F (Z) is defined as a continuous function
on a compact set ΩZ . Therefore, the fuzzy logic system is
introduced. The fuzzy logic control system is mainly aimed at
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the approximation of any nonlinear continuous and uncertain
link in the system.The mathematical expression as follows:

F (Z) = WTϕ(Z) (15)

where the input vector z ∈ ΩZ , W = [w1, w2, . . . , wn]
T

and ϕ(Z) are constant weight vector and Gaussian function
vector respectively, that is

ϕi(Z) = exp

[
−(Z − ςi)T (Z − ςi)

ι2

]
, i = 1, . . . , n (16)

where ςi = [ςi1, ςi2, . . . , ςin]
T and ι are center vector and

the width of Gaussian function.

Remark 1. There must be a fuzzy logic system desired
supx∈Ωz

|F (Z) −WTϕ(Z)| ≤ ε, where ε is an unknown
constant greater than 0.

B. funnel control and adaptive controller design

By choosing a possible choice of boundary function ω(t)
defined as

ω(t) = (ρ0 − ρ∞)e−βt + ρ∞ (17)

where ρ0 is the initial value of ω(t), β is the convergence
speed, and lim

t→∞
ω(t) = ρ∞. ρ0, ρ∞ , β are appropriately

positive constants. In addition, zi is constrained in the funnel
function for the initial condition |zi(0)| < |ρ0|.

The error variable is defined as

ζ1 = ln
ω + z1

ω − z1
(18)

where z1 is the tracking error and zi satisfies

zi = xi − αi−1, 1 < i < n− 1 (19)

where α0 = yr and αi is a virtual control signal. The time-
derivative ζ1 will be used later and given by

ζ̇1 = 2τ1(ż1 −
ω̇z1

ω
) (20)

where τ1 = ω/ω2 − z2
1 . The construction forms of virtual

control signal and actual control input are as follows:

α1 = −ζ1
τ1

(a1 +
1

2
+

1

2c21
θ̂ϕT1 ϕ1) (21)

αi = −(ai +
1

2
)zi −

1

2c2i
ziθ̂ϕ

T
i ϕi (22)

vn = −(an +
1

2η2
)zn −

zn
2c2n

θ̂ϕTnϕn (23)

where ai, ci (i = 1, 2, . . . n) and η are positive design
parameters, θ̂ is the estimations of θ, θ is unknown constant
and satisfies

θ = max1≤i≤n{
1

b
||W 2

i ||} (24)

where b is defined in (13) and Wi will be given later. The
adaptive law will be updated by

˙̂
θ =

γ

2c21
ζ2
1ϕ

T
1 ϕ1 +

n∑
i=2

γ

2c2i
z2
i ϕ

T
i ϕi − σθ̂ (25)

where γ , σ are positive parameters to be designed.

III. ADAPTIVE FUZZY CONTROLLER DESIGN

In the following, we will design an adaptive fuzzy con-
troller based on backstepping, and establish a fuzzy logic
system WT

i ϕi(Zi) at Step i to approximate the encapsulated
unknown function Fi(Zi). The system controller is updated
through the backstepping technology step by step, until the
n step, the final controller of the system will be obtained.
The specific design procedures are as follows:
Step 1: For the first subsystem in (10), a Lyapunov function
candidate is selected as follows

V1 =
1

4
ζ2
1

+
b

2γ
θ̃2 (26)

The time derivatives of the two sides of the above formula
are obtained as follows

V̇1 ≤ ζ1τ1(f1 + g1x2 + λ1 − ẏr −
ω̇z1

ω
)− b

γ
θ̃

˙̂
θ (27)

By using Lemma 1. for ζ1τ1λ1, one has

ζ1τ1λ1 ≤
ζ2
1
τ2
1

2
+
λ̄2

1

2
(28)

A new function Fi is introduced to represent the logic fuzzy
control and (27) can be rewritten as

F1 = τ1(f1 +
ζ1τ1

2
− ẏr −

ω̇z1

ω
) +

ζ1
2

V̇1 ≤ ζ1τ1g1x2 + ζ1F1 −
ζ2
1

2
+
λ̄2

1

2
− b

γ
θ̃

˙̂
θ

(29)

According to Lemma 2, by employing a fuzzy logic system
WT

1 ϕ1 to approach F1, there has

F1 = WT
1 ϕ1(Z1) + δ1(Z1), |δ1(Z1)| ≤ ε1 (30)

where δ1(Z1) is the approximation error and ε1 is an
unknown positive constant. By using Lemma 1 we get

ζ1F1 ≤
b

2c21
ζ2
1

||W1||2

b
ϕT1 ϕ1 +

c21
2

+
ζ2
1

2
+
ε̄2

1

2

≤ b

2c21
ζ2
1θϕ

T
1 ϕ1 +

c21
2

+
ζ2
1

2
+
ε̄2

1

2

(31)

Substituting (30) into (29) and combining (31) results in

V̇1 ≤ ζ1τ1g1x2 +
b

2c21
ζ2
1θϕ

T
1 ϕ1 +

c21
2

+
ε̄2

1

2
+
λ̄2

1

2
− b

γ
θ̃

˙̂
θ (32)

According to formula (19), (32) can be rewritten as

V̇1 ≤ζ1τ1g1z2 + ζ1τ1g1α1 +
b

2c21
ζ2
1θϕ

T
1 ϕ1

+
c21
2

+
ε̄2

1

2
+
λ̄2

1

2
− b

γ
θ̃

˙̂
θ

(33)

Bring definition of α1 (31) into (33), that is

ζ1τ1g1α1 ≤ −a1g1ζ
2
1 −

1

2
g1ζ

2
1 −

b

2c21
ζ2
1 θ̂ϕ

T
1 ϕ1 (34)

By using Lemma 1 to the term ζ1τ1g1z2 produce, (33) can
be redescribed as

V̇1 ≤ −a1g1ζ
2
1 −

1

2
g1ζ

2
1 + ζ1τ1g1z2 +

c21
2

+
λ̄2

1

2

+
ε̄2

1

2
+
b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 − ˙̂

θ)

≤ −Γ1ζ
2
1 +

gMτ
2
1 z

2
2

2
+ ∆1 +

b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 − ˙̂

θ)

(35)
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where Γ1 = a1g1 > 0 and ∆1 = (1/2)c21 + (1/2)λ̄2
1 +

(1/2)ε̄2
1, The term (1/2)gMτ

2
1 z

2
2 will be dealt with in the

next step.
Step 2: For the second subsystem in (10), a suitable

Lyapunov function is selected as follows

V2 = V1 +
1

2
z2

2 (36)

Combining (35) and (19) into (36), then, by taking the time-
derivative of V2, there has

V̇2 ≤− Γ1ζ
2
1 +

gMτ
2
1 z

2
2

2
+
b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 − ˙̂

θ)

+ ∆1 + z2[f2 + g2x3 + λ2 − α̇1]

(37)

According to αi ∈ [x̄i, θ̂, ω, ω̇, . . . ω
(i), yr, ẏr, . . . y

(i)
r ], there

has

α̇1 =
∂α1

∂x1
(f1 + g1x2) +

1∑
i=0

∂α1

∂ω(i)
ω(i+1)

+
1∑
i=0

∂α1

∂y
(i)
r

y(i+1)
r +

∂α1

∂θ̂

γ

2c21
ζ2
1ϕ

T
1 ϕ1

+
∂α1

∂θ̂

γ

2c22
z2

2ϕ
T
2 ϕ2 −

∂α1

∂θ̂
σθ̂

+
∂α1

∂θ̂

n∑
l=3

γ

2c2l
z2
l ϕ

T
l ϕl +

∂α1

∂x1
λ1

(38)

By using Lemma 1 for (37) and (38), that is

z2λ2 ≤
z2

2

2
+
λ̄2

2

2

−z2
∂α1

∂x1
λ1 ≤

(
∂α1

∂x1

)2

z2
2 +

λ̄2
1

4

(39)

Then, taking (38) and (39) into (37) account, we get

V̇2 ≤− Γ1ζ
2
1 +

b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 − ˙̂

θ) + ∆1

+ z2[
gM
2
τ2
1 z2 + f2 + g2x3 −

∂α1

∂x1
(f1 + g1x2)

+

(
∂α1

∂x1

)2

z2 −
∂α1

∂θ̂

γ

2c21
ζ2
1ϕ

T
1 ϕ1

− ∂α1

∂θ̂

γ

2c22
z2

2ϕ
T
2 ϕ2 −

1∑
i=0

∂α1

∂ω(i)
ω(i+1)

−
1∑
i=0

∂α1

∂y
(i)
r

y(i+1)
r +

∂α1

∂θ̂
σθ̂ +

z2

2
]

− ∂α1

∂θ̂
z2

n∑
l=3

γ

2c2l
z2
l ϕ

T
l ϕl +

λ̄2
2

2
+
λ̄2

1

4

(40)

Similar to Step 1, by employing a fuzzy logic system
WT

2 ϕ2(Z2) to approach the uncertain contained function F2,
we get

F2 =
gMτ

2
1 z2

2
+ f2 + z2 −

∂α1

∂x1
(f1 + g1x2)

+

(
∂α1

∂x1

)2

z2 −
∂α1

∂θ̂

γ

2c21
ζ2
1ϕ

T
1 ϕ1

− ∂α1

∂θ̂

γ

2c22
z2

2ϕ
T
2 ϕ2 +

∂α1

∂θ̂
σθ̂

−
1∑
i=0

∂α1

∂ω(i)
ω(i+1) −

1∑
i=0

∂α1

∂y
(i)
r

y(i+1)
r

(41)

Taking (41) into (40) and together with (19), results in

V̇2 ≤− Γ1ζ
2
1 +

b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 − ˙̂

θ)

+ ∆1 + z2[F2 + g2z3 + g2α2]− 1

2
z2

2

− ∂α1

∂θ̂
z2

n∑
l=3

γ

2c2l
z2
l ϕ

T
l ϕl +

λ̄2
2

2
+
λ̄2

1

4

(42)

By using Lemma 1 and combining (22), (30) into (42) similar
to (39) , we can obtain

z2g2α2 ≤ −a2g2z
2
2 −

g2

2
z2

2 −
b

2c22
z2

2 θ̂ϕ
T
2 ϕ2

z2z3g2 ≤
1

2
g2z

2
2 +

1

2
g2z

2
3

z2F2 ≤
b

2c22
z2

2θϕ
T
2 ϕ2 +

c22
2

+
ε̄2

2

2
+
z2

2

2

(43)

Substituting (43) into (42). Then, simplifying the conse-
quence like (35) results in

V̇2 ≤− Γ1ζ
2
1 − Γ2z

2
2 +

gMz
2
3

2
+ ∆1 + ∆2

+
b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 +

γ

2c22
z2

2ϕ
T
2 ϕ2 − ˙̂

θ)

− ∂α1

∂θ̂
z2

n∑
l=3

γ

2c2l
z2
l ϕ

T
l ϕl

(44)

where ∆2 = (1/2)c22 + (1/2)ε̄2
2 + (1/2)λ̄2

2 + (1/4)λ̄2
1 and

Γ2 = a2g2 > 0.
Step i (3 ≤ i ≤ n − 1): Let’s select the following

Lyapunov function

Vi = Vi−1 +
1

2
z2
i (45)

According to (35) and (44), it is not difficult to conclude that
the time-derivative of Vi−1 is

V̇i−1 ≤− Γ1ζ
2
1 −

i−1∑
k=2

Γkz
2
k +

i−1∑
k=1

∆k +
1

2
gMz

2
i

+
b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 +

i−1∑
k=2

γ

2c2k
z2
kϕ

T
k ϕk −

˙̂
θ)

−
i−2∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i

γ

2c2l
z2
l ϕ

T
l ϕl

(46)

In (46), the last term also can be rewritten as

i−2∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i

γ

2c2l
z2
l ϕ

T
l ϕl =

i−2∑
k=1

∂αk

∂θ̂
zk+1

∗ γ

2c2i
z2
i ϕ

T
i ϕi +

i−2∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i+1

γ

2c2l
z2
l ϕ

T
l ϕl

(47)
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Combining (10) and (47) into (46) results in

V̇i ≤− Γ1ζ
2
1 −

i−1∑
k=2

Γkz
2
k +

i−1∑
k=1

∆k −
i−2∑
k=1

∂αk

∂θ̂
zk+1

∗
n∑

l=i+1

γ

2c2l
z2
l ϕ

T
l ϕl + zi[

1

2
gMzi −

i−2∑
k=1

∂αk

∂θ̂
zk+1

∗ γ

2c2i
ziϕ

T
i ϕi + fi + gixi+1 + λi − α̇i−1]

+
b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 +

i−1∑
k=2

γ

2c2k
z2
kϕ

T
k ϕk −

˙̂
θ)

(48)

where α̇i−1 can be obtained as following form by repeating
the same method as (38) in Step 2. That is

α̇i−1 ≤
i−1∑
k=1

∂αi−1

∂xk
(fk + gkxk+1 + λk)

+
i−1∑
k=1

∂αi−1

∂ω(k)
ω(k+1) +

i−1∑
k=1

∂αi−1

∂y
(k)
r

y(k+1)
r

+
∂αi−1

∂θ̂

γ

2c21
ζ2
1ϕ

T
1 ϕ1 −

∂α1

∂θ̂
σθ̂

+
i−1∑
k=0

∂αi−1

∂ω(k)
ω(k+1) +

i−1∑
k=0

∂αi−1

∂y
(k)
r

y(k+1)
r

+
∂αi−1

∂θ̂

n∑
l=2

γ

2c2l
z2
l ϕ

T
l ϕl

(49)

Substituting (49) into (48) and using Lemma 1 similar to
procedure (39) results in

V̇i ≤− Γ1ζ
2
1 −

i−1∑
k=2

Γkz
2
k +

i−1∑
k=1

∆k −
i−2∑
k=1

∂αk

∂θ̂
zk+1

∗
n∑

l=i+1

γ

2c2l
z2
l ϕ

T
l ϕl −

∂αi−1

∂θ̂
zi

n∑
l=i+1

γ

2c2l
z2
l ϕ

T
l ϕl

+ zi[Fi + gixi+1 + giαi]−
z2
i

2
+
λ̄2
i

2
+

i−1∑
k=1

λ̄2
k

4

+
b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 +

i−1∑
k=2

γ

2c2k
z2
kϕ

T
k ϕk −

˙̂
θ)

(50)

where

Fi =
1

2
gMzi −

γ

2c2i
ziϕ

T
i ϕi

i−2∑
k=1

∂αk

∂θ̂
zk+1

+ fi + zi −
i−1∑
k=1

∂αi−1

∂xk
(fk + gkxk+1)

+
i−1∑
k=1

(
∂αi−1

∂xk

)2

zi −
i−1∑
k=0

∂αi−1

∂ω(k)
ω(k+1)

−
i−1∑
k=0

∂αi−1

∂y
(k)
r

yr
(k+1) − ∂αi−1

∂θ̂

γ

2c21
ζ2
1ϕ

T
1 ϕ1

− ∂αi−1

∂θ̂

i∑
k=2

γ

2c2k
z2
kϕ

T
k ϕk +

∂αi−1

∂θ̂
σθ̂

(51)

Similar to (43), by utilizing Young’s Inequality and combin-
ing with (22) results in

zigiαi ≤ −aigiz2
i −

gi
2
z2
i −

b

2c2i
z2
i θ̂ϕ

T
i ϕi

zizi+1gi ≤
1

2
giz

2
i +

1

2
giz

2
i+1

ziFi ≤
b

2c2i
z2
i θϕ

T
i ϕi +

c2i
2

+
ε̄2
i

2
+
z2
i

2

(52)

Substituting (52) into (50), there has

V̇i ≤− Γ1ζ
2
1 −

i∑
k=2

Γkz
2
k +

i∑
k=1

∆k +
gM
2
z2
i+1

−
i−1∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i+1

γ

2c2l
z2
l ϕ

T
l ϕl

+
b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 +

i∑
k=2

γ

2c2k
z2
kϕ

T
k ϕk −

˙̂
θ)

(53)

where ∆i = (1/2)c2i + (1/2)ε̄2
i + (1/2)λ̄2

i +
i−1∑
k=1

k∑
l=1

(1/4)λ̄2
l

and Γi = aigi > 0.
Step n: The actual controller v of the system will be

designed in this step. Using (10) and (19), there has

żn = fn + gn(Gµv + d(v)) + λn − α̇n−1 (54)

By choosing an appropriate Lyapunov function, that is

Vn = Vn−1 +
1

2
z2
n (55)

According to (53) with i = n− 1, we can obtain

V̇n ≤− Γ1ζ
2
1 −

n−1∑
k=2

Γkz
2
k +

n−1∑
k=1

∆k −
z2
n

2
+
λ̄2
n

2

+
n−1∑
k=1

λ̄2
k

4
+ zn[Fn + gn(Gµv + d(v))]

+
b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 +

n−1∑
k=2

γ

2c2k
z2
kϕ

T
k ϕk −

˙̂
θ)

(56)

where

Fn =
gMzn

2
− γ

2c2n
znϕ

T
nϕn

n−2∑
k=1

∂αk

∂θ̂
zk+1 + zn

−
n−1∑
k=0

∂αn−1

∂ω(k)
ω(k+1) −

n−1∑
k=0

∂αn−1

∂y
(k)
r

yr
(k+1)

+
n−1∑
k=1

(
∂αn−1

∂xk

)2

zn −
∂αn−1

∂θ̂

˙̂
θ + fn

−
n−1∑
k=1

∂αn−1

∂xk
(fk + gkxk+1)

(57)

By using Lemma 1 for (56) similar to (31) results in

znFn ≤
b

2c2n
z2
nθϕ

T
nϕn +

c2n
2

+
z2
n

2
+
ε̄2
n

2
(58)
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Furthermore, substituting (58) into (56), we get

V̇n ≤− Γ1ζ
2
1 −

n−1∑
k=2

Γkz
2
k +

n−1∑
k=1

∆k +
λ̄2
n

2
+
c2n
2

+
ε̄2
n

2
+
n−1∑
k=1

λ̄2
k

4
+ zngn(Gµv + d(v))

+
b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 +

n−1∑
k=2

γ

2c2k
z2
kϕ

T
k ϕk −

˙̂
θ)

+
b

2c2n
z2
nθϕ

T
nϕn

(59)

Substituting (23) and (7) into (59) results in

zngnGµv ≤ −angnGµz2
n −

gnGm
2η2

z2
n −

b

2c2n
z2
nθ̂ϕ

T
nϕn

zngnd ≤
1

2η2
gnGmz

2
n +

1

2Gm
gnη

2D2

(60)

Combining (60), (59) can be formulated as

V̇n ≤− Γ1ζ
2
1 −

n−1∑
k=2

Γkz
2
k − angnGµz2

n +
n−1∑
k=1

∆k

+
λ̄2
n

2
+
c2n
2

+
ε̄2
n

2
+
n−1∑
k=1

λ̄2
k

4
+

1

2Gm
gnη

2D2

+
b

γ
θ̃(

γ

2c21
ζ2
1ϕ

T
1 ϕ1 +

n∑
k=2

γ

2c2k
z2
kϕ

T
k ϕk −

˙̂
θ)

(61)

Then, taking the law of adaption ˙̂
θ into (25), we have

V̇n ≤− Γ1ζ
2
1 −

n−1∑
k=2

Γkz
2
k − angnGµz2

n +

n−1∑
k=1

∆k

+
λ̄2
n

2
+
c2n
2

+
ε̄2
n

2
+
n−1∑
k=1

λ̄2
k

4
+

1

2Gm
gnη

2D2

+
bσ

γ
θ̃θ̂

(62)

According to the define of θ, the last term in (62) can be
written as (bσ/γ)θ̃θ̂ ≤ −(bσ/2γ)θ̃2 + (bσ/2γ)θ2, there has

V̇n ≤ −Γ1ζ
2
1 −

n∑
k=2

Γkz
2
k −

bσ

2γ
θ̃2 +

n∑
k=1

∆k (63)

where Γk = akgk > 0, ∆k =
c2k
2 +

λ̄2
k

2 +
ε̄2k
2 ,k = 1, 2, . . . , n−

1, Γn = angnGµ > 0, and ∆n =
c2n
2 +

λ̄2
n

2 +
ε̄2n
2 +

n−1∑
k=1

λ̄2
k

4 +

bσ
2γ θ

2 + 1
2Gm

gnη
2D2.

According to the above deduction, the following theorem
is given.

Theorem 1. Consider the closed-loop pure-feedback non-
linear system (1) with unknown system internal interference
Λi and unknown input saturation signals (5), and the sys-
tem controller (23) and the adaptive law (25). Under the
conditions of Assumptions 1 and 2, the following results are
true:

(1)All signals of the closed-loop system are consistent and
ultimately bounded.

(2)The system tracking error z1 converges asymptotically.

The stability of the closed-loop system is proved as
follows.

Proof 1. Let the Lyapunov function V = Vn, and the control
gains are selected as

Γ1 =
1

4
Λ1

Γj =
1

4
Λj , j = 2, 3, . . . , n

σj = Λj , j = 1, 2, . . . , n

(64)

Let Λ = min{Λ1,Λ2, . . . ,Λn} and ϑ =
∑

n
k=1∆k.

Furthermore, we have:

V̇ ≤ −ΛV + ϑ (65)

Furthermore, solving inequality (65) gives can be obtained
directly

0 ≤ V (t) ≤ (V (0)− ϑ

Λ
)e−Λt +

ϑ

Λ

≤ V (0)− e−Λt +
ϑ

Λ
, ∀t > 0

(66)

As t→∞, we have

0 ≤ V (t) ≤ ϑ

Λ
(67)

Remark 2. For j = 1, 2, . . . , n, the error signals zj and θ̃
eventally probability of bounded. Under Assumption 1-2 and
initial condition, we can deduce that θ is a constant, θ̂ is
also bounded in probability. Then, for ||ϕi|| ≤ ε, ||ϕi|| are
also bounded in probability, by parity of reasoning, we can
conclude that all the signals of the closed-loop system are
uniformly ultimately bounded in probability, and the tracking
error of the system will converge to (−ω, ω).

Remark 3. Here θ is used as the estimated parameter. For
n-order nonlinear system, we only need an adaptive law to
realize online update.

IV. SIMULATION EXAMPLE

To show the applicability of the proposed control scheme,
Brusselator model describes a simplified chemical reactions
model, which is a typical nonlinear control model, consider
the following model in dimensionless from [9]:

ẋ1 = C − (D + 1)x1 + x2
1x2 + λ(t)

ẋ2 = Dx1 + (2 + cos(x1))u− x2
1x2

y = x1

(68)

where x1 and x2 denote the concentrations of the reac-
tion intermediates and C,D > 0 are parameters which
describe the supply of “reservoir” chemicals. λ(t) stands
for unknown interference and choose λ(t) = 1

3 sin(x3
2).

Eleven fuzzy sets are defined over interval [−5; 5] for
all state variables by choosing the partitioning points as
−5;−4;−3;−2;−1; 0; 1; 2; 3; 4; 5. The fuzzy mem-
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bership functions are given as follows:

ϕ1(Zi) = exp(−0.5(Zi + 5)
2
)

ϕ2(Zi) = exp(−0.5(Zi + 4)
2
)

ϕ3(Zi) = exp(−0.5(Zi + 3)
2
)

ϕ4(Zi) = exp(−0.5(Zi + 2)
2
)

ϕ5(Zi) = exp(−0.5(Zi + 1)
2
)

ϕ6(Zi) = exp(−0.5(Zi + 0)
2
)

ϕ7(Zi) = exp(−0.5(Zi − 1)
2
)

ϕ8(Zi) = exp(−0.5(Zi − 2)
2
)

ϕ9(Zi) = exp(−0.5(Zi − 3)
2
)

ϕ10(Zi) = exp(−0.5(Zi − 4)
2
)

ϕ11(Zi) = exp(−0.5(Zi − 5)
2
)

(69)

Here, select ρ0 = 4, ρ∞ = 0.05 and β = 2. Thus, (17) can
be written as (4−0.05)e−2t+0.05. From (17) with α0 = yr
and funnel function variable ζ1 = ln ω+z1

ω−z1 , the virtual control

α1 and adaptive ˙̂
θ1 of the first subsystem can be described

as follows:

α1 =
ζ1
τ1

(a1 +
1

2
+

1

2c21
θ̂ϕT1 ϕ1)

˙̂
θ =

γ

2c21
ζ2
1ϕ

T
1 ϕ1 − σθ̂

(70)

where a1, c1, γ and σ are properly selected positive
parameters.

According to (19) have z2 = x2 − α1, the input with
saturation u and the adaptive law as follows:

u = (a2 +
1

2
)z2 −

z2

2c22
θ̂ϕT2 ϕ2

˙̂
θ =

γ

2c21
ζ2
1ϕ

T
1 ϕ1 +

γ

2c22
z2

2ϕ
T
2 ϕ2 − σθ̂

(71)

where a2, c2, γ and σ are appropriately selected positive
parameters.

0 5 10 15
Time(Sec)

-4

-3

-2

-1

0

1

2

3

4

z1
omega

14.4 14.6 14.8 15

-0.1

0

0.1

Fig. 1: The boundary function ω and the controlled
function z1.
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Fig. 2: System output y(t) and reference signal yr(t).
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Fig. 3: Saturation function output signal u.

The model parameters are appropriately are chosen as C =
1 and D = 0.5. The control parameters are selected as a1 =
31, a2 = 31, c1 = 80, c2 = 80, η = 1, γ = 1 and σ =
5.25. The initial conditions are [x1(0), x2(0)]T = [1.5, 0]T

and θT = [0, 0]T . The input saturation limits are chosen
as umax = 100andumin = −100. Select reference signal
as yr = 3 + sin(t) + 0.5 sin(0.5t). The boundary constraint
function and tracking error of the system are shown in Fig.1.
The tracking performance of the system controller is shown
in Fig.2. The actual control signals u and input signals v are
shown in Fig.3 and Fig.4 respectively. The adaptive law ˙̂

θ
is shown in Fig.5. The state variable x2 is shown in Fig.6.

V. CONCLUSION

In this paper, for a pure-feedback nonlinear control system
with input saturation constrains, by using mean-value theo-
rem to decouple the pure-feedback system. Then, introducing
a class of smooth function to approximate the input satura-
tion signal. Next, a logarithmic type Lyapunov function is
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Fig. 4: Control input signal v.
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Fig. 5: Adaptive parameter ˙̂
θ(t).

proposed, which can make the system signal always in the
time-varying boundary function with prescribed exponential
decay. The transient and steady state performance of the sys-
tem output also can be guaranteed. Furthermore, combining
with Backstepping technology and logic fuzzy control used
to design the prescribed performance adaptive controller,
which make the tracking error more accurate and faster for
the excepted function, also satisfied the output constrains of
the system. Finally, Based on Lyapunov stability theorem
proved that all signals of the closed-loop system are always
finally bounded. The simulation results of Model Brusselator
model show that the proposed method is effective.
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