



Abstract—This paper presents an analysis method of

detecting the inconsistencies between a Java Bytecode program

and its formal specification expressed at the Bytecode level,

using the Bytecode Modeling Language (BML). The main

objective of our work is not only to check the execution code of

the called method of a Java object class from a valid input state

but also to show how these inconsistencies can be extracted

from the Control Flow Graph of the Method Under Test. We

believe that Java Bytecode programs can contain bugs that the

techniques used for objected-oriented software testing do not

necessarily detect from their Java source programs. The

proposed formal model shows how both the BML assertions

and the Java Bytecode program can be translated into the

same model of constraints, and how they can be used for

detecting non-conformances of the method under test.

Index Terms— Bytecode Java, static testing, analysis,

Bytecode Specifications, BML, Conformity Model, Constraint

Model, JVM.

I. INTRODUCTION

ESTING by its nature can never conclude anything

mathematically valid, as it amounts to taking a

sample and trying to infer a generally valid judgment on the

whole from the observed part”[1]. Software testing can be

quantified and formalized when a strong basis for test

generation can be defined [2]. In this sense, formal methods

can play an essential role in software testing since they can

precisely describe how the software is supposed to behave

in a form that can be manipulated automatically.

Thus, the use of formal specifications to show

conformance of an implementation to its specification has

become a very used technique for software verification and

can be performed either by randomly generated input test

data, filtered via the precondition [3], or by using

constraints resolution [4], [5]. Indeed, many methods use

annotated programs together with techniques of constraint-

solving to generate test cases [6] or to perform code-based

verification of assertions. Such testing techniques are

carried out in two steps: first, they translate the program to

Manuscript received March 17, 2020; revised January 07, 2021.

Safaa Achour is a researcher at the Computer Science Laboratory, Ibn

Tofail University, Kénitra, Morocco. Email : safaa.achour@uit.ac.ma

Mohammed Benattou is a full professor of Computer Science Department,

Ibn Tofail University, Morocco.

Email: mohammed.benattou@uit.ac.ma

Jean-Louis Lanet is a member of the Cidre research team Inria, Rennes,

France. Email: jean-louis.lanet@inria.fr.

be verified and its specification into an intermediate

representation, and from there, they extract the testing

information.

In object-oriented specification context, the Java

Modeling Language (JML) [7] is an interface specification

language for Java to, formally, specify the behavior of Java

programs. One of the advantages of such annotation

languages is that they allow expressing both model and code

in the same file, sharing the same methods and class fields

[4]. However, often these specification techniques are

limited to Java source code, while for many cases, one

needs to specify and verify the executable code of the

application under test. Indeed, unlike the class files, which

contain the Bytecode of Java programs, the source code is

not always available; especially, for third party and mobile

software. Furthermore, some critical applications are

directly implemented at the executable level [12]. On the

other hand, Java Bytecode programs can contain bugs that

the methods used for object-oriented software testing do not

necessarily detect from the Java source programs.

 Many works have adapted white-box testing approaches

to programs at lower level, either to extracting a control

flow graph from the class file [8], [9], performing symbolic

and concolic execution of Bytecode [10], or using

constraint-based techniques to generate test inputs from the

Bytecode of java programs [11]. However, those techniques

alone do not guarantee that the called program behaves

correctly regarding the user specification.

In this sense, the main idea of this paper is to extract the

testing information from the Java Bytecode of the Method

Under Test (MUT) and its formal specification expressed in

the Bytecode Modeling Language (BML) [12], in the

context of unit testing. Indeed, BML specification language

is a variation of JML adapted to bytecode. It allows to

specify the application at the Bytecode level.

Furthermore, the source code JML predicates can be

compiled into Bytecode BML predicates using the

JML2BML compiler [12]. Hence, this allows us to test

programs at the source code level, and still have the ability

to perform Bytecode testing.

In [13], we have presented an example of generation of

test cases for java Bytecode programs annotated with BML

specifications. In this work, we firstly propose to formally

express the BML method assertions coherently to the

memory constraint model extracted from Java Bytecode

Programs [11]. Secondly, we present a formal model of

Formal Model of Conformity Analysis Method

of Java Bytecode Programs annotated with

BML Specifications

Safaa Achour, Mohammed Benattou, and Jean-Louis Lanet

"T

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

mailto:jean-louis.lanet@inria.fr

conformity of a given method using the constraint memory

variables extracted from both the BML Specifications and

from the Java Bytecode programs. Finally, we present code-

based verification of assertions (static testing) for detecting

non-conformances for a Method Under Test. In order to

have the same model of constraints we propose to translate

both the BML assertions and the Java Bytecode program

into the same representation.

This paper is organized as follows: section 2 presents the

related works, section 3 introduces some necessary

preliminaries, section 4 describes the proposed formal

constraint model of BML specifications, section 5 presents

the formal model of conformity, section 6 describes an

analysis method to illustrate the proposed approach, and

finally section 7 gives some concluding remarks.

II. RELATED WORK

A. Formal Specification-based Testing

According to Binder [14], we cannot test without

understanding what the software is supposed to do, and the

software complexity may be represented by models to

support test design. Thus, the formal specification can play

an important role in software testing as they precisely define

the functionalities offered by the System Under Test (SUT).

In an object-oriented context, the formal specification can

be expressed as class invariant constraints characterizing the

valid states of instances, and as method specifications

describing the behavior of a method in terms of its

preconditions and post-conditions [15]. Various testing

methods use formal specification languages to show the

conformance of an implementation to its specifications.

In [5], M. Benattou et al. propose a technique for test data

generation based on OCL constraints using partition

analysis of individual methods of a class; the idea is to

reduce the given set of constraints into disjoint partitions

using the Disjunctive Normal Form. In [16], the authors

presented a constraint-based method on automated test

generation from B models; they compute boundary states

using a set constraint solver to build test cases by traversing

the constrained reachability graph of the specification.

In [6], the proposed work shows how the application of

constraint solving techniques to the verification and testing

of Java/JML programs allows generating test data from the

source code of the application under test, establishing code-

based verification of assertions, and detecting the possible

inconsistencies between a java program and its JML

specification.

B. Verification of the Java Bytecode Programs

The principal reason to work at the Bytecode level is that

we can extract structural testing information even when the

source code is not available. Moreover, almost no

information from the source code gets lost when compiling

to Java Bytecode, so the program analysis and verification

performed at this level can be reversed to the original high-

level language through a reverse engineering process [17].

On the other hand, the Bytecode is free of compilation

errors and optimized for execution. Thereby, the executable

code of a given program allows us to have an idea about the

structure of the code, which can help us to design better test

cases.

Several works have been interested in structural testing

either to perform code coverage[18][19][20], search

testing[21][22][23][24], constraint based testing[22], [25],

[26], or symbolic and dynamic execution[27][28][29][30].

Many of these structural techniques are adapted to programs

at the Bytecode level. Indeed, in [8], the authors show how

to generate an inter-procedural and intra-procedural control

flow graph from the Bytecode of a given Java Card

application. In [9], the authors present static and dynamic

path executions of Bytecode programs using Control Flow

Graph and Data Dependencies Graph. In [31], Vincenzi et

al. presented Jabuti, a coverage testing tool designed to test

and assess the quality of a given test set using the object

code (Bytecode) of java applications and Java-based

Components. In [10], a software analysis tool named

Symbolic PathFinder (SPF) is described; SPF uses symbolic

execution combined with model checking to automate the

test case generation and error detection. The authors present

in [32] a backward symbolic execution method for Java

Bytecode programs; The idea behind this work is to reduce

the simulation cases by deriving condition on inputs

performing reverse execution for each Bytecode. In [33],

they present an implementation of mutant generation at the

Bytecode level and they support method-level mutant

operators. In [34], Xu et al. show how to automate the

generation of test inputs from Java bytecode by using a rule-

based approach; this latter consists of using a set of

predefined rules as search guidelines. In [11], the authors

propose a goal-oriented method for automated generation of

test inputs for Java Bytecode programs; They describe a

new constraint memory model of the Java Virtual Machine

(JVM), which allows backward exploration of the Bytecode

program.

However, those verification techniques that perform

analysis directly over the Bytecode, can only guarantee that

the code is well-typed or well structured, or to generate

input data that reach specific instruction in the program and

consequently contribute to the reachability problem.

Nevertheless, nothing guarantees that the System Under

Test behaves as intended.

Some approaches dealt with this problem by adapting the

Proof Carrying Code to the Java Bytecode programs

annotated with Bytecode Modeling Language [12],[35],[36].

They allow the client to verify functional or security

properties about the application via a formal proof that

accompanies the executable code of the application [37],

[38]. Yet, we think that even if establishing the proof

obligations guarantees the absence of certain classes of

errors, they are very expensive and difficult to be

implemented.

C. The proposed Idea

The constraint model proposed by F.Charreteur et al.[11],

contributes to the automation of the test data generation.

Indeed, the main goal of their approach presented in [11] is

the early detection of infeasible (non-executable) paths.

However, their works do not consider the problem of a

method called from an invalid state.

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

We believe that without the consideration of the

information contained in the user specifications, nothing can

help to detect the differences between the actual behavior of

the implementation of a SUT and the expected behavior of

its specifications

In this sense, the principal purpose of our proposed

checking approach is to explore not only the information of

the constraint model extracted from the Bytecode, but also

to consider the information of the user specifications

expressed in BML as it is shown in figure Fig.1. Indeed, the

BML makes it possible to annotate and subsequently check

the compliance of an application concerning its specification

at the Bytecode level. On the other hand, the structure of the

Bytecode program will help us to detect inconsistencies that

are difficult to be found by using only the model of the

application. Indeed, the latter does not provide sufficient

coverage. Nevertheless, if one wants to verify Java

Bytecode programs annotated with BML specifications,

both the Java Bytecode of the program under test and the

BML specifications have to be translated into an

intermediate representation (i.e. the same system of

constraints).

To deal with this problem, we propose a formal model

that transforms BML assertions into memory constraints

coherently with the constraint model defined for Java

Bytecodes. Indeed, as seen in the figure Fig. 2, we need to

define a mapping of BML specifications into the constraint

memory model representation [11] where the BML

expressions and the evaluation of BML predicates are

defined over the program JVM states (registers, operand

stack, and heap).

Our idea is inspired by [6]; the main difference is that

they perform test and verification at source level for

Java/JML programs, while we work at the Bytecode level

using the constraint memory model of JVM states.

In [35] and [36], the authors of BML language present a

proof of correctness of Bytecode verification condition

generator based on a weakest predicate transformer

function. To do so, they have presented their proper model

of Java Bytecode and they have given a formal meaning of

BML language accordingly to it. The goal behind our work

is to transform BML assertion into the bytecode memory

model proposed by [11] to perform static testing (analysis),

i.e. to detect the non-conforming paths of a given method,

and consequently to detect the non-conforming methods.

 In [39] and [40], we have proposed a testing methods for

Java Bytecode programs instrumented with their

specifications. However, the proposed methods presented

the following disadvantages:

 The injection of the user specification in the

application requires a good knowledge of Bytecode

to be implemented.

 It becomes unworkable when the specification is

complex.

III. PRELIMINARIES

The ultimate objective of this work is to apply constraint-

based testing on the Java Bytecode program annotated with

BML. The principle is to transform the problem of

generating the testing information, from the BML

specifications and the Bytecode, into a problem of constraint

solving.

In this section, we introduce some required preliminaries.

We present firstly a preview of specification language

tailored to Bytecode (BML: Bytecode Modeling Language);

we also give a brief description of the Java Virtual Machine

(JVM) representation and the memory constraint model

defined for Java Bytecode instructions.

A. Bytecode Modeling Language (BML)

BML [12] is a Bytecode specification language that is

designed to be closely related to JML (Java Modeling

Language) [7], which is an interface specification language

for Java to formally specify the behavior of Java programs.

1) Overview of BML

BML supports the essential features of JML. Thus, one

can express the behavioral specification of Java Bytecode

programs in the form of preconditions, post-conditions, and

class invariant. Additionally, the JML source-level

specifications can be compiled into BML Bytecode level

specifications. In order to show the use of BML

specifications, the example of the Java Bytecode specified

with BML of the "tranfer(Account dest, int amount)"

method of class Account is presented in figure Fig.3.

 We note that the invariant of the class Account is stored

in the class file as a special user-specific attribute [12]:

Invariant: #13 > 0(which means that the attribute balance

must always be positive).

Notice that the attribute balance that has been assigned

the number 13 in the constant pool is not referenced with

Fig. 1. General Test Architecture.

Constraint

System

Expressions

Predicates

Bytecode Instructions:

- Access to Attributes

- Method Invocation

- Stack Manipulation

- …

Java Bytecode

Representation of

BML specification in

memory constraints

Memory Constraints

from the semantics of

Bytecode instructions

Constraint Generation

BML Specifications

 Fig. 2. Translation of Java Bytecode program annotated with BML

specifications into constraints

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

lv[0], as it is, implicitly, concerning all objects that are

instance of the class Account. Otherwise, it will always be

explicitly referenced, for example, with lv[0] or lv[1] (lv[0]

designate the reference This, and lv[1] designate the

reference dest). On the other hand, lv[2] indicates the

parameter amount of the method transfer(Account dest, int

amount) stored in the register 2.

2) Syntax of BML

In BML, only Bytecode expressions can be used.

Therefore, all field names, class names, etc., are replaced by

references to the constant pool (a number, preceded by the

symbol #), whereas registers lv refer to parameters and local

variables. The grammar also contains many specific

keywords Bytecode, such as cntr: designating the stack

counter; st(e) where e is an arithmetic expression referring

to the eth element on the stack; and length(a) correspond to

the length of array a. For more details, see section 3.1 of

[12].

B. Constraint Memory Model

This sub-section gives a brief description of the Java

Virtual Machine (JVM) representation, and the memory

constraints on JVM states [11]. The memory model uses

Constrained Memory Variables (CMV) to represent JVM

states.

The JVM states represent the locations of runtime data

storage; i.e. registers (local variables), operand stacks, and

heap data. The registers are used to store the parameters and

the local variables of a method. When the method is

dynamic, the first register contains the reference to the

object (this) that calls the method. The operand stack is used

to perform the calculations of the method, while the heap is

the area of memory used by the JVM for the allocation of

Java source code of class Account annotated with JML

Specifications

Java Bytecode of the method "transfer" annotated with

BML Specification

public class Account {

 //@invariant balance>0;

 private/*@spec_public@*/ int balance;

 public Account(int balance){

 this.balance = balance;

 }

/*@requires amount>0;

 @ensures balance == \old(balance) + amount;

 @*/

public void deposit(int amount){

 balance = balance + amount;

}

 ……

/*@requires amount>0 && amount < balance;

 @ensures balance == \old(balance) - amount

 && dest.balance = dest.balance + amount;

 @*/

public void transfer(Account dest, int amount){

 if (amount >= 2*this.balance/3 && amount <=

(3*this.balance)/4)

 this.balance = this.balance - amount * 25/100;

 else if(amount >= 0 && amount <balance)

 this.balance = this.balance - amount;

 else

 System.out.println("Invalid Operation");

 dest.balance = dest.balance + amount;

}

public int get() {

 return balance;

}

public void transfer(Account, int);

{| requires lv[2] > 0 && lv[2] < lv[0].#13

 ensures lv[0].#13 = \old(lv[0].#13) – lv[2] && lv[1].#13

= \old(lv[1].#13) – lv[2] |}

 Code:

 0: iload_2

 1: iconst_2

 2: aload_0

 3: getfield #13 // Field balance:I

 6: imul

 7: iconst_3

 8: idiv

 9: if_icmplt 43

 12: iload_2

 13: iconst_3

 14: aload_0

 15: getfield #13 // Field balance:I

 18: imul

 19: iconst_4

 20: idiv

 21: if_icmpgt 43

 24: aload_0

 25: aload_0

 26: getfield #13 // Field balance:I

 29: iload_2

 30: bipush 25

 32: imul

 33: bipush 100

 35: idiv

 36: isub

 37: putfield #13 // Field balance:I

 40: goto 76

 43: iload_2

 44: iflt 68

 47: iload_2

 48: aload_0

 49: getfield #13 // Field balance:I

 52: if_icmpge 68

 55: aload_0

 56: aload_0

 57: getfield #13 // Field balance:I

 60: iload_2

 61: isub

 62: putfield #13 // Field balance:I

 65: goto 76

 68: getstatic #24 // Field

java/lang/System.out:Ljava/io/PrintStream;

 71: ldc #30 // String Invalid Operation

 73: invokevirtual #32 // Method

java/io/PrintStream.println:(Ljava/lang/String;)V

 76: aload_1

 77: aload_1

 78: getfield #13 // Field balance:I

 81: iload_2

 82: iadd

 83: putfield #13 // Field balance:I

 86: return
Fig. 3. Example of Java/JML program and the Bytecode.

Frame of the current method

Bytecode instructions of the

current method

void method(param1, param2)

instr_b1

instr_b2

……

instr_bq

Heap

Operand

Stack

Local Variables

This

Reference

This Param1 Param2 …

JVM Runtime Data Storage
Fig. 4. Method execution in the JVM.

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

dynamic memory. Figure Fig.4 gives an illustration of

runtime data storage of the method currently executed in the

JVM.

The constraint-based testing of Java Bytecode programs

requires the definition of a memory model [11]. This

memory model is based on the notion of constrained

memory variables CMV, where each Java Bytecode

instruction of the program is seen as a relation between two

CMVs: the CMVk before the execution of this instruction,

and the CMVl after its execution.

 A CMV is formally represented as a tuple (F, S, H)

where F designates the set of registers, S designates the

operand stack, and H represents the heap. Indeed, the

registers are modeled by a function that associates a VTPR

(the value contained in the register) to index i. The operand

stack is modeled by a sequence of VTPR in which its first

element is considered as its top. As to the heap, it

corresponds to a mapping from a set of addresses to a set of

objects.

Moreover, the tuple (F, S, H) contains variables and

domains. Integer and references are modeled by finite

domain variables. On other hand, objects of the heap are

modeled by pair elements: the type variable that represents

the class of the object and the element associating an integer

or reference variable to each attribute, which correspond to

the value of the attribute.

IV. FORMAL CONSTRAINT MODEL OF BML

In this section, we give a formal transformation of BML

assertions into constraints in the memory model. In this

sense, we translate BML assertions (Expressions and

predicates) into constraints over the registers, operand stack,

or heap variables. We also present the validity of BML

assertion in a given state CMV. Our work is based on

axiomatic semantics concepts.

A. Transformation state

To extend the memory model with BML specification, we

need to see BML assertions as constraints on JVM states.

Particularly, the class invariant and the method specification

will be considered as predicates that constrain the possible

values of the content of the JVM memory. Indeed, the

constraints contained in the precondition must be valid

when the method is called; while the properties declared by

the post-condition ensure that the called method has finished

its execution correctly.

The class invariant represents constraints that every

instance of the class must respect. The invariant also

influences the satisfaction of method specification, as both

the precondition and the post-condition are implicitly

strengthened by the class invariants [41]. Therefore, the

BML specifications constrain the state of registers and the

state of the heap of the JVM in such a way that:

 The method parameters (integers or references

type) located in registers F have to respect the

precondition and the class invariant.

 The objects (and their attributes) that reside in the

heap must respect the class invariant.

 The objects and parameters have to end the

execution in a state that respects the post-

condition.

We note that the stack is omitted here because it is empty

at the beginning and the ending of program execution.

Definition 1: A state CMVinit is defined as a valid state

CMVpre when it satisfies the constraints of BML

precondition and class invariant.

CMVinit=(F,,H) CMVpre=(Fpre,, ,Hpre)

We note that the symbol  designates the empty stack.

Fpre: is the state of registers that allows only the valid

values regarding the constraints required by the method

precondition.

Fpre= F -

Hpre: is the state of the heap that contains only the objects

that respect the constraints of the class invariant.

Hpre = H -

Definition 2: A final state CMVfinal is defined as valid if it

begins the execution from a valid initial state CMVpre and

ends in a state CMVpost that satisfy the BML postcondition

and the class invariant constraints.

Figure Fig.5 illustrates the translation of the BML

precondition and post-condition into the constraint memory

variable on the initial and the final state. Consequently, the

constraints CMVpre and CMVpost reduce the input and output

domains to only valid values (relatively to the specification).

B. Translation of BML expressions

The fundamental step in the transformation of BML

assertions is the translation of BML expressions in

constraints coherently with the constraint memory model of

the JVM. In this paper, we are particularly interested in the

essential expressions that construct the BML pre- and post-

conditions.

1) Primitive and Reference Variables

The values in BML assertions can be either a range of

integers (byte, characters, short, Booleans and int) or a

 public void method1(int);

 Code:

 0: iload_1

 1: ifle 27

 4: iload_1

 5: aload_0

 …

 …

 42: idiv

 43: isub

 44: putfield #13

 47: return

Valid

Inputs

Input

Domain

Specified with

BML Assertions

Valid

outputs
Output

Domaine

CMV0 = (F0, amount, H0)

CMV1 = (F0, , H0) , amount > 0

CMV4 = (F0, amount, H0)

CMV5 = (F0, This.amount, H0)

 …

CMV42 = …

 ……

𝑪𝑴𝑽𝒑𝒓𝒆
𝑪𝑴𝑽𝒊𝒏𝒊𝒕

𝑪𝑴𝑽𝒑𝒐𝒔𝒕 𝑪𝑴𝑽𝒐𝒖𝒕

𝑪𝑴𝑽𝒑𝒓𝒆 = 𝑪𝑴𝑽𝒊𝒏𝒊𝒕 − 𝑪𝑴𝑽𝒑𝒓𝒆

𝑪𝑴𝑽𝒑𝒐𝒔𝒕 = 𝑪𝑴𝑽𝒐𝒖𝒕 − 𝑪𝑴𝑽𝒑𝒐𝒔𝒕

CMVinit = (F0,  , H0)

Transformation

into Memory

Constraints

Fig. 5. Transformation of BML specification into memory constraints

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

reference. As in the constraint model, integers and

references are modeled by finite domain variables VTPR

(designing Variable of Type Primitive or Reference).

(VTPR)CMV = VTPR

2) Method parameters and local variables

In BML, the construct lv(i) denotes the local variables

and the parameters located in the register of index i. Hence,

their representation in the constraint model is made

consequently. Therefore, the BML local variables lv(i) are

modeled by a function that associates a value of primitive or

reference type to the register of index i.(lv(i))CMV :

i VTPR

3) Object attributes

The syntax of attribute access expressions in BML is

Ebml.ident, the latter stands for the attribute value at index

ident in the table of the constant pool for the reference

designated by the expression Ebml [12][36].

The translation of Ebml.ident to the constraint memory

model is done by modeling this expression as a tuple where

the first element is the object reference and the second is the

value of the field referenced by the index ident:

(Ebml.ident)cmv : Ebml≠ null, (Ebml, [ident, VTPR])  H;

Since the reference Ebml has to access an attribute of index

ident, it cannot be of a null value. The names of classes and

attributes are used for simplification rather than their

equivalent indexes in the table of constant pool as it is in

BML

4) The operator "old"

A program expression e in an expression of the form

old(e) refers to local variables (parameters) allocated in the

pre-state CMVpre. Indeed, The old(e) is a copy of the pre-

state of a method execution generally used in the post-state

CMVpost. Thus, its representation in the constraint model is

as the following:

old(e)CMVpost = eCMVpre.

The expression e can be either a method parameter or an

object attribute reachable from the parameters.

Example: Consider the BML Specifications of the

method transfer(Account, int) presented in the figure Fig.3.

The associated memory constraints to these specifications

(class invariant, precondition, postcondition) are illustrated

in the Table I.

C. BML Predicates

The translation process of the BML expressions into

constraints in the memory model is now ended, and

consequently, each predicate must be checked. The BML

assertions can be seen as a first-order predicates logic, and

they can be represented as predicates on the JVM memory

state. Therefore, for the satisfiability of BML predicates to

be performed, we need to precise the store (CMV in our

case) and the values of logical variables that constitute the

BML assertion. When each variable in an assertion is

assigned a value (determined by the value of the program

variables), the assertion becomes valid or invalid under a

standard interpretation of a given predicate in a given state.

In this work, the interpretation of the BML predicates is

defined over a program state CMV (i.e. the registers state,

the operand stack state, and the heap state).

Definition 3:(Satisfiability of predicates)

Let P be a BML predicate and CMV = (f, s, h) a memory

state of the JVM. The predicate P is valid in a state CMV

(CMV ⊨ P) if the values of P are valid in the state CMV for

any memory state referenced by P.

The satisfiability of an assertion (Predicate) is defined

inductively as follows:

 CMV ⊨P1  P2 if and only if CMV ⊨ P1 and

CMV ⊨ P2

 CMV ⊨P1 ∨ P2 if and only if CMV ⊨ P1 or CMV

⊨ P2

 CMV ⊨ ¬ P1 if and only if not CMV ⊨ P1

 CMV ⊨ true is true in any state CMV

 CMV ⊨ false is false in any state CMV

 CMV ⊨ P1 = P2 if and only if < P1, CMV>⊨ n1,

<P2, CMV>⊨ n2 and n1 = n2, with n1, n2 are

respectively the values of P1 and P2 in a state

CMV.

 CMV ⊨ P1 > P2 if and only if < P1, CMV>⊨ n1,

< P2, CMV>⊨ n2 and n1 > n2, with n1, n2 are

respectively the values of P1 and P2 in a state

CMV.

 CMV ⊨ P1 < P2 if and only if < P1, CMV>⊨ n1,

< P2, CMV>⊨ n2 and n1 < n2, with n1, n2 are

TABLE I

BML SPECIFICATION AND ITS CORRESPONDENT CONSTRAINT MODEL

 BML Specifications Constraint Model

Class invariant #13 > 0  (Ref , balance)  H,

 Ref≠ null,

(i.e. This ≠ nulldest≠ null)

balance  [0..INT_MAX]) (i.e. #13 > 0)

where Ref can be any instance of the class Account

Precondition lv[2] > 0 && lv[2] < lv[0].#13

lv[2]: 2 amount, This ≠ null, dest ≠ null

amount >0  amount <This.balance

i.e. amount  [0.. This.balance]

Post-condition lv[0].#13 = \old(lv[0].#13) – lv[2]

&&

lv[1].#13 = \old(lv[1].#13) + lv[2]

This ≠ null,

 (This.balance)post-state = (This.balance)pre_state –amount



(dest.balance)post-state = (dest.balance)pre_state+ amount

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

respectively the values of P1 and P2 in a state

CMV.

V. FORMAL MODEL OF CONFORMITY

The combination of both the functional and the structural

testing techniques allows us to test the behavior of a given

application, and to know its internal working as well.

However, the source code is not always available even more

for third-party applications. In this sense, we propose to

exploit first, the information contained in the BML

specification, and secondly, the information contained in the

Bytecode of the application (in the case of Java programs).

Indeed, the BML specification makes it possible to detect

possible inconsistencies between the Bytecode program and

its specification. On the other hand, the Bytecode of the

program and its structure allows to test all parts of the

programs, and to detect the paths that may contain these

inconsistencies. In this section, we propose to check the

validity of the method execution paths regarding the BML

constraints. We also present our formal model of conformity

of a given method using the constraint memory variables

extracted from both the BML Specifications and from the

Java Bytecode programs.

Testing Context: Let C be a class, and m be a method

with n parameters x = (x1, x2, …,xn). We define for each

parameter xi its domain of values Ei. We denote E = E1 x

E2x …x En the domain of input vector of the method m. The

control flow graph CFG is the internal representation of the

method m. Let P = {p1, p2, ..,pk} be the set of all

independent execution paths of the method m (extracted

from the CFG).

Definition 4: (Valid paths relatively to the precondition)

 An execution path pi of the set Pvalidprestate is valid

relatively to the method pre-state if pi satisfies both the

precondition and the class invariant.

Pvalidprestate= P - Pinvalidprestate

With Pinvalidprestate is the set of execution paths of the

method m that do not satisfy the precondition or the

invariant.

Definition 5:(Conform Execution Path)

 A path from the set Pvalidprestate is conform to the method

specification if it terminates in state CMVpost that satisfy the

post-condition (Post) and the invariant (Inv)

A path pi of Method m is conform to its specification 

CMVpre ((CMVpre⊨ Pre Inv) <CMVpre CMV1CMV2

.. CMVj>CMVpost)CMVpost⊨ post Inv

Where CMV1, …,CMVj are the corresponding constraint

memory variables of a path pi, with j is the number of

instructions in this path; and where CMVpre and CMVpost

respectively corresponding to the constraints extracted from

the valid method pre-states and the valid post-states of BML

assertions.

 Indeed, a path pi is conform to the method specification

if it begins in a valid state CMVpre that respects both the

class invariant and the precondition constraints- and

terminates in the state CMVpost that satisfy the post-

condition Post and the invariant Inv.

Definition 6: (Conforming Method)

 A method m is conform to its specification if all its valid

execution paths are conform to the specification.

piPvalidprestate, pi is conform to the method specification

 Method m is conform to its specification.

Consequently, a non-conform method is defined as

follows:

Definition 7: m is a non-conform method relatively to its

specification if: piPvalidprestate in such a way that pi is not

conforming to the method specification.

In other words, the method m does not conform to the

BML Specification if:

CMVpre , (CMVpre⊨ pre Inv), <CMVpre, CMV1, ...,

CMVj>CMVpost CMVpost⊨ post Inv

VI. EXAMPLE OF APPLICATION

A. An Analysis Method: Detection of non-conformance

(relatively to the postcondition)

In the context of this work, we present an analysis

method (static testing method) that aims to detect the

possible non-conformances between the Java Bytecode of a

given method of a given class and its BML specification.

 We consider that the Java Bytecode method of any class

under test can be represented with a control flow graph

(CFG) which gives a global overview of the execution paths

that the input data can traverse during the execution. The set

of the independent execution paths of the testing method is

extracted using a basis path coverage method [42] based on

the Depth First Search algorithm. Each one of these

execution paths augmented with the BML precondition, the

class invariant, and the negation of the post-condition is

translated to the constraint memory system. This latter is

deduced from the semantics of its java bytecode instructions

and the semantics of BML contracts.

(CMVPreCMVInv) CMV1 … CMVn  (CMVPost)

Where CMV1 … CMVn are the constraints generated

from an execution path of the control flow graph, and

CMVPre, CMVInv, CMVPost are the generated constraints

from BML specification.

The verification process will accumulate and check the

consistency of these constraints. If the generated constraints

are not contradictory, then this path contains an

inconsistency relatively to the post-condition. Therefore, a

non-conformance will be detected in the MUT. We note that

the consistency of the constraints can be checked on the fly

similarly to [11]. The principal advantage of this technique

is that we can know precisely the paths where the detected

inconstancies reside, even when the source code is not

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

available.

B. Illustation

Consider the Java Bytecode Method transfer(Account

dest, int amount) annotated with BML specifications, shown

in the figure Fig.3, and its control flow graph presented in

the figure Fig. 6. Our main objective is to detect the non-

conformances in the execution paths of the method under

test.

The basis set of paths (all independent paths) of the MUT

extracted from the CFG is represented as following:

Path 1 : 0 – 1 – 2 – 3 – 6 – 7 – 8 – 9 – 43 – 44 – 47 – 48 –

49 – 52 – 55 – 56 – 57 – 60 – 61 – 62 – 65 – 76 – 77 – 78 –

81 – 82 – 83 – 86.

Path 2 : 0 – 1 – 2 – 3 – 6 – 7 – 8 – 9 – 43 – 44 – 47 – 48 –

49 – 52 – 68 – 71 – 73 – 76 - 77 – 78 – 81 – 82 – 83 – 86.

Path 3: 0 – 1 – 2 – 3 – 6 – 7 – 8 – 9 – 12 – 13 – 14 – 15 – 18

– 19 – 20 – 21 – 24 – 25 – 26 – 29 – 30 – 32 – 33 – 35 – 36

– 37 – 40 – 76 – 77 – 78 – 81 – 82 – 83 – 86.

Path 4: 0 – 1 – 2 – 3 – 6 – 7 – 8 – 9 – 12 – 13 – 14 – 15 – 18

– 19 – 20 – 21 – 43 – 44 – 47 – 48 – 49 – 52 – 55 – 56 – 57

– 60 – 61 – 62 – 65 – 76 – 77 – 78 – 81 – 82 – 83 – 86.

Path 5: 0 – 1 – 2 – 3 – 6 – 7 – 8 – 9 – 12 – 13 – 14 – 15 – 18

– 19 – 20 – 21 – 43 – 44 – 47 – 48 – 49 – 52 – 68 – 71 – 73

– 76 - 77 – 78 – 81 – 82 – 83 – 86.

In order, to apply the analysis approach for detecting the

possible non-conformances of the method transfer(Account

dest, int amount) regarding the BML specifications, we

firstly describe the constraints generated from the method

execution paths, the method valid pre-state and the negation

of the post-condition. Then, if these constraints are

consistent, a non-conformance is detected.

0: iload_2

1: iconst_2

2: aload_0

3: getfield #13

6: imul

7: iconst_3

8: idiv

9: if_icmplt 43

12: iload_2

13: iconst_3

14: aload_0

15: getfield #13

18: imul

19: iconst_4

20: idiv

 21: if_icmpgt 43

 24: aload_0

 25: aload_0

 26: getfield #13

 29: iload_2

 30: bipush 25

 32: imul

 33: bipush 100

 35: idiv

 36: isub

 37: putfield #13

43: iload_2

40: goto 76

 44: iflt 68

 47: iload_2

 48: aload_0

 49: getfield #13

55: aload_0

56: aload_0

57: getfield #13

60: iload_2

61: isub

62: putfield #13

65: goto 76

52: if_icmpge 68

68: getstatic #24

71: ldc #30

73: invokevirtual #32

76: aload_1

77: aload_1

78: getfield #13

 81: iload_2

 82: iadd

 83: putfield #13

86: return

Fig. 6. CFG of the method transfer(Account acc, int amount)

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

The initial state: CMVinit= (F0,, H0). As mentioned

before, the symbol  designates the empty stack.

F0= {0 This,1dest ,2amount}

F0 is the set of registers: The reference This (This refers

to the current object) is stored in the register number 0

(because the method transfer is not static), the register 1

contains the reference dest, whereas the register 2 stores the

second parameter amount.

 Path 1 :

CMVpre:(ref, balance)  H, ref  null, balance >0

amount> 0, This null, amount <This.balance

CMV0 = (F0, amount, H0)

CMV1 = (F0, 2.amount, H0)

CMV2 = (F0, This.2.amount, H0)

CMV3 = (F0, balance.2.amount, H0); This  null,

getfield(H0, 13, This, balance)

CMV6 = (F0, MUL.amount, H0); MUL = 2*balance

CMV7 = (F0, 3.MUL.amount, H0)

CMV8 = (F0, DIV.amount, H0), DIV = MUL /3

CMV9 = (F0, , H0), amount < DIV

CMV43 = (F0, amount, H0)

CMV44 = (F0, , H0), amount > 0

CMV47 = (F0, amount, H0)

CMV48 = (F0, This.amount, H0)

CMV49 = (F0, balance.amount, H0), This  null,

getfield(H0, 13, This, balance)

CMV52 = (F0, , H0), amount < balance

CMV55 = (F0, This, H0),

CMV56 = (F0, This.This, H0),

CMV57 = (F0, balance.This, H0), This  null, getfield(H0,

13, This, balance)

CMV60 = (F0, amount.balance.This, H0),

CMV61 = (F0, SUB.This, H0), SUB = balance – amount

CMV62 = (F0,  , H0), This  null, putfield(H0, H1, 13,

This, SUB)

CMV65 = (F0,  , H0),

CMV76 = (F0, dest , H1);

CMV77 = (F0, dest.dest , H1);

CMV78 = (F0, balance.dest , H1); dest null, getfield(H0,

13, dest, balance)

CMV81 = (F0, amount.balance.dest , H1)

CMV82 = (F0, ADD.balance.dest , H1)

CMV83 = (F0, , H2); dest null, putfield(H0, H1, 13,

dest, ADD)

CMV86 = (F0, , H2);

CMVpost :This.balanceThis.balance – amount

dest.balancedest.balance + amount

Therefore, the generated system of constraints of the

execution path and the BML constraints (the method

precondition and the negation of its post-condition) is the

following; for simplification, we replace the generated

memory constraint putfield(…), which changes the state of

the heap, by the symbol of affectation $:=$:

((ref, balance)  H, ref  null, balance >0  amount

> 0  This null  amount <This.balance)pre amount > 0

 amount < (2 * balance)/3  balance := balance –

amount) dest nulldest.balance = dest.balance + amount

(This.balanceThis.balanceold – amount

dest.balancedest.balanceold + amount)post

After some simplifications, the constraint system reduces

to the following:

((ref, balance)  H, ref  null, balance >0  amount

> 0 amount < (2 * balance)/3  balance := balance –

amount) dest nulldest.balance = dest.balance +

amountThis.balanceThis.balanceold – amount)post



((ref, balance)  H, ref  null, balance >0  amount

> 0 amount < (2 * balance)/3 balance := balance –

amount) dest nulldest.balance = dest.balance + amount

(dest.balancedest.balanceold + amount)post

 Path 2

CMVpre:(ref, balance)  H, ref  null, balance >0

amount> 0,This null, amount <This.balance

CMV0 = (F0, amount, H0)

CMV1 = (F0, 2.amount, H0)

CMV2 = (F0, This.2.amount, H0)

CMV3 = (F0, balance.2.amount, H0); This 

null,getfield(H0, 13, This, balance)

CMV6 = (F0, MUL.amount, H0); MUL = 2*balance

CMV7 = (F0, 3.MUL.amount, H0)

CMV8 = (F0, DIV.amount, H0), DIV = MUL /3

CMV9 = (F0, , H0), amount < DIV

CMV43 = (F0, amount, H0)

CMV44 = (F0, , H0), amount < 0

 …

CMVpost :This.balanceThis.balance – amount

dest.balancedest.balance + amount

After simplifications, the constraint system is the

following

(ref, balance)  H  ref  null  balance

>0amount > 0  This null  amount

<This.balanceamount < 0  …

 Path 3

CMVpre:(ref, balance)  H, ref  null, balance >0

amount> 0, This null, amount <This.balance

CMV0 = (F0, amount, H0)

CMV1 = (F0, 2.amount, H0)

CMV2 = (F0, This.2.amount, H0)

CMV3 = (F0, balance.2.amount, H0); This 

null,getfield(H0, 13, This, balance)

CMV6 = (F0, MUL.amount, H0); MUL = 2*balance

CMV7 = (F0, 3.MUL.amount, H0)

CMV8 = (F0, DIV.amount, H0), DIV = MUL /3

CMV9 = (F0, , H0), amount ≥ D

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

CMV12 = (F0, amount, H0),

CMV13 = (F0, 3.amount, H0)

CMV14 = (F0, This.3.amount, H0)

CMV15 = (F0, balance.3.amount, H0); This  null,

getfield(H0, 13, This, balance)

CMV18 = (F0, MUL2.amount, H0), MUL2 = 3*balance

CMV19 = (F0, 4.MUL2.amount, H0)

CMV20 = (F0, DIV2.amount, H0); DIV2 = MUL2/4

CMV21 = (F0, c, H0), u ≤ D 2

CMV24 = (F0, This, H0),

CMV25 = (F0, This.This, H0),

CMV26 = (F0, balance.This, H0), This  null, getfield(H0,

13, This, balance)

CMV29 = (F0, amount.balance.This, H0),

CMV30 = (F0, 25.amount.balance.This, H0),

CMV32 = (F0, MUL3.balance.This, H0), MUL3 =

25*amount

CMV33 = (F0, 100.MUL3.balance.This, H0),

CMV35 = (F0, DIV3.balance.This, H0), DIV3=MUL3 /

100

CMV36 = (F0, SUB.This, H0), SUB = balance – DIV3

CMV37 = (F0,  , H1); This  null, putfield(H0, H1, 13,

This, SUB)

CMV40 = (F0,  , H1)

CMV76 = (F0, dest , H1);

CMV77 = (F0, dest.dest , H1);

CMV78 = (F0, balance.dest , H1); dest null, getfield(H0,

13, dest, balance)

CMV81 = (F0, amount.balance.dest , H1)

CMV82 = (F0, ADD.balance.dest , H1)

CMV83 = (F0, , H2); dest null, putfield(H0, H1, 13,

dest, ADD)

CMV86 = (F0, , H2);

CMVpost :This.balanceThis.balance – amount

dest.balancedest.balance + amount

After some simplifications, the constraint system is as

follow:

(ref, balance)  H, ref  null, balance >0  amount

> 0  This null amount ≥ (2 * balance)/3  amount ≤

3*balance/4  balance := balance –(25 *

amount/100)dest nulldest.balance = dest.balance +

amountThis.balanceThis.balanceold – amount)post



(ref, balance)  H, ref  null, balance >0  amount

> 0  This null amount ≥ (2 * balance)/3  amount ≤

3*balance/4  balance := balance –(25 * amount)/100

dest nulldest.balance = dest.balance +

amountdest.balancedest.balance + amount)post

 Path4

CMVpre: (ref, balance)  H, ref  null, balance >0

amount> 0, This null, amount <This.balance

CMV0 = (F0, amount, H0)

CMV1 = (F0, 2.amount, H0)

CMV2 = (F0, This.2.amount, H0)

CMV3 = (F0, balance.2.amount, H0); This  null,

getfield(H0, 13, This, balance)

CMV6 = (F0, MUL.amount, H0); MUL = 2*balance

CMV7 = (F0, 3.MUL.amount, H0)

TABLE II

THE GENERATED CONSTRAINTS FOR EACH INDEPENDENT PATH OF TRANSFER METHOD

Path Number Generated Constraint System from

(prebmlInvbmlPath_iPostbml)

Decision

Path 1 ((ref, balance)  H, ref  null, balance >0  amount > 0 amount < (2 *

balance)/3  balance := balance – amount) dest nulldest.balance =

dest.balance + amountThis.balanceThis.balanceold – amount)post



((ref, balance)  H, ref  null, balance >0  amount > 0 amount < (2 *

balance)/3  balance := balance – amount) dest nulldest.balance =

dest.balance + amount (dest.balancedest.balanceold + amount)post

 Eliminated

(Contradictory Constraints)

 Path 2 (ref, balance)  H  ref  null  balance >0  amount > 0  This null 

amount <This.balanceamount < 0  …

Eliminated

(Contradictory Constraints,

Especially between the path

constraints and the

precondition)

Path 3 (ref, balance)  H, ref  null, balance >0  amount > 0  This null 

a u ≥ 2 * b /3  u ≤ 3*b /4 balance := balance –(25 *

amount/100) dest nulldest.balance = dest.balance + amount

This.balanceThis.balanceold – amount)post



………

Consistent Constraints

(Non-Conformance detected)

Path 4

(ref, balance)  H, ref  null, balance > 0  u ≥ 3*b /4 

amount < balance balance := balance – amount) dest nulldest.balance =

dest.balance + amountThis.balanceThis.balanceold – amount)post



(ref, balance)  H, ref  null, balance > 0  u ≥ 3*b /4 

amount < balance balance := balance – amount) dest nulldest.balance =

dest.balance + amount (dest.balancedest.balanceold + amount)post

Eliminated

(Contradictory Constraints)

Path 5 (ref, balance)  H, ref  null, balance >0  amount > 0  This null 

amount <This.balance u ≥ .b  …

Eliminated

(Contradictory Constraints,

Especially between the path

constraints and the

precondition)

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

CMV8 = (F0, DIV.amount, H0), DIV = MUL /3

CMV9 = (F0, , H0), u ≥ D

CMV12 = (F0, amount, H0),

CMV13 = (F0, 3.amount, H0)

CMV14 = (F0, This.3.amount, H0)

CMV15 = (F0, balance.3.amount, H0); This  null,

getfield(H0, 13, This, balance)

CMV18 = (F0, MUL2.amount, H0), MUL2 = 3*balance

CMV19 = (F0, 4.MUL2.amount, H0)

CMV20 = (F0, DIV2.amount, H0); DIV2 = MUL2/4

CMV21 = (F0, c, H0), amount > DIV2

CMV43 = (F0, amount, H0)

CMV44 = (F0, , H0), amount > 0

CMV47 = (F0, amount, H0)

CMV48 = (F0, This.amount, H0)

CMV49 = (F0, balance.amount, H0), This  null,

getfield(H0, 13, This, balance)

CMV52 = (F0, , H0), amount < balance

CMV55 = (F0, This, H0),

CMV56 = (F0, This.This, H0),

CMV57 = (F0, balance.This, H0), This  null, getfield(H0,

13, This, balance)

CMV60 = (F0, amount.balance.This, H0),

CMV61 = (F0, SUB.This, H0), SUB = balance – amount

CMV62 = (F0,  , H0), This  null, putfield(H0, H1, 13,

This, SUB)

CMV65 = (F0,  , H0),

CMV76 = (F0, dest , H1);

CMV77 = (F0, dest.dest , H1);

CMV78 = (F0, balance.dest , H1); dest null, getfield(H0,

13, dest, balance)

CMV81 = (F0, amount.balance.dest , H1)

CMV82 = (F0, ADD.balance.dest , H1)

CMV83 = (F0, , H2); dest null, putfield(H0, H1, 13,

dest, ADD)

CMV86 = (F0, , H2);

CMVpost :This.balanceThis.balance – amount

dest.balancedest.balance + amount

After some simplifications, the constraint system is the

following:

(ref, balance)  H, ref  null, balance > 0  This 

null  u ≥ 3*b /4  amount < balance

balance := balance – amount) dest nulldest.balance =

dest.balance + amountThis.balanceThis.balanceold –

amount)post



(ref, balance)  H, ref  null, balance > 0  amount

≥ 3*b /4  This  null  amount < balance

balance := balance – amount) dest nulldest.balance =

dest.balance + amount (dest.balancedest.balanceold +

amount)post

 Path 5

CMVpre: (ref, balance)  H, ref  null, balance >0

amount> 0, This null, amount <This.balance

CMV0 = (F0, amount, H0)

CMV1 = (F0, 2.amount, H0)

CMV2 = (F0, This.2.amount, H0)

CMV3 = (F0, balance.2.amount, H0); This  null,

getfield(H0, 13, This, balance)

CMV6 = (F0, MUL.amount, H0); MUL = 2*balance

CMV7 = (F0, 3.MUL.amount, H0)

CMV8 = (F0, DIV.amount, H0), DIV = MUL /3

CMV9 = (F0, , H0), u ≥ D

CMV12 = (F0, amount, H0),

CMV13 = (F0, 3.amount, H0)

CMV14 = (F0, This.3.amount, H0)

CMV15 = (F0, balance.3.amount, H0); This  null,

getfield(H0, 13, This, balance)

CMV18 = (F0, MUL2.amount, H0), MUL2 = 3*balance

CMV19 = (F0, 4.MUL2.amount, H0)

CMV20 = (F0, DIV2.amount, H0); DIV2 = MUL2/4

CMV21 = (F0, c, H0), amount > DIV2

CMV43 = (F0, amount, H0)

CMV44 = (F0, , H0), amount > 0

CMV47 = (F0, amount, H0)

CMV48 = (F0, This.amount, H0)

CMV49 = (F0, balance.amount, H0), This  null,

getfield(H0, 13, This, balance)

CMV52 = (F0, , H0), u ≥ b

….

CMVpost :This.balanceThis.balance – amount

dest.balancedest.balance + amount

After some simplifications, the constraint system is as

follow:

((ref, balance)  H, ref  null, balance >0 amount

> 0  This null  amount <This.balance u ≥

This.balance …

Constraints Analysis

The Table II presents the constraint system generated

from each execution path of the method transfer(Account

dest, int amount).

Effectively, in the two paths, Path 1 and Path 4, the

generated constraints are contradictory; this means that

these two paths do not contain any inconsistencies (non-

TABLE III

THE EXECUTION PATHS OF TRANSFER METHOD AND THEIR RELATIVE

VALID INPUTS PARTITIONS

Path

Number

Valid Input

Sub-Domain

Non-Conformance

Detected

Path 1
amount ]0,(2*balance)/3[

balance ]0,INT_MAX[

 This  null dest null

 No

Path 2 Invalid pre-state No

Path 3
amount  [(2*balance)/3 ,

(3*balance)/4] balance 

]0,INT_MAX[ This  null dest

null

Yes

Path 4

amount ](3*balance)/4 ,

balance] balance 

]0,INT_MAX[ This  null

dest null

No

Path 5 Invalid pre-state No

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

conformances) with the specification. Therefore, those paths

are discarded.

In the Path 3, the constraints generated from the

precondition, the invariant, the execution path, and the

negation of the post-condition are consistent. Therefore, this

path contains a non-conformance regarding the

specification.

The paths Path 2 and Path 5 will also be discarded due to

the conflicting constraint in the execution path and the

precondition constraints. In other words, the inputs

traversing this path do not respect the precondition in the

first place.

As it is seen in Table III, we also observe, that the method

precondition allows us to restrict the input domain to valid

data. Whereas, the path constraints help us to divide the

valid input domain into sub-domains (partitions), where

each partition represents the input data that can traverse this

sub-domain.

As our objective is the detection of non-conformances in

the method transfer relatively to its BML specification, we

can see from Tables II and III that in the sub-domain

(amount  [(2*balance) / 3 , (3*balance)/4] balance 

]0,INT_MAX[ This  null dest null), the path 3 does

not respect the specification. Consequently, the method

transfer is non-conforming to its specification.

Indeed,

CMVpre , (CMVpre⊨(amount ]0, balance [ balance 

]0,INT_MAX[ This  null dest null), <(ref, balance)

 H, ref  null, balance >0  amount > 0  This null 

 u ≥ 2 * b /3  u ≤ 3*b /4 

balance = balance –(25 * amount/100) > CMVpost

CMVpost⊨ (This.balanceThis.balanceold – amount)post

Testing a program from the specification or the model

solely [4], [5], [15], [43] allows us to test the behavior of

programs, but since the latter is a black box, we cannot

know the covered paths or the tested part of the application.

For instance, with the specification alone, it will be difficult

to find the non-conformance detected in the previous

example. In this sense, the information of the Bytecode

facilitates the detection of the program parts that lead to

non-conform behaviors.

VII. CONCLUSION

This paper proposes a code-based analysis of assertions

for Java Bytecode programs annotated with BML. Most of

the existing works, about the test or the analysis of Java

Bytecode programs, do not consider the case of programs

called from an invalid input state. The main objective of our

work is, on one hand, to check if the behavior rejected by a

specification, expressed formally, is rejected by its

implementation as well. On the other hand, the Bytecode of

the testing method gives the structure of the program even

when the source code is not available. The proposed

method allows detecting which paths may contain the

detected inconsistencies. We have firstly presented a formal

model of transforming BML assertions into constraints on

JVM memory states. Secondly, we have proposed a formal

model of the conformity of an execution path of a given

method. Finally, we have presented an analysis method of

detecting the inconsistencies between a Java Bytecode

Method and its BML Specifications. Our future work is now

oriented to test the Bytecode of Java method called from

invalid data.

REFERENCES

[1] A. Bertolino, « Software testing research and practice », in

International Workshop on Abstract State Machines, 2003, p. 1–21.

[2] A. J. Offutt, Y. Xiong, et S. Liu, « Criteria for generating

specification-based tests », in Proceedings Fifth IEEE International

Conference on Engineering of Complex Computer Systems

(ICECCS’99)(Cat. No. PR00434), 1999, p. 119–129.

[3] Y. Cheonet C. E. Rubio-Medrano, « Random test data generation for

Java classes annotated with JML specifications », 2007.

[4] F. Bouquet, F. Dadeau, et B. Legeard, « Automated boundary test

generation from JML specifications », in International Symposium on

Formal Methods, 2006, p. 428–443.

[5] M. Benattou, J.-M. Bruel, et N. Hameurlain, « Generating test data

from OCL specification », 2002.

[6] F. Dadeau et F. Peureux, « Grey-box testing and verification of

Java/JML », in 2011 IEEE Fourth International Conference on

Software Testing, Verification and Validation Workshops, 2011, p.

298–303.

[7] G. T. Leavens, A. L. Baker, et C. Ruby, « JML: a Java modeling

language », in Formal Underpinnings of Java Workshop (at

OOPSLA’98), 1998, p. 404–420.

[8] A. Amine, B. Mohammed, et L. Jean-Louis, « Generating control flow

graph from Java card byte code », in 2014 Third IEEE International

Colloquium in Information Science and Technology (CIST), 2014, p.

206–212.

[9] S. Soomro, Z. Alansari, et M. R. Belgaum, « Path executions of java

bytecode programs », in Progress in Advanced Computing and

Intelligent Engineering, Springer, 2018, p. 261–271.

[10] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, et

N. Rungta, « Symbolic PathFinder: integrating symbolic execution

with model checking for Java bytecode analysis », Automated

Software Engineering, vol. 20, no 3, p. 391–425, 2013.

[11] F. Charreteuret A. Gotlieb, « Constraint-based test input generation

for java bytecode », in 2010 IEEE 21st International Symposium on

Software Reliability Engineering, 2010, p. 131–140.

[12] L. Burdy, M. Huisman, et M. Pavlova, « Preliminary design of BML:

A behavioral interface specification language for Java bytecode », in

International Conference on Fundamental Approaches to Software

Engineering, 2007, p. 215–229.

[13] S. Achour et M. Benattou, « Test case generation for Java Bytecode

programs annotated with BML specifications », in 2016 5th

International Conference on Multimedia Computing and Systems

(ICMCS), p. 605–610.

[14] R. Binder, Testing object-oriented systems: models, patterns, and

tools. Addison-Wesley Professional, 2000.

[15] K. Benlhachmiet M. Benattou, « A Formal Model of Conformity and

Security Testing of Inheritance for Object Oriented Constraint

Programming », 2013.

[16] E. Bernard, B. Legeard, X. Luck, et F. Peureux, « Generation of test

sequences from formal specifications: GSM 11-11 standard case

study », Software: Practice and Experience, vol. 34, no 10, p. 915–

948, 2004.

[17] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, et W. E. Wong,

« Establishing structural testing criteria for java bytecode », Software:

practice and experience, vol. 36, no 14, p. 1513–1541, 2006.

[18] L. Lun, X. Chi, et H. Xu, "Coverage Criteria for Component Path-

oriented in Software Architecture", Engineering Letters, vol.27, no 1,

pp 40–52, 2019.

[19] R. Gopinath, C. Jensen, et A. Groce, « Code coverage for suite

evaluation by developers », in Proceedings of the 36th International

Conference on Software Engineering, 2014, p. 72–82.

[20] B. Lesage, S. Law, et I. Bate, « TACO: An industrial case study of

Test Automation for COverage », in Proceedings of the 26th

International Conference on Real-Time Networks and Systems, 2018,

p. 114–124.

[21] G. Fraser et A. Arcuri, « Evolutionary Generation of Whole Test

Suites », in 2011 11th International Conference on Quality Software,

juill. 2011, p. 31‑40, doi: 10.1109/QSIC.2011.19.

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

[22] J. Malburget G. Fraser, « Combining search-based and constraint-

based testing », in 2011 26th IEEE/ACM International Conference on

Automated Software Engineering (ASE 2011), 2011, p. 436–439.

[23] A. Sharma, P. Rishon, et A. Aggarwal, « Software testing using

genetic algorithms », Int. J. Comput. Sci. Eng. Surv.(IJCSES), vol. 7,

no 2, p. 21–33, 2016.
[24] I. T. Elgendy, M. R. Girgis, et A. A. Sewisy, "A GA-Based Approach

to Automatic Test Data Generation for ASP .NET Web Applications",

IAENG International Journal of Computer Science, vol. 47, no 3, pp

557-564, 2020.

[25] L. Al Sardy, F. Saglietti, T. Tang, et H. Sonnenberg, « Constraint-

based testing for buffer overflows », in International Conference on

Computer Safety, Reliability, and Security, 2018, p. 99–111.

[26] A. Gotlieb, « Euclide: A constraint-based testing framework for

critical c programs », in 2009 International Conference on Software

Testing Verification and Validation, 2009, p. 151–160.

[27] W. Visser, C. S. Pǎsǎreanu, et S. Khurshid, « Test input generation

with Java PathFinder », in Proceedings of the 2004 ACM SIGSOFT

international symposium on Software testing and analysis, 2004, p.

97–107.

[28] C. Cadaret K. Sen, « Symbolic execution for software testing: three

decades later », Communications of the ACM, vol. 56, no 2, p. 82–90,

2013.

[29] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, et I. Finocchi,

« A survey of symbolic execution techniques », ACM Computing

Surveys (CSUR), vol. 51, no 3, p. 1–39, 2018.

[30] X. Wang, J. Sun, Z. Chen, P. Zhang, J. Wang, et Y. Lin, « Towards

optimal concolic testing », in Proceedings of the 40th International

Conference on Software Engineering, 2018, p. 291–302.

[31] A. M. Vincenzi, M. E. Delamaro, et J. C. Maldonado, « JaBUTi–Java

Bytecode Understanding and Testing », São Carlos, SP: Universidade

de São Paulo–UPS, 2003.

[32] T. Inafune, S. Miura, T. Taketa, et Y. Hiranaka, « Symbolic

backward simulation of Java bytecode program », in Proceedings of

the 10th International Conference on Computer Modeling and

Simulation, 2018, p. 140–145.

[33] H. Coles, T. Laurent, C. Henard, M. Papadakis, et A. Ventresque,

« Pit: a practical mutation testing tool for java », in Proceedings of the

25th International Symposium on Software Testing and Analysis,

2016, p. 449–452.

[34] W. Xu, T. Ding, et D. Xu, « Rule-Based Test Input Generation from

Bytecode », in 2014 Eighth International Conference on Software

Security and Reliability (SERE), 2014, p. 108–117.

[35] M. Pavlova, « Vérification de bytecode et ses application », PhD

Thesis, École Supérieure en Sciences Informatiques de Sophia

Antipolis, 2007.

[36] M. Pavlova, " Bytecode Verification and its Applications ", Technical

drafts, École Supérieure en Sciences Informatiques de Sophia

Antipolis.

[37] L. Burdyet M. Pavlova, « Java bytecode specification and

verification », in Proceedings of the 2006 ACM symposium on

Applied computing, 2006, p. 1835–1839.

[38] G. Bartheet al., « JACK—a tool for validation of security and

behaviour of Java applications », in International Symposium on

Formal Methods for Components and Objects, 2006, p. 152–174.

[39] S. Achour et M. Benattou, « A Model Based Testing Approach for

Java Bytecode Programs. », JCP, vol. 13, no 9, p. 1098–1114, 2018.

[40] S. Achour, A. Chouenyib, et M. Benattou, « A Constraint-Based

Verification Approach for Java Bytecode Programs », International

Journal of Software Engineering and Its Applications, vol. 12, no 2, p.

1–16, 2018.

[41] R. Hennicker, A. Knapp, et H. Baumeister, « Semantics of OCL

operation specifications », 2004.

[42] J. Poole, A method to determine a basis set of paths to perform

program testing. US Department of Commerce, National Institute of

Standards and Technology, 1995.

[43] S. Vasilache, "Specification-based test case generation using

dependency diagrams ," Lecture Notes in Engineering and Computer

Science: Proceedings of The World Congress on Engineering and

Computer Science 2016, WCECS 2016, 19-21 October, 2016, San

Francisco, USA, pp 185–189.

Safaa Achour is currently a researcher at the Computer Science

Laboratory. She received a Ph.D. degree in computer science in 2019 from

the Faculty of sciences at the University of Ibn Tofail Kénitra, Morocco.

Her research interests are in the areas of software testing; particularly, in

model-based testing and Java Bytecode testing. (email:

safaa.achour@uit.ac.ma).

Mohammed Benattou is a Full Professor of computer Science at the

University of Ibn Tofail, Morroco. After completing his Ph.D at University

of Blaise Pascal Clermont-Ferrand, he has held several positions in his

French academic career: University of Pau, University of Orsay Paris XI,

3IL Institute of IT & Engineering of Limoges and Xlim Laboratory. His

research areas include Software Engineering, and Computer Security and

Reliability. (email: Mohammed.Benattou@uit.ac.ma).

Jean-Louis Lanet is a member of the Cidre research team at INRIA

Rennes where he manages the LHS. He was a full Professor at the

Computer Science Department of the University of Limoges (2007-2014).

His researches focused on: Security of small systems like smart cards and

software engineering. (e-mail: jean-louis.lanet@inria.fr<mailto:jean-

louis.lanet@inria.fr>).

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_14

Volume 48, Issue 2: June 2021

__

mailto:safaa.achour@uit.ac.ma
mailto:Mohammed.Benattou@uit.ac.ma

