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Abstract—This paper presents an analysis method of 

detecting the inconsistencies between a Java Bytecode program 

and its formal specification expressed at the Bytecode level, 

using the Bytecode Modeling Language (BML). The main 

objective of our work is not only to check the execution code of 

the called method of a Java object class from a valid input state 

but also to show how these inconsistencies can be extracted 

from the Control Flow Graph of the Method Under Test.  We 

believe that Java Bytecode programs can contain bugs that the 

techniques used for objected-oriented software testing do not 

necessarily detect from their Java source programs. The 

proposed formal model shows how both the BML assertions 

and the Java Bytecode program can be translated into the 

same model of constraints, and how they can be used for 

detecting non-conformances of the method under test. 

 
Index Terms— Bytecode Java, static testing, analysis, 

Bytecode Specifications, BML, Conformity Model, Constraint 

Model,  JVM. 

I. INTRODUCTION 

ESTING by its nature can never conclude anything 

mathematically valid, as it amounts to taking a 

sample and trying to infer a generally valid judgment on the 

whole from the observed part”[1].  Software testing can be 

quantified and formalized when a strong basis for test 

generation can be defined [2]. In this sense, formal methods 

can play an essential role in software testing since they can 

precisely describe how the software is supposed to behave 

in a form that can be manipulated automatically. 

Thus, the use of formal specifications to show 

conformance of an implementation to its specification has 

become a very used technique for software verification and 

can be performed either by randomly generated input test 

data, filtered via the precondition [3], or by using 

constraints resolution [4], [5]. Indeed, many methods use 

annotated programs together with techniques of constraint-

solving to generate test cases [6] or to perform code-based 

verification of assertions. Such testing techniques are 

carried out in two steps: first, they translate the program to  
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be verified and its specification into an intermediate 

representation, and from there, they extract the testing 

information.  

In object-oriented specification context, the Java 

Modeling Language (JML) [7] is an interface specification 

language for Java to, formally, specify the behavior of Java 

programs. One of the advantages of such annotation 

languages is that they allow expressing both model and code 

in the same file, sharing the same methods and class fields 

[4]. However, often these specification techniques are 

limited to Java source code, while for many cases, one 

needs to specify and verify the executable code of the 

application under test. Indeed, unlike the class files, which 

contain the Bytecode of Java programs, the source code is 

not always available; especially, for third party and mobile 

software. Furthermore, some critical applications are 

directly implemented at the executable level [12]. On the 

other hand, Java Bytecode programs can contain bugs that 

the methods used for object-oriented software testing do not 

necessarily detect from the Java source programs. 

 Many works have adapted white-box testing approaches 

to programs at lower level, either to extracting a control 

flow graph from the class file [8], [9], performing symbolic 

and concolic execution of Bytecode [10], or using 

constraint-based techniques to generate test inputs from the 

Bytecode of java programs [11]. However, those techniques 

alone do not guarantee that the called program behaves 

correctly regarding the user specification. 

In this sense, the main idea of this paper is to extract the 

testing information from the Java Bytecode of the Method 

Under Test (MUT) and its formal specification expressed in 

the Bytecode Modeling Language (BML) [12], in the 

context of unit testing. Indeed, BML specification language 

is a variation of JML adapted to bytecode. It allows to 

specify the application at the Bytecode level.  

Furthermore, the source code JML predicates can be 

compiled into Bytecode BML predicates using the 

JML2BML compiler [12]. Hence, this allows us to test 

programs at the source code level, and still have the ability 

to perform Bytecode testing. 

In [13], we have presented an example of generation of 

test cases for java Bytecode programs annotated with BML 

specifications.  In this work, we firstly propose to formally 

express the BML method assertions coherently to the 

memory constraint model extracted from Java Bytecode 

Programs [11].  Secondly, we present a formal model of 
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conformity of a given method using the constraint memory 

variables extracted from both the BML Specifications and 

from the Java Bytecode programs. Finally, we present code-

based verification of assertions (static testing) for detecting 

non-conformances for a Method Under Test. In order to 

have the same model of constraints we propose to translate 

both the BML assertions and the Java Bytecode program 

into the same representation. 

This paper is organized as follows: section 2 presents the 

related works, section 3 introduces some necessary 

preliminaries, section 4 describes the proposed formal 

constraint model of BML specifications, section 5 presents 

the formal model of conformity, section 6 describes an 

analysis method to illustrate the proposed approach, and 

finally section 7 gives some concluding remarks. 

II. RELATED WORK 

A. Formal Specification-based Testing   

According to Binder [14], we cannot test without 

understanding what the software is supposed to do, and the 

software complexity may be represented by models to 

support test design. Thus, the formal specification can play 

an important role in software testing as they precisely define 

the functionalities offered by the System Under Test (SUT).  

In an object-oriented context, the formal specification can 

be expressed as class invariant constraints characterizing the 

valid states of instances, and as method specifications 

describing the behavior of a method in terms of its 

preconditions and post-conditions [15]. Various testing 

methods use formal specification languages to show the 

conformance of an implementation to its specifications.  

In [5], M. Benattou et al. propose a technique for test data 

generation based on OCL constraints using partition 

analysis of individual methods of a class; the idea is to 

reduce the given set of constraints into disjoint partitions 

using the Disjunctive Normal Form. In [16], the authors 

presented a constraint-based method on automated test 

generation from B models; they compute boundary states 

using a set constraint solver to build test cases by traversing 

the constrained reachability graph of the specification.  

In [6], the proposed work shows how the application of 

constraint solving techniques to the verification and testing 

of Java/JML programs allows generating test data from the 

source code of the application under test, establishing code-

based verification of assertions, and detecting the possible 

inconsistencies between a java program and its JML 

specification. 

B. Verification of the Java Bytecode Programs 

The principal reason to work at the Bytecode level is that 

we can extract structural testing information even when the 

source code is not available. Moreover, almost no 

information from the source code gets lost when compiling 

to Java Bytecode, so the program analysis and verification 

performed at this level can be reversed to the original high-

level language through a reverse engineering process [17]. 

On the other hand, the Bytecode is free of compilation 

errors and optimized for execution. Thereby, the executable 

code of a given program allows us to have an idea about the 

structure of the code, which can help us to design better test 

cases.  

Several works have been interested in structural testing 

either to perform code coverage[18][19][20], search 

testing[21][22][23][24], constraint based testing[22], [25], 

[26], or symbolic and dynamic execution[27][28][29][30]. 

Many of these structural techniques are adapted to programs 

at the Bytecode level. Indeed, in [8], the authors show how 

to generate an inter-procedural and intra-procedural control 

flow graph from the Bytecode of a given Java Card 

application. In [9], the authors present static and dynamic 

path executions of Bytecode programs using Control Flow 

Graph and Data Dependencies Graph. In [31], Vincenzi et 

al. presented Jabuti, a coverage testing tool designed to test 

and assess the quality of a given test set using the object 

code (Bytecode) of java applications and Java-based 

Components. In [10], a software analysis tool named 

Symbolic PathFinder (SPF) is described; SPF uses symbolic 

execution combined with model checking to automate the 

test case generation and error detection. The authors present 

in [32] a backward symbolic execution method for Java 

Bytecode programs; The idea behind this work is to reduce 

the simulation cases by deriving condition on inputs 

performing reverse execution for each Bytecode. In [33], 

they present an implementation of mutant generation at the 

Bytecode level and they support method-level mutant 

operators. In [34], Xu et al. show how to automate the 

generation of test inputs from Java bytecode by using a rule-

based approach; this latter consists of using a set of 

predefined rules as search guidelines. In [11], the authors 

propose a goal-oriented method for automated generation of 

test inputs for Java Bytecode programs; They describe a 

new constraint memory model of the Java Virtual Machine 

(JVM), which allows backward exploration of the Bytecode 

program.  

However, those verification techniques that perform 

analysis directly over the Bytecode, can only guarantee that 

the code is well-typed or well structured, or to generate 

input data that reach specific instruction in the program and 

consequently contribute to the reachability problem. 

Nevertheless, nothing guarantees that the System Under 

Test behaves as intended. 

Some approaches dealt with this problem by adapting the 

Proof Carrying Code to the Java Bytecode programs 

annotated with Bytecode Modeling Language [12],[35],[36]. 

They allow the client to verify functional or security 

properties about the application via a formal proof that 

accompanies the executable code of the application [37], 

[38]. Yet, we think that even if establishing the proof 

obligations guarantees the absence of certain classes of 

errors, they are very expensive and difficult to be 

implemented.  

C. The proposed Idea 

The constraint model proposed by F.Charreteur et al.[11], 

contributes to the automation of the test data generation. 

Indeed, the main goal of their approach presented in [11] is 

the early detection of infeasible (non-executable) paths. 

However, their works do not consider the problem of a 

method called from an invalid state. 
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We believe that without the consideration of the 

information contained in the user specifications, nothing can 

help to detect the differences between the actual behavior of 

the implementation of a SUT and the expected behavior of 

its specifications 

In this sense, the principal purpose of our proposed 

checking approach is to explore not only the information of 

the constraint model extracted from the Bytecode, but  also 

to consider the information of the user specifications 

expressed in BML as it is shown in figure Fig.1.  Indeed, the 

BML makes it possible to annotate and subsequently check 

the compliance of an application concerning its specification 

at the Bytecode level. On the other hand, the structure of the 

Bytecode program will help us to detect inconsistencies that 

are difficult to be found by using only the model of the 

application. Indeed, the latter does not provide sufficient 

coverage. Nevertheless, if one wants to verify Java 

Bytecode programs annotated with BML specifications, 

both the Java Bytecode of the program under test and the 

BML specifications have to be translated into an 

intermediate representation (i.e. the same system of 

constraints). 

To deal with this problem, we propose a formal model 

that transforms BML assertions into memory constraints 

coherently with the constraint model defined for Java 

Bytecodes. Indeed, as seen in the figure Fig. 2, we need to 

define a mapping of BML specifications into the constraint 

memory model representation [11] where the BML 

expressions and the evaluation of BML predicates are 

defined over the program JVM states (registers, operand 

stack, and heap). 

Our idea is inspired by [6]; the main difference is that 

they perform test and verification at source level for 

Java/JML programs, while we work at the Bytecode level 

using the constraint memory model of JVM states. 

In [35] and [36], the authors of BML language present a 

proof of correctness of Bytecode verification condition 

generator based on a weakest predicate transformer 

function. To do so, they have presented their proper model 

of Java Bytecode and they have given a formal meaning of 

BML language accordingly to it.  The goal behind our work 

is to transform BML assertion into the bytecode memory 

model proposed by [11] to perform static testing (analysis), 

i.e. to detect the non-conforming paths of a given method, 

and consequently to detect the non-conforming methods. 

 In [39] and [40], we have proposed a testing methods for 

Java Bytecode programs instrumented with their 

specifications. However, the proposed methods presented 

the following disadvantages:  

 The injection of the user specification in the 

application requires a good knowledge of Bytecode 

to be implemented. 

 It becomes unworkable when the specification is 

complex. 

III. PRELIMINARIES  

The ultimate objective of this work is to apply constraint-

based testing on the Java Bytecode program annotated with 

BML. The principle is to transform the problem of 

generating the testing information, from the BML 

specifications and the Bytecode, into a problem of constraint 

solving.  

In this section, we introduce some required preliminaries. 

We present firstly a preview of specification language 

tailored to Bytecode (BML: Bytecode Modeling Language); 

we also give a brief description of the Java Virtual Machine 

(JVM) representation and the memory constraint model 

defined for Java Bytecode instructions. 

A. Bytecode Modeling Language (BML) 

BML [12] is a Bytecode specification language that is 

designed to be closely related to JML (Java Modeling 

Language) [7], which is an interface specification language 

for Java to formally specify the behavior of Java programs.  

1) Overview of BML 

BML supports the essential features of JML. Thus, one 

can express the behavioral specification of Java Bytecode 

programs in the form of preconditions, post-conditions, and 

class invariant. Additionally, the JML source-level 

specifications can be compiled into BML Bytecode level 

specifications. In order to show the use of BML 

specifications, the example of the Java Bytecode specified 

with BML of the "tranfer(Account dest, int amount)" 

method of class Account is presented in figure Fig.3. 

   We note that the invariant of the class Account is stored 

in the class file as a special user-specific attribute [12]: 

Invariant:  #13 > 0(which means that the attribute balance 

must always be positive). 

Notice that the attribute balance that has been assigned 

the number 13 in the constant pool is not referenced with 

 

                 

       

                 

             

           

                

             

      

      

               

           

                  

           

 
Fig. 1.  General Test Architecture. 
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lv[0], as it is, implicitly, concerning all objects that are 

instance of the class Account. Otherwise, it will always be 

explicitly referenced, for example, with lv[0] or lv[1] ( lv[0] 

designate the reference This, and lv[1] designate the 

reference dest). On the other hand, lv[2] indicates the 

parameter amount of the method transfer(Account dest, int 

amount) stored in the register 2. 

2) Syntax of BML 

In BML, only Bytecode expressions can be used. 

Therefore, all field names, class names, etc., are replaced by 

references to the constant pool (a number, preceded by the 

symbol #), whereas registers lv refer to parameters and local 

variables. The grammar also contains many specific 

keywords Bytecode, such as cntr: designating the stack 

counter; st(e) where e is an arithmetic expression referring 

to the eth element on the stack; and length(a) correspond to 

the length of array a. For more details, see section 3.1 of 

[12]. 

B. Constraint Memory Model 

This sub-section gives a brief description of the Java 

Virtual Machine (JVM) representation, and the memory 

constraints on JVM states [11]. The memory model uses 

Constrained Memory Variables (CMV) to represent JVM 

states. 

The JVM states represent the locations of runtime data 

storage; i.e. registers (local variables), operand stacks, and 

heap data. The registers are used to store the parameters and 

the local variables of a method. When the method is 

dynamic, the first register contains the reference to the 

object (this) that calls the method. The operand stack is used 

to perform the calculations of the method, while the heap is 

the area of memory used by the JVM for the allocation of 

Java source code of class Account annotated with JML 

Specifications 
 

Java Bytecode of the method "transfer" annotated with 

BML Specification 
 

public class Account { 

 

 //@invariant balance>0; 

    private/*@spec_public@*/ int balance;  

  

     public Account(int balance){    

 this.balance = balance;  

     } 

 

/*@requires amount>0; 

  @ensures balance == \old(balance) + amount; 

  @*/ 

public void deposit(int amount){ 

    balance =  balance + amount; 

} 

 

 …… 

  

 

/*@requires amount>0 && amount < balance; 

  @ensures balance == \old(balance) - amount 

     && dest.balance = dest.balance + amount; 

  @*/ 

public void transfer(Account dest, int amount){ 

   

   if (amount >= 2*this.balance/3 && amount <= 

(3*this.balance)/4) 

       this.balance = this.balance - amount * 25/100; 

    else if(amount >= 0 && amount <balance) 

       this.balance = this.balance - amount; 

    else  

       System.out.println("Invalid Operation"); 

       

 dest.balance = dest.balance + amount; 

} 

 

public int get() { 

     return balance; 

} 

public void transfer(Account, int); 

{| requires lv[2] > 0 && lv[2] < lv[0].#13 

   ensures lv[0].#13 = \old(lv[0].#13) – lv[2] &&      lv[1].#13 

= \old(lv[1].#13) – lv[2] |} 

    Code: 

       0: iload_2 

       1: iconst_2 

       2: aload_0 

       3: getfield      #13                 // Field balance:I 

       6: imul 

       7: iconst_3 

       8: idiv 

       9: if_icmplt     43 

      12: iload_2 

      13: iconst_3 

      14: aload_0 

      15: getfield      #13                 // Field balance:I 

      18: imul 

      19: iconst_4 

      20: idiv 

      21: if_icmpgt     43 

      24: aload_0 

      25: aload_0 

      26: getfield      #13                 // Field balance:I 

      29: iload_2 

      30: bipush        25 

      32: imul 

      33: bipush        100 

      35: idiv 

      36: isub 

      37: putfield      #13                 // Field balance:I 

      40: goto          76 

      43: iload_2 

      44: iflt          68 

      47: iload_2 

      48: aload_0 

      49: getfield      #13                 // Field balance:I 

      52: if_icmpge     68 

      55: aload_0 

      56: aload_0 

      57: getfield      #13                 // Field balance:I 

      60: iload_2 

      61: isub 

      62: putfield      #13                 // Field balance:I 

      65: goto          76 

      68: getstatic     #24                 // Field 

java/lang/System.out:Ljava/io/PrintStream; 

      71: ldc           #30                 // String Invalid Operation 

      73: invokevirtual #32                 // Method 

java/io/PrintStream.println:(Ljava/lang/String;)V 

      76: aload_1 

      77: aload_1 

      78: getfield      #13                 // Field balance:I 

      81: iload_2 

      82: iadd 

      83: putfield      #13                 // Field balance:I 

      86: return  
Fig. 3.  Example of Java/JML program and the Bytecode. 
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dynamic memory. Figure Fig.4 gives an illustration of 

runtime data storage of the method currently executed in the 

JVM. 

The constraint-based testing of Java Bytecode programs 

requires the definition of a memory model [11]. This 

memory model is based on the notion of constrained 

memory variables CMV, where each Java Bytecode 

instruction of the program is seen as a relation between two 

CMVs: the CMVk before the execution of this instruction,  

and the CMVl after its execution. 

 A CMV is formally represented as a tuple (F, S, H) 

where F designates the set of registers, S designates the 

operand stack, and H represents the heap. Indeed, the 

registers are modeled by a function that associates a VTPR 

(the value contained in the register) to index i. The operand 

stack is modeled by a sequence of VTPR in which its first 

element is considered as its top. As to the heap, it 

corresponds to a mapping from a set of addresses to a set of 

objects. 

Moreover, the tuple (F, S, H) contains variables and 

domains. Integer and references are modeled by finite 

domain variables. On other hand, objects of the heap are 

modeled by pair elements: the type variable that represents 

the class of the object and the element associating an integer 

or reference variable to each attribute, which correspond to 

the value of the attribute.  

IV. FORMAL CONSTRAINT MODEL OF BML 

In this section, we give a formal transformation of BML 

assertions into constraints in the memory model. In this 

sense, we translate BML assertions (Expressions and 

predicates) into constraints over the registers, operand stack, 

or heap variables. We also present the validity of BML 

assertion in a given state CMV. Our work is based on 

axiomatic semantics concepts. 

A. Transformation state 

To extend the memory model with BML specification, we 

need to see BML assertions as constraints on JVM states. 

Particularly, the class invariant and the method specification 

will be considered as predicates that constrain the possible 

values of the content of the JVM memory. Indeed, the 

constraints contained in the precondition must be valid 

when the method is called; while the properties declared by 

the post-condition ensure that the called method has finished 

its execution correctly. 

The class invariant represents constraints that every 

instance of the class must respect. The invariant also 

influences the satisfaction of method specification, as both 

the precondition and the post-condition are implicitly 

strengthened by the class invariants [41]. Therefore, the 

BML specifications constrain the state of registers and the 

state of the heap of the JVM in such a way that: 

 The method parameters (integers or references 

type) located in registers F have to respect the 

precondition and the class invariant.    

 The objects (and their attributes) that reside in the 

heap must respect the class invariant. 

 The objects and parameters have to end the 

execution in a state that respects the post-

condition. 

We note that the stack is omitted here because it is empty 

at the beginning and the ending of program execution. 

 

Definition 1: A state CMVinit is defined as a valid state 

CMVpre when it satisfies the constraints of BML 

precondition and class invariant. 

 

CMVinit=(F,,H) CMVpre=(Fpre,, ,Hpre) 

 

We note that the symbol  designates the empty stack. 

Fpre: is the state of registers that allows only the valid 

values regarding the constraints required by the method 

precondition. 

Fpre= F -  

 

Hpre: is the state of the heap that contains only the objects 

that respect the constraints of the class invariant. 

Hpre = H -  

 

Definition 2: A final state CMVfinal is defined as valid if it 

begins the execution from a valid initial state CMVpre and 

ends in a state CMVpost that satisfy the BML postcondition 

and the class invariant constraints. 

Figure Fig.5 illustrates the translation of the BML 

precondition and post-condition into the constraint memory 

variable on the initial and the final state. Consequently, the 

constraints CMVpre and CMVpost reduce the input and output 

domains to only valid values (relatively to the specification). 

B. Translation of BML expressions 

The fundamental step in the transformation of BML 

assertions is the translation of BML expressions in 

constraints coherently with the constraint memory model of 

the JVM.  In this paper, we are particularly interested in the 

essential expressions that construct the BML pre- and post-

conditions. 

1) Primitive and Reference Variables 

The values in BML assertions can be either a range of 

integers (byte, characters, short, Booleans and int) or a 

 

 public void method1( int); 

    Code: 

       0: iload_1 

       1: ifle          27 

       4: iload_1 

       5: aload_0 

       … 

       … 

      42: idiv 

      43: isub 

      44: putfield      #13    

      47: return 

Valid 

Inputs 

Input 

Domain 

Specified with 

BML Assertions 

Valid 

outputs 
Output  

Domaine 

CMV0  = ( F0, amount, H0)                 

CMV1  = ( F0, , H0) , amount > 0 

CMV4  = ( F0, amount, H0)     

CMV5  = ( F0, This.amount, H0) 

 … 

CMV42  = … 

 ……  

𝑪𝑴𝑽𝒑𝒓𝒆 
𝑪𝑴𝑽𝒊𝒏𝒊𝒕 

𝑪𝑴𝑽𝒑𝒐𝒔𝒕 𝑪𝑴𝑽𝒐𝒖𝒕 

𝑪𝑴𝑽𝒑𝒓𝒆 = 𝑪𝑴𝑽𝒊𝒏𝒊𝒕 − 𝑪𝑴𝑽𝒑𝒓𝒆      

𝑪𝑴𝑽𝒑𝒐𝒔𝒕 = 𝑪𝑴𝑽𝒐𝒖𝒕 − 𝑪𝑴𝑽𝒑𝒐𝒔𝒕        

CMVinit  = ( F0,  , H0) 

Transformation 

into Memory 

Constraints 

 
Fig. 5.  Transformation of BML specification into memory constraints 
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reference. As in the constraint model, integers and 

references are modeled by finite domain variables VTPR 

(designing Variable of Type Primitive or Reference). 

(VTPR)CMV = VTPR 

2) Method parameters and local variables 

In BML, the construct lv(i) denotes the local variables 

and the parameters located in the register of index i. Hence, 

their representation in the constraint model is made 

consequently. Therefore, the BML local variables lv(i) are 

modeled by a function that associates a value of primitive or 

reference type to the register of index i.(lv(i))CMV : 

i VTPR 

 

3) Object attributes 

The syntax of attribute access expressions in BML is 

Ebml.ident, the latter stands for the attribute value at index 

ident in the table of the constant pool for the reference 

designated by the expression Ebml [12][36]. 

The translation of Ebml.ident to the constraint memory 

model is done by modeling this expression as a tuple where 

the first element is the object reference and the second is the 

value of the field referenced by the index ident: 

 

(Ebml.ident)cmv : Ebml≠ null, (Ebml, [ident, VTPR])  H;  

 

Since the reference Ebml has to access an attribute of index 

ident, it cannot be of a null value. The names of classes and 

attributes are used for simplification rather than their 

equivalent indexes in the table of constant pool as it is in 

BML 

4) The operator "old" 

A program expression e in an expression of the form 

old(e) refers to local variables (parameters) allocated in the 

pre-state CMVpre. Indeed, The old(e) is a copy of the pre-

state of a method execution generally used in the post-state 

CMVpost. Thus, its representation in the constraint model is 

as the following: 

old(e)CMVpost = eCMVpre. 

 

The expression e can be either a method parameter or an 

object attribute reachable from the parameters. 

 

Example: Consider the BML Specifications of the 

method transfer(Account, int) presented in the figure Fig.3. 

The associated memory constraints to these specifications 

(class invariant, precondition, postcondition) are illustrated 

in the Table I. 

C. BML Predicates 

The translation process of the BML expressions into 

constraints in the memory model is now ended, and 

consequently, each predicate must be checked. The BML 

assertions can be seen as a first-order predicates logic, and 

they can be represented as predicates on the JVM memory 

state. Therefore, for the satisfiability of BML predicates to 

be performed, we need to precise the store (CMV in our 

case) and the values of logical variables that constitute the 

BML assertion. When each variable in an assertion is 

assigned a value (determined by the value of the program 

variables), the assertion becomes valid or invalid under a 

standard interpretation of a given predicate in a given state. 

 

In this work, the interpretation of the BML predicates is 

defined over a program state CMV (i.e. the registers state, 

the operand stack state, and the heap state).    

 

Definition 3:(Satisfiability of predicates) 

Let P be a BML predicate and CMV = (f, s, h) a memory 

state of the JVM. The predicate P is valid in a state CMV 

(CMV ⊨ P) if the values of P are valid in the state CMV for 

any memory state referenced by P. 

 

The satisfiability of an assertion (Predicate) is defined 

inductively as follows: 

 

 CMV ⊨P1  P2 if and only if CMV ⊨ P1 and 

CMV ⊨ P2 

 CMV ⊨P1 ∨ P2 if and only if CMV ⊨ P1 or CMV 

⊨ P2 

 CMV ⊨ ¬ P1 if and only if not CMV ⊨ P1 

 CMV ⊨ true is true in any state CMV 

 CMV ⊨ false is false in any state CMV 

 CMV ⊨ P1 = P2 if and only if < P1, CMV>⊨ n1, 

<P2, CMV>⊨ n2 and n1 = n2, with n1, n2 are 

respectively the values of P1 and P2 in a state 

CMV. 

 CMV ⊨ P1 > P2 if and only if < P1, CMV>⊨ n1, 

< P2, CMV>⊨ n2 and n1 > n2, with n1, n2 are 

respectively the values of P1 and P2 in a state 

CMV. 

 CMV ⊨ P1 < P2 if and only if < P1, CMV>⊨ n1, 

< P2, CMV>⊨ n2 and n1 < n2, with n1, n2 are 

TABLE I 

BML SPECIFICATION AND ITS CORRESPONDENT CONSTRAINT MODEL 

 BML Specifications Constraint Model 

Class invariant #13 > 0   (Ref , balance)  H, 

 Ref≠ null, 

(i.e. This ≠ nulldest≠ null) 

balance  [0..INT_MAX]) ( i.e.  #13 > 0 ) 

where Ref can be any instance of the class Account 

Precondition lv[2] > 0 && lv[2] < lv[0].#13 

 
lv[2]: 2 amount, This ≠ null, dest ≠ null 

amount >0  amount <This.balance 

i.e. amount  [0.. This.balance] 

Post-condition lv[0].#13  = \old(lv[0].#13) – lv[2] 

&& 

lv[1].#13  = \old(lv[1].#13) + lv[2] 

This ≠ null, 

 (This.balance)post-state = (This.balance)pre_state –amount 

 

(dest.balance)post-state = (dest.balance)pre_state+ amount 
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respectively the values of P1 and P2 in a state 

CMV. 

V.  FORMAL MODEL OF CONFORMITY 

The combination of both the functional and the structural 

testing techniques allows us to test the behavior of a given 

application, and to know its internal working as well. 

However, the source code is not always available even more 

for third-party applications. In this sense, we propose to 

exploit first, the information contained in the BML 

specification, and secondly, the information contained in the 

Bytecode of the application (in the case of Java programs). 

Indeed, the BML specification makes it possible to detect 

possible inconsistencies between the Bytecode program and 

its specification. On the other hand, the Bytecode of the 

program and its structure allows to test all parts of the 

programs, and to detect the paths that may contain these 

inconsistencies. In this section, we propose to check the 

validity of the method execution paths regarding the BML 

constraints. We also present our formal model of conformity 

of a given method using the constraint memory variables 

extracted from both the BML Specifications and from the 

Java Bytecode programs. 

 

Testing Context: Let C be a class, and m be a method 

with n parameters x = (x1, x2, …,xn). We define for each 

parameter xi its domain of values Ei. We denote E = E1 x 

E2x …x En the domain of input vector of the method m. The 

control flow graph CFG is the internal representation of the 

method m. Let P = {p1, p2, ..,pk} be the set of  all 

independent execution paths of the method m (extracted 

from the CFG). 

 

Definition 4: (Valid paths relatively to the precondition)  

 An execution path pi of the set Pvalidprestate  is valid 

relatively to the method pre-state if pi satisfies both the 

precondition and the class invariant.  

Pvalidprestate= P -  Pinvalidprestate 

With Pinvalidprestate is the set of execution paths of the 

method m that do not satisfy the precondition or the 

invariant. 

 

Definition 5:(Conform Execution Path) 

 A path from the set Pvalidprestate is conform to the method 

specification if it terminates in state CMVpost that satisfy the 

post-condition (Post) and the invariant (Inv) 

 

A path pi of Method m is conform to its specification   

CMVpre (( CMVpre⊨ Pre Inv) <CMVpre CMV1CMV2 

.. CMVj>CMVpost)CMVpost⊨ post Inv 

 

Where CMV1, …,CMVj are the corresponding constraint 

memory variables of a path pi, with j is the number of 

instructions in this path; and  where CMVpre and CMVpost 

respectively corresponding to the constraints extracted from 

the valid method pre-states and the valid post-states of BML 

assertions. 

 Indeed, a path pi is conform to the method specification 

if it begins in a valid state CMVpre that respects both the 

class invariant and the precondition constraints- and 

terminates in the state CMVpost that satisfy the post-

condition Post and the invariant Inv. 

 

Definition 6: (Conforming Method)  

 A method m is conform to its specification if all its valid 

execution paths are conform to the specification. 

 

piPvalidprestate, pi is conform to the method specification  

 Method m is conform to its specification.  

 

Consequently, a non-conform method is defined as 

follows: 

 

Definition 7: m is a non-conform method relatively to its 

specification if:  piPvalidprestate in such a way that pi is not 

conforming to the method specification. 

 

In other words, the method m does not conform to the 

BML Specification if: 

CMVpre , (CMVpre⊨ pre Inv), <CMVpre, CMV1, ..., 

CMVj>CMVpost CMVpost⊨ post Inv 

VI. EXAMPLE OF APPLICATION  

A. An Analysis Method: Detection of non-conformance 

(relatively to the postcondition) 

In the context of this work, we present an analysis 

method (static testing method) that aims to detect the 

possible non-conformances between the Java Bytecode of a 

given method of a given class and its BML specification.  

   We consider that the Java Bytecode method of any class 

under test can be represented with a control flow graph 

(CFG) which gives a global overview of the execution paths 

that the input data can traverse during the execution. The set 

of the independent execution paths of the testing method is 

extracted using a basis path coverage method [42] based on 

the Depth First Search algorithm. Each one of these 

execution paths augmented with the BML precondition, the 

class invariant, and the negation of the post-condition is 

translated to the constraint memory system. This latter is 

deduced from the semantics of its java bytecode instructions 

and the semantics of BML contracts. 

 

(CMVPreCMVInv) CMV1 … CMVn  (CMVPost) 

 

Where CMV1 … CMVn  are the constraints generated 

from an execution path of the control flow graph, and  

CMVPre, CMVInv, CMVPost are the generated constraints 

from BML specification. 

The verification process will accumulate and check the 

consistency of these constraints. If the generated constraints 

are not contradictory, then this path contains an 

inconsistency relatively to the post-condition. Therefore, a 

non-conformance will be detected in the MUT. We note that 

the consistency of the constraints can be checked on the fly 

similarly to [11]. The principal advantage of this technique 

is that we can know precisely the paths where the detected 

inconstancies reside, even when the source code is not 
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available. 

B. Illustation 

Consider the Java Bytecode Method transfer(Account 

dest, int amount) annotated with BML specifications, shown 

in the figure Fig.3, and its control flow graph presented in 

the figure Fig. 6. Our main objective is to detect the non-

conformances in the execution paths of the method under 

test.  

 

The basis set of paths (all independent paths) of the MUT 

extracted from the CFG is represented as following:  

 

 

 

Path 1 : 0 – 1 – 2 – 3 – 6 – 7 – 8 – 9 – 43 – 44 – 47 – 48 –  

49 – 52 – 55 – 56 – 57 – 60 – 61 – 62 – 65 – 76 – 77 – 78 – 

81 – 82 – 83 – 86.  

 

Path 2 : 0 – 1 – 2 – 3 – 6 – 7 – 8 – 9 – 43 – 44 – 47 – 48 – 

49 – 52 – 68 – 71 – 73 – 76 - 77 – 78 – 81 – 82 – 83 – 86. 

 

Path 3: 0 – 1 – 2 – 3 – 6 – 7 – 8 – 9 – 12 – 13 – 14 – 15 – 18 

– 19 – 20 – 21 – 24 – 25 – 26 – 29 – 30 – 32 – 33 – 35 – 36 

– 37 – 40 – 76 – 77 – 78 – 81 – 82 – 83 – 86. 

 

Path 4: 0 – 1 – 2 – 3 – 6 – 7 – 8 – 9 – 12 – 13 – 14 – 15 – 18 

– 19 – 20 – 21 – 43 – 44 – 47 – 48 – 49 – 52 – 55 – 56 – 57 

– 60 – 61 – 62 – 65 – 76 – 77 – 78 – 81 – 82 – 83 – 86. 

 

Path 5: 0 – 1 – 2 – 3 – 6 – 7 – 8 – 9 – 12 – 13 – 14 – 15 – 18 

– 19 – 20 – 21 – 43 – 44 – 47 – 48 – 49 – 52 – 68 – 71 – 73 

– 76 - 77 – 78 – 81 – 82 – 83 – 86. 

 

In order, to apply the analysis approach for detecting the 

possible non-conformances of the method transfer(Account 

dest, int amount) regarding the BML specifications, we 

firstly describe the constraints generated from the method 

execution paths, the method valid pre-state and the negation 

of the post-condition. Then, if these constraints are 

consistent, a non-conformance is detected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0: iload_2 

1: iconst_2 

2: aload_0 

3: getfield      #13                  

6: imul 

7: iconst_3 

8: idiv 

 

9: if_icmplt   43 

 
12: iload_2 

13: iconst_3 

14: aload_0 

15: getfield      #13                  

18: imul 

19: iconst_4 

20: idiv 

 21: if_icmpgt   43 

 

      24: aload_0 

      25: aload_0 

      26: getfield      #13                  

      29: iload_2 

      30: bipush        25 

      32: imul 

      33: bipush        100 

      35: idiv 

      36: isub 

      37: putfield      #13                  

       

 

43: iload_2 

40: goto     76 

 

  44: iflt    68 

 

 47: iload_2 

 48: aload_0 

 49: getfield      #13        

 

55: aload_0 

56: aload_0 

57: getfield      #13                       

60: iload_2 

61: isub 

62: putfield      #13                  

       

 

65: goto          76 

 

52: if_icmpge    68 

 

68: getstatic     #24                      

71: ldc           #30                       

73: invokevirtual #32                        

 

76: aload_1 

77: aload_1 

78: getfield  #13                  

 81: iload_2 

 82: iadd 

 83: putfield  #13                  

 

86: return 

 
Fig. 6.  CFG of the method transfer(Account acc, int amount) 
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The initial state: CMVinit= (F0,, H0). As mentioned 

before, the symbol  designates the empty stack.  

 

F0= {0 This,1dest ,2amount} 

 

F0 is the set of registers: The reference This (This refers 

to the current object) is stored in the register number 0 

(because the method transfer is not static), the register 1 

contains the reference dest, whereas the register 2 stores the 

second parameter amount. 

 Path 1 : 

CMVpre:(ref, balance)  H, ref  null, balance >0  

amount> 0, This null, amount <This.balance 

 

CMV0 = ( F0, amount, H0) 

CMV1 = ( F0, 2.amount, H0) 

CMV2 = ( F0, This.2.amount, H0) 

CMV3 = ( F0, balance.2.amount, H0); This  null,  

getfield(H0, 13, This, balance) 

CMV6 = ( F0, MUL.amount, H0); MUL = 2*balance 

CMV7 = ( F0, 3.MUL.amount, H0) 

CMV8 = ( F0,  DIV.amount, H0), DIV = MUL /3 

CMV9 = ( F0, , H0), amount < DIV 

CMV43 = ( F0, amount, H0) 

CMV44 = ( F0, , H0), amount > 0 

CMV47 = ( F0, amount, H0) 

CMV48 = ( F0, This.amount, H0) 

CMV49 = ( F0, balance.amount, H0), This  null, 

getfield(H0, 13, This, balance) 

CMV52 = ( F0, , H0), amount < balance 

CMV55 = ( F0, This, H0),  

CMV56 = ( F0, This.This, H0), 

CMV57 = ( F0, balance.This, H0), This  null, getfield(H0, 

13, This, balance) 

CMV60 = ( F0, amount.balance.This, H0), 

CMV61 = ( F0, SUB.This, H0), SUB = balance – amount 

CMV62 = ( F0,  , H0), This  null, putfield(H0, H1, 13, 

This, SUB) 

CMV65 = ( F0,  , H0), 

CMV76 = ( F0, dest , H1); 

CMV77 = ( F0, dest.dest , H1); 

CMV78 = ( F0, balance.dest , H1); dest null, getfield(H0, 

13, dest, balance) 

CMV81 = ( F0, amount.balance.dest , H1) 

CMV82 = ( F0, ADD.balance.dest , H1) 

CMV83 = ( F0, , H2); dest null, putfield(H0, H1, 13, 

dest, ADD) 

CMV86 = ( F0, , H2); 

 

CMVpost :This.balanceThis.balance – amount  

dest.balancedest.balance + amount 

 

Therefore, the generated system of constraints of the 

execution path and the BML constraints (the method 

precondition and the negation of its post-condition) is the 

following; for simplification, we replace the generated 

memory constraint putfield(…), which changes the state of 

the heap, by the symbol of affectation $:=$ : 

 

((ref, balance)  H, ref  null, balance >0   amount 

> 0  This null  amount <This.balance)pre amount > 0 

 amount < (2 * balance)/3  balance := balance – 

amount) dest nulldest.balance = dest.balance + amount 

(This.balanceThis.balanceold – amount 

dest.balancedest.balanceold + amount)post 

 

After some simplifications, the constraint system reduces 

to the following: 

 

((ref, balance)  H, ref  null, balance >0   amount 

> 0 amount < (2 * balance)/3  balance := balance – 

amount) dest nulldest.balance = dest.balance + 

amountThis.balanceThis.balanceold – amount)post 

 

((ref, balance)  H, ref  null, balance >0   amount 

> 0 amount < (2 * balance)/3 balance := balance – 

amount) dest nulldest.balance = dest.balance + amount 

(dest.balancedest.balanceold + amount)post  

 

 Path 2 

 

CMVpre:(ref, balance)  H, ref  null, balance >0  

amount> 0,This null, amount <This.balance 

 

CMV0 = ( F0, amount, H0) 

CMV1 = ( F0, 2.amount, H0) 

CMV2 = ( F0, This.2.amount, H0) 

CMV3 = ( F0, balance.2.amount, H0); This  

null,getfield(H0, 13, This, balance) 

CMV6 = ( F0, MUL.amount, H0); MUL = 2*balance 

CMV7 = ( F0, 3.MUL.amount, H0) 

CMV8 = ( F0,  DIV.amount, H0), DIV = MUL /3 

CMV9 = ( F0, , H0), amount < DIV 

CMV43 = ( F0, amount, H0) 

CMV44 = ( F0, , H0), amount < 0 

 … 

  

CMVpost :This.balanceThis.balance – amount  

dest.balancedest.balance + amount 

After simplifications, the constraint system is the 

following 

(ref, balance)  H   ref  null   balance 

>0amount > 0   This null   amount 

<This.balanceamount < 0   … 

 

 Path 3 

CMVpre:(ref, balance)  H, ref  null, balance >0  

amount> 0, This null, amount <This.balance 

 

CMV0 = ( F0, amount, H0) 

CMV1 = ( F0, 2.amount, H0) 

CMV2 = ( F0, This.2.amount, H0) 

CMV3 = ( F0, balance.2.amount, H0); This  

null,getfield(H0, 13, This, balance) 

CMV6 = ( F0, MUL.amount, H0); MUL = 2*balance 

CMV7 = ( F0, 3.MUL.amount, H0) 

CMV8 = ( F0,  DIV.amount, H0), DIV = MUL /3 

CMV9 = ( F0, , H0), amount ≥ D   
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CMV12 = ( F0, amount, H0), 

CMV13 = ( F0, 3.amount, H0) 

CMV14 = ( F0, This.3.amount, H0) 

CMV15 = ( F0, balance.3.amount, H0); This  null, 

getfield(H0, 13, This, balance) 

CMV18 = ( F0, MUL2.amount, H0), MUL2 = 3*balance 

CMV19 = ( F0, 4.MUL2.amount, H0) 

CMV20 = ( F0, DIV2.amount, H0); DIV2 = MUL2/4 

CMV21 = ( F0, c, H0),    u   ≤ D  2 

CMV24 = ( F0, This, H0), 

CMV25 = ( F0, This.This, H0), 

CMV26 = ( F0, balance.This, H0), This  null, getfield(H0, 

13, This, balance) 

CMV29 = ( F0, amount.balance.This, H0), 

CMV30 = ( F0, 25.amount.balance.This, H0),  

CMV32 = ( F0, MUL3.balance.This, H0), MUL3 = 

25*amount 

CMV33 = ( F0, 100.MUL3.balance.This, H0), 

CMV35 = (F0, DIV3.balance.This, H0), DIV3=MUL3 / 

100 

CMV36 = ( F0, SUB.This, H0), SUB = balance – DIV3 

CMV37 = ( F0,  , H1); This  null, putfield(H0, H1, 13, 

This, SUB) 

CMV40 = ( F0,  , H1) 

CMV76 = ( F0, dest , H1); 

CMV77 = ( F0, dest.dest , H1); 

CMV78 = ( F0, balance.dest , H1); dest null, getfield(H0, 

13, dest, balance) 

CMV81 = ( F0, amount.balance.dest , H1) 

CMV82 = ( F0, ADD.balance.dest , H1) 

CMV83 = ( F0, , H2); dest null, putfield(H0, H1, 13, 

dest, ADD) 

CMV86 = ( F0, , H2); 

CMVpost :This.balanceThis.balance – amount  

dest.balancedest.balance + amount 

 

After some simplifications, the constraint system is as 

follow: 

(ref, balance)  H, ref  null, balance >0   amount 

> 0  This null amount  ≥ (2 * balance)/3  amount ≤ 

3*balance/4  balance := balance –( 25 * 

amount/100)dest nulldest.balance = dest.balance + 

amountThis.balanceThis.balanceold – amount)post 

 

(ref, balance)  H, ref  null, balance >0   amount 

> 0  This null amount  ≥ (2 * balance)/3  amount ≤ 

3*balance/4  balance := balance –( 25 * amount)/100 

dest nulldest.balance = dest.balance + 

amountdest.balancedest.balance  + amount)post 

 Path4 

CMVpre: (ref, balance)  H, ref  null, balance >0  

amount> 0, This null, amount <This.balance 

CMV0 = ( F0, amount, H0) 

CMV1 = ( F0, 2.amount, H0) 

CMV2 = ( F0, This.2.amount, H0) 

CMV3 = ( F0, balance.2.amount, H0); This  null, 

getfield(H0, 13, This, balance) 

CMV6 = ( F0, MUL.amount, H0); MUL = 2*balance 

CMV7 = ( F0, 3.MUL.amount, H0) 

TABLE II 

THE GENERATED CONSTRAINTS FOR EACH INDEPENDENT PATH OF TRANSFER METHOD 

Path Number Generated Constraint System from 

( prebmlInvbmlPath_iPostbml) 

Decision 

Path 1 ((ref, balance)  H, ref  null, balance >0   amount > 0 amount < (2 * 

balance)/3  balance := balance – amount) dest nulldest.balance = 

dest.balance + amountThis.balanceThis.balanceold – amount)post 

 

((ref, balance)  H, ref  null, balance >0   amount > 0 amount < (2 * 

balance)/3  balance := balance – amount) dest nulldest.balance = 

dest.balance + amount (dest.balancedest.balanceold + amount)post  

 

 Eliminated  

(Contradictory Constraints) 

 Path 2  (ref, balance)  H   ref  null   balance >0   amount > 0   This null   

amount <This.balanceamount < 0  … 

 

Eliminated  

(Contradictory Constraints, 

Especially between the path 

constraints and the 

precondition) 

Path 3 (ref, balance)  H, ref  null, balance >0   amount > 0  This null  

a  u    ≥  2 * b       /3     u   ≤ 3*b      /4 balance := balance –( 25 * 

amount/100) dest nulldest.balance = dest.balance + amount 

This.balanceThis.balanceold – amount)post 

 

……… 

 

Consistent Constraints 

 

(Non-Conformance detected) 

Path 4 

 
(ref, balance)  H, ref  null, balance > 0      u   ≥  3*b      /4   

amount < balance balance := balance – amount) dest nulldest.balance = 

dest.balance + amountThis.balanceThis.balanceold – amount)post 

 

(ref, balance)  H, ref  null, balance > 0      u   ≥  3*b      /4   

amount < balance balance := balance – amount) dest nulldest.balance = 

dest.balance + amount (dest.balancedest.balanceold + amount)post  

 

Eliminated  

(Contradictory Constraints) 

Path 5 (ref, balance)  H, ref  null, balance >0   amount > 0  This null  

amount <This.balance     u   ≥    .b       … 

Eliminated  

(Contradictory Constraints, 

Especially between the path 

constraints and the 

precondition) 
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CMV8 = ( F0,  DIV.amount, H0), DIV = MUL /3 

CMV9 = ( F0, , H0),    u   ≥ D   

CMV12 = ( F0, amount, H0), 

CMV13 = ( F0, 3.amount, H0) 

CMV14 = ( F0, This.3.amount, H0) 

CMV15 = ( F0, balance.3.amount, H0); This  null, 

getfield(H0, 13, This, balance) 

CMV18 = ( F0, MUL2.amount, H0), MUL2 = 3*balance 

CMV19 = ( F0, 4.MUL2.amount, H0) 

CMV20 = ( F0, DIV2.amount, H0); DIV2 = MUL2/4 

CMV21 = ( F0, c, H0), amount > DIV2 

CMV43 = ( F0, amount, H0) 

CMV44 = ( F0, , H0), amount > 0 

CMV47 = ( F0, amount, H0) 

CMV48 = ( F0, This.amount, H0) 

CMV49 = ( F0, balance.amount, H0), This  null, 

getfield(H0, 13, This, balance) 

CMV52 = ( F0, , H0), amount < balance 

CMV55 = ( F0, This, H0),  

CMV56 = ( F0, This.This, H0), 

CMV57 = ( F0, balance.This, H0), This  null, getfield(H0, 

13, This, balance) 

CMV60 = ( F0, amount.balance.This, H0), 

CMV61 = ( F0, SUB.This, H0), SUB = balance – amount 

CMV62 = ( F0,  , H0), This  null, putfield(H0, H1, 13, 

This, SUB) 

CMV65 = ( F0,  , H0), 

CMV76 = ( F0, dest , H1); 

CMV77 = ( F0, dest.dest , H1); 

CMV78 = ( F0, balance.dest , H1); dest null, getfield(H0, 

13, dest, balance) 

CMV81 = ( F0, amount.balance.dest , H1) 

CMV82 = ( F0, ADD.balance.dest , H1) 

CMV83 = ( F0, , H2); dest null, putfield(H0, H1, 13, 

dest, ADD) 

CMV86 = ( F0, , H2); 

 

CMVpost :This.balanceThis.balance – amount  

dest.balancedest.balance + amount 

 

After some simplifications, the constraint system is the 

following: 

(ref, balance)  H, ref  null, balance > 0  This  

null       u   ≥  3*b      /4   amount < balance 

balance := balance – amount) dest nulldest.balance = 

dest.balance + amountThis.balanceThis.balanceold – 

amount)post 

 

(ref, balance)  H, ref  null, balance > 0   amount 

≥  3*b      /4   This  null   amount < balance 

balance := balance – amount) dest nulldest.balance = 

dest.balance + amount (dest.balancedest.balanceold + 

amount)post  

 

 Path 5 

CMVpre: (ref, balance)  H, ref  null, balance >0  

amount> 0, This null, amount <This.balance 

 

CMV0 = ( F0, amount, H0) 

CMV1 = ( F0, 2.amount, H0) 

CMV2 = ( F0, This.2.amount, H0) 

CMV3 = ( F0, balance.2.amount, H0); This  null, 

getfield(H0, 13, This, balance) 

CMV6 = ( F0, MUL.amount, H0); MUL = 2*balance 

CMV7 = ( F0, 3.MUL.amount, H0) 

CMV8 = ( F0,  DIV.amount, H0), DIV = MUL /3 

CMV9 = ( F0, , H0),    u   ≥ D   

CMV12 = ( F0, amount, H0), 

CMV13 = ( F0, 3.amount, H0) 

CMV14 = ( F0, This.3.amount, H0) 

CMV15 = ( F0, balance.3.amount, H0); This  null, 

getfield(H0, 13, This, balance) 

CMV18 = ( F0, MUL2.amount, H0), MUL2 = 3*balance 

CMV19 = ( F0, 4.MUL2.amount, H0) 

CMV20 = ( F0, DIV2.amount, H0); DIV2 = MUL2/4 

CMV21 = ( F0, c, H0), amount > DIV2 

CMV43 = ( F0, amount, H0) 

CMV44 = ( F0, , H0), amount > 0 

CMV47 = ( F0, amount, H0) 

CMV48 = ( F0, This.amount, H0) 

CMV49 = ( F0, balance.amount, H0), This  null, 

getfield(H0, 13, This, balance) 

CMV52 = ( F0, , H0),    u   ≥ b       

…. 

CMVpost :This.balanceThis.balance – amount  

dest.balancedest.balance + amount 

 

After some simplifications, the constraint system is as 

follow: 

((ref, balance)  H, ref  null, balance >0  amount 

> 0  This null  amount <This.balance   u   ≥ 

This.balance … 

Constraints Analysis 

The Table II presents the constraint system generated 

from each execution path of the method transfer(Account 

dest, int amount). 

Effectively, in the two paths, Path 1 and Path 4, the 

generated constraints are contradictory; this means that 

these two paths do not contain any inconsistencies (non-

TABLE III 

THE EXECUTION PATHS OF TRANSFER METHOD AND THEIR RELATIVE 

VALID INPUTS PARTITIONS 

 

Path 

Number 

 

Valid Input 

Sub-Domain 

 

Non-Conformance 

Detected 

 

 

Path 1 
amount  ]0,(2*balance)/3[ 

balance  ]0,INT_MAX[ 

 This  null dest null 

 

 No 

Path 2 Invalid pre-state No 

 

Path 3 
amount  [(2*balance)/3 , 

(3*balance)/4] balance  

]0,INT_MAX[ This  null dest 

null 

 

Yes 

 

Path 4 

 

amount  ](3*balance)/4 ,  

balance] balance  

]0,INT_MAX[  This  null 

dest null 

No 

Path 5 Invalid pre-state No 
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conformances) with the specification. Therefore, those paths 

are discarded. 

In the Path 3, the constraints generated from the 

precondition, the invariant, the execution path, and the 

negation of the post-condition are consistent. Therefore, this 

path contains a non-conformance regarding the 

specification. 

The paths Path 2 and Path 5 will also be discarded due to 

the conflicting constraint in the execution path and the 

precondition constraints. In other words, the inputs 

traversing this path do not respect the precondition in the 

first place. 

As it is seen in Table III, we also observe, that the method 

precondition allows us to restrict the input domain to valid 

data. Whereas, the path constraints help us to divide the 

valid input domain into sub-domains (partitions), where 

each partition represents the input data that can traverse this 

sub-domain. 

As our objective is the detection of non-conformances in 

the method transfer relatively to its BML specification, we 

can see from Tables II and III that in the sub-domain 

(amount  [(2*balance) / 3 , (3*balance)/4] balance  

]0,INT_MAX[ This  null dest null), the path 3 does 

not respect the specification. Consequently, the method 

transfer is non-conforming to its specification.  

Indeed,  

CMVpre , (CMVpre⊨(amount  ]0, balance [ balance  

]0,INT_MAX[ This  null dest null), <(ref, balance) 

 H, ref  null, balance >0   amount > 0  This null  

   u    ≥  2 * b       /3     u   ≤ 3*b      /4  

balance = balance –( 25 * amount/100) > CMVpost 

CMVpost⊨   (This.balanceThis.balanceold – amount)post 

 

Testing a program from the specification or the model 

solely [4], [5], [15], [43] allows us to test the behavior of 

programs, but since the latter is a black box, we cannot 

know the covered paths or the tested part of the application. 

For instance, with the specification alone, it will be difficult 

to find the non-conformance detected in the previous 

example. In this sense, the information of the Bytecode 

facilitates the detection of the program parts that lead to 

non-conform behaviors. 

VII. CONCLUSION 

This paper proposes a code-based analysis of assertions 

for Java Bytecode programs annotated with BML. Most of 

the existing works, about the test or the analysis of Java 

Bytecode programs, do not consider the case of programs 

called from an invalid input state. The main objective of our 

work is, on one hand, to check if the behavior rejected by a 

specification, expressed formally, is rejected by its 

implementation as well. On the other hand, the Bytecode of 

the testing method gives the structure of the program even 

when the source code is not available.  The proposed 

method allows detecting which paths may contain the 

detected inconsistencies. We have firstly presented a formal 

model of transforming BML assertions into constraints on 

JVM memory states. Secondly, we have proposed a formal 

model of the conformity of an execution path of a given 

method. Finally, we have presented an analysis method of 

detecting the inconsistencies between a Java Bytecode 

Method and its BML Specifications. Our future work is now 

oriented to test the Bytecode of Java method called from 

invalid data. 
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