
 

  

Abstract—Automatic heartbeat classification is an important 

stage in identifying cardiac arrhythmia. Several machine 

learning (ML) techniques have been proposed to perform this, 

but they produce an accuracy result of below 99%. In this 

study, a deep neural network (DNN) structure is applied to 

improve ML performance. The feature selection method is 

based on the combination of discrete wavelet transform (DWT) 

and principal component analysis (PCA). To avoid 

computational complexity, the components of PCA are derived 

by low-dimensional DWT coefficients. The results show that 

the proposed ML model achieves good performance, producing 

99.76% accuracy, 91.80% sensitivity, 99.78% specificity, 

93.02% precision, and 92.31% F1-score. To benchmark the 

proposed model, the support vector machine (SVM) and 

random forest (RF) techniques are used as the baseline models. 

The DNNs are 2.3% more sensitive than SVM, while the RF 

fails to classify the ECG heartbeat. Four datasets are used to 

analyze the robustness and generalization performance of the 

proposed model: MIT-BIH, SVDB, MITDB, and IncartDB. All 

testing results produce satisfying performance. The proposed 

ML model offers a potential solution to improve the 

generalizability of a DNN-based model in different cardiac 

datasets for classifying tasks. 

 
Index Terms— Arrhythmia, Support Vector Machine, Deep 

Neural Networks, Principal Component Analysis 

 

I. INTRODUCTION 

ANUALLY learning a large amount of data generated 

by electrocardiogram (ECG) requires much time. 

Abnormalities in the electrical activity of the heart must be 

recorded over a long period with information from several 
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perspectives. Moreover, clinical and diagnostic analyses 

sometimes become unrealistic, especially for long-term 

monitoring of cases or long-term cases in remote areas 

[1][2]. There is also the possibility of human error while 

analyzing ECG signal recordings due to fatigue. However, 

the process is necessary to produce an accurate diagnosis of 

cardiovascular disorders [2][3]. Therefore, an alternative 

solution is required for using computational techniques for 

the automatic classification of heartbeat abnormalities. The 

automatic classification of heartbeats is one of the most 

important steps in identifying pathology using ECG. The 

ability of the classification algorithm and the features to 

accurately represent heartbeats are crucial for successful 

classification. Although many methods have been reported, 

their direct comparisons are questionable due to their 

differences in the types of heartbeats being classified [4–15], 

ECG features [4][5][9][10][6][7][16][17], and classification 

models [1][4][5][6][7][11][13][15][6][18][19][20][21]. 

Based on the the Association for the Advancement of 

Medical Instrumentation (AAMI) standard, most previous 

research have examined validation performance, but the 

results are below the average 99% for all classes [22]. Such 

a condition occurs because of highly imbalanced medical 

datasets. Moreover, the accuracy value is misleading 

because the majority class always contributes to the high 

accuracy value. This case may be dangerous if the unhealthy 

status is misclassified. Therefore, an accurate classifier that 

could predict ECG signals with imbalanced data should be 

investigated. 

Feature extraction is part of data representation, and this 

stage is key to the success of the classification process of 

ECG signals. Several techniques have been implemented, 

including principal component analysis (PCA) 

[18][23][24][25] and independent component analysis (ICA) 

[23][24][26]. However, the power is quite limited, as PCA is 

better at reducing noise, whereas ICA is better at feature 

extraction. The combination of these two techniques can 

provide great benefits. Another technique is kernel principal 

component analysis (KPCA), which is superior to the PCA 

technique for classifying heartbeats from ECG signals due 

to its nonlinear structure [27][28]. However, KPCA 

produces more complex algorithms than PCA. Another 

technique used in the feature extraction of ECG signals is 

wavelet transform [24][29]. The most popular classification 

is based on discrete wavelet transform (DWT) because of its 

easy implementation [29]. The DWT method is used for 

feature extraction processes and eliminating noise. 
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Continuous wavelet transform has also been used for feature 

extraction because it can overcome some DWT deficiencies 

[30]. However, the primary choice of wavelet function used 

in feature extraction is crucial for the final performance of 

the classification model [26][30][31]. It should be carefully 

analyzed to avoid eliminating the important details of ECG 

signals. Therefore, selecting the appropriate features without 

losing important information in the ECG signals needs to be 

investigated in depth. 

A heartbeat is defined as the sequence of electrical events 

that occur in a cardiac cycle, that is, from depolarization to 

repolarization. A normal beat in sinus rhythm includes the 

P-wave, the QRS-complex, and the T-wave [2][32]. 

Heartbeat classification focuses on the automatic 

identification of beats of different natures, which can be 

useful for detecting ectopic beats or arrhythmic events [2]. 

Many classifier techniques have been developed to solve the 

ECG signal classification task and have indicated good 

results. In [8], the SVM technique is used to process 50 

features and 100,441 beats using a 10-fold cross-validation 

scheme. Their proposed model produces 98.91% accuracy, 

98.91% sensitivity, and 97.85% specificity. In [33], SVM is 

combined with particle swarm optimization (PSO) to reduce 

heartbeat features and speed up the classification process. 

The number of features is reduced from 303 to 46 using 

PSO. However, the SVM classifier only has 89.72% 

accuracy for detecting five heartbeat classes, namely 

normal, atrial premature beat, ventricular premature beat, 

right bundle branch block, left bundle branch block, and 

paced beat.  

Another work focused on discriminant analysis for feature 

reduction for the SVM classifier [34]. This ML model is 

used for the arrhythmia classification of six classes: normal, 

premature ventricular contraction (PVC), atrial fibrillation 

(AF), sick sinus syndrome, ventricular fibrillation, and 

second-degree heart block. The number of features is 

reduced from 15 to 5, and the SVM classifier has 99.16% 

accuracy [35]. In [36][37], the random forest (RF) model 

with five-fold cross-validation for heartbeat classification is 

investigated. They use 150 features for six classes (i.e., 

normal, PVC, paced, atrial premature beat, and left and right 

bundle branch blocks). Their proposed model has 92.16% 

accuracy and 89% for ischemic and non-ischemic. The 

fuzzy clustering neural network technique is used for 

heartbeat classification, such as normal beats, sinus 

bradycardia, ventricular tachycardia, sinus arrhythmia, atrial 

premature contraction, paced beats, right and left bundle 

branch block, AF, and atrial flutter on the 5,342 segments 

feature [34]. It has 99.09% accuracy for arrhythmia 

classification. In [38], stacked denoising-auto-encoders are 

proposed for the active classification of ECG signals, and 

the feature representation automatically processes from the 

input data for two classes: ventricular escape beat (VEB) 

and ventricular escape beat (SVEB). The proposed model 

produces 98.11% accuracy for SVEB and 98.71% accuracy 

for VEB. Among all the mentioned techniques, the ML 

technique is the only one that produces 99% accuracy. 

Nevertheless, the best ML model still needs to be 

investigated comprehensively.  

Most ECG signal feature extraction techniques verify the 

feature performance of the classifier based on training and 

testing sets randomly selected from the database. Therefore, 

the selected techniques in the classifier process must include 

the effects. This study analyzes the performance of feature 

extraction and classification techniques in several datasets 

with highly imbalanced data. The contributions of this study 

are summarized as follows: 

•  We propose the best ML model for heartbeat 

classification with high performance. 

•  The process of feature selection is performed using the 

DWT to produce low-dimensional coefficients, and the 

components of PCA are derived from the DWT 

coefficients. 

•  To increase the generalization power of the selected ML 

model, four datasets are used: MIT-BIH, SVDB, 

MITDB, and IncartDB. 

The rest of this paper is structured as follows: Section 2 

describes the materials and methods. Section 3 presents the 

experiment for heartbeat classification. Section 4 discusses 

the results and concludes the study. 

 

 

 
Fig. 1. Processing step of arrhythmia classification with a 10-fold validation scheme.  
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II. MATERIAL AND METHODS 

The fundamental problem in the ECG signal classification 

process is the extensive feature dimensions derived from the 

data. These features provide comprehensive knowledge and 

patterns about the data. However, as they can also produce 

computational complexity, it is necessary to reduce the 

dimensions without eliminating knowledge representation. 

PCA is used because of its ability to reduce overfitting and 

to improve algorithm performance. However, the process 

required to find the eigenvectors produces a large 

computational load [23][24]. To overcome this limitation, 

PCA was designed based on the DWT decomposition to 

separate low- and high-dimensional features [1]. The 

proposed ML model consists of the following steps: data 

collection, beat segmentation, feature extraction, 

dimensionality reduction, classification, and evaluation. All 

the steps are described in Fig. 1 

Fig. 2 shows the flowchart of the proposed DWT-PCA-

DNN method. In step 1, an ECG signal is segmented into 

0.7-s episodes based on the R-peak locations because of all 

electrophysiology processes, such as depolarization and 

repolarization [32]. In step 2, the DWT is used to extract and 

generate all features in 0.7 s, and the ECG signal episode is 

analyzed. In step 3, PCA is used to reduce the feature 

dimension using the low-dimensional data from the DWT. 

The highest variant value of the number of features becomes 

the threshold for selecting the number of reductions. In step 

4, the reduction features from the PCA are trained using the 

DNN model with a K-fold cross-validation scheme, and the 

performance of heartbeat classification is measured in terms 

of accuracy, sensitivity, and specificity. 

A. Data Pre-processing  

The raw ECG datasets used in this study are taken from 

the well-known MIT repository (http://physionet.org/cgi-

bin/atm/ATM) [39][40]. All ECG beat data are annotated at 

R-peak locations, and there are up to 16 different types of 

arrhythmias. Following the AAMI standard [4], the database 

contains 22 types of beats in five groups of arrhythmias. 

However, in this study, only 10 types of ECG beats are used 

[3][4][32]: normal (N), atrial premature contraction (A), 

premature ventricular contraction (V), right bundle branch 

block (R), left bundle branch block (L), paced (P), 

ventricular flutter wave (!), fusion of ventricular and normal 

(F), fusion of paced and normal (f), and nodal escape (j) 

(Fig. 3). As shown in Table 1, all datasets are split into 80% 

for training and 20% for testing data. 

B. Segmentation 

The various segments and intervals of ECG waveform 

signals have different physiological meanings. This implies 

that diagnostic and bio-physical significance is given to the 

 
Fig. 2. Flowchart of the classification process. 
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timing and length of each segment. To equalize the 

sampling time for each record, the ECG signal waveform 

must be segmented to become a single beat. The 

segmentation process is illustrated in Fig. 4. Therefore, the 

ECG rhythm frequency is 60–80 per minute. The 

segmentation of ECG signals is conducted at 0.7 s with two 

intervals, t1 and t2, after the R position is detected. About 

252 nodes are generated at 0.7 s. The interval t1 set for 0.25 

s is equal to 90 nodes before peak position (R), and the 

interval t2 set for 0.45 s is equal to 162 nodes after the peak 

position (R) [41]. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

 

Fig. 3. Heartbeat extracted from MIT-BIH which are ten classes of arrhythmias condition. 

 
 

Fig. 4. Beats segmentation. The blue color is ECG signal, the brown color 
is the sampling time between t1 and t2. 
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Fig. 5. The feature selection process with DWT decomposition 8 levels  

 
Fig. 6. PCA performance for feature reduction (accuracy, sensitivity, 

specificity, precision, and F1-score) 

C. Feature Selection 

The DWT of a one-dimensional signal f[n] can be 

calculated by simultaneously passing it through a high-pass 

and a low-pass filter. Suppose that a low-pass filter has the 

impulse response g[n]. In this case, the DWT can be 

evaluated by calculating the convolution of an original 

signal with the impulse response defined as follows: 




−=

−==
k

kngkfngfny ][].[])[*(][         (1) 

In this study, the ECG signals, sampled at 360 Hz, are 

decomposed up to eight levels. Seven experiments use 3, 4, 

5, 6, 7, 9, and 10 levels of decomposition before such a 

model is applied. To achieve good performance, the wavelet 

decomposition process is repeated eight times within the 

symmetric structure. The bio-orthogonal 6.8 filter is selected 

because of its larger signal-to-noise ratio compared with 

other filters [1]. The result of the decomposition is filtered 

again through the soft thresholding method (1) using the 

universal threshold (2)(3). The results of the first-level 

decomposition are used to calculate the threshold value. All 

levels of the DWT component are shown in Fig. 5. 
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PCA can generate a lower dimensional function and 

reduce the dimensions using the first few principal 

components. However, the components are obtained using 

trial and error. In this study, the components of PCA are 

derived from the DWT coefficients. The number of ECG 

features extracted from DWT is 356. The large number of 

features can increase the computational cost. Therefore, the 

TABLE I 

NUMBER OF BEATS DATA SET FOR CLASSIFICATION  

Fold 

Training Data 

Number of beats 

A L N P R V F f ! j Total 

1 2292 7265 67520 6323 6530 6417 722 884 425 207 98585 

2 2292 7265 67520 6323 6530 6416 722 884 425 207 98585 

3 2292 7265 67520 6323 6530 6416 722 884 425 206 98585 

4 2292 7265 67520 6323 6530 6416 722 884 425 206 98585 

5 2291 7265 67520 6323 6530 6416 722 884 425 206 98585 

6 2291 7265 67520 6322 6529 6416 723 883 426 206 98585 

7 2291 7265 67520 6322 6529 6416 723 883 426 206 98585 
8 2291 7265 67520 6322 6529 6416 723 883 426 206 98585 

9 2291 7264 67519 6322 6529 6416 723 883 426 206 98585 

10 2291 7264 67519 6322 6529 6416 723 883 426 206 98585 

Testing Data 

Fold Number of beats 

A L N P R V F f ! j Total 

1 254 807 7502 702 725 712 80 98 47 22 10949 

2 254 807 7502 702 725 713 80 98 47 22 10950 

3 254 807 7502 702 725 713 80 98 47 23 10950 

4 254 807 7502 702 725 713 80 98 47 23 10950 

5 255 807 7502 702 725 713 80 98 47 23 10952 

6 255 807 7502 703 726 713 79 99 46 23 10953 

7 255 807 7502 703 726 713 79 99 46 23 10953 

8 255 807 7502 703 726 713 79 99 46 23 10953 

9 255 808 7503 703 726 713 79 99 46 23 10955 

10 255 808 7503 703 726 713 79 99 46 23 10955 
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Fig. 7. The proposed model of the DNNs structure 
 

Fig. 8. Classifier Accuracy for Selecting the Best Model 

number is reduced by applying PCA based on cumulative 

explained variances. The reduction of the number of features 

is performed with the highest variance value because it 

represents the information from the ECG database. The 

result is shown in Fig. 6. The highest variance is 0.999, with 

12 features representing the ECG heartbeat information.  

D. Heartbeat Classifier Based on DNNs 

The multiclass of cardiac arrhythmias is classified in this 

study using DNNs and the backpropagation algorithm. A 

DNN consists of several weighted connections, with the 

activation function represented by each node. Fig. 6 

illustrates the simple structure of the proposed DNN, which 

is the best model with the highest accuracy based on several 

cases that have been processed. The deep structures have 

100 nodes in each layer. The experiment is conducted by 

gradually increasing the number of hidden layers from one 

to five, and all performances are observed to choose the best 

ML model (Fig. 7). The rectified linear unit (ReLU) 

activation function is utilized to avoid overfitting in the 

classification process and to determine the error in the 

output layer using the softmax function. The 

backpropagation algorithm computes how accurate ŷ 

(predicted) is compared with y (actual) to obtain a global 

error of the classifier in the notion of a loss function. A 

categorical cross-entropy of the loss function measures the 

disagreement between ŷ and y and is denoted by 1. It is used 

because of its superior learning rate and performance to find 

the minimum value of the error function in weight space 

[18]. The testing scenario uses the beat-based scheme with 

10 times the number of folds. The comparison between the 

training and testing data shows 80% of the training data and 

20% of the testing data. 

 

III. RESULTS AND DISCUSSION 

In this study, the experiment is conducted using several 

DNN models. The model is created by changing the number 

of hidden layers. As shown in Fig. 8, five DNN architectures 

are measured using accuracy performance, as the accuracy is 

still below 99% using ML in previous studies. The results 

show that the highest accuracy is obtained when the number 

of hidden layers is two, with an average accuracy of 

99.87%, an interval of accuracy value of 99.55%–99.88%, 

and a standard deviation of 0.09. After the highest accuracy 

is achieved, the selected structure is observed from the other 

performances of the 10 classes. Aside from examining the 

effectiveness of the selected method, DNN is compared with 

SVM and the RF classifier, as shown in Table 2. In general, 

the average values of accuracy, sensitivity, specificity, 

precision, and F1-score of the SVM with the radial basis 

function (RBF) kernel performance are as good as those of 

the five layers of DNNs. DNN produces a higher sensitivity 

value at 91.8% than SVM at 89.5%, whereas SVM is 2% 

more precise than DNN. However, RF has poor 

performance because it fails to recognize the “j” (nodal 

junctional escape beat) heartbeat class, with 0% sensitivity, 

precision, and F1-score, respectively (Table 2). 
Figs. 9 (a)–(d) illustrate the false-positive rate and the 

false-negative rate. For the SVM classifiers, the false-

positive rate is higher for class (j), and the median value is 

also high. The false-positive rate of DNN for class (j) is 

TABLE II 

BEAT-BY-BEAT CLASSIFICATION BASED ON DNNS, SVM, AND RF MODEL 

Class 
Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Measure (%) 

DNNs SVM RF DNNs SVM RF DNNs SVM RF DNNs SVM RF DNNs SVM RF 

A 99.56 99.59 98.38 89.96 85.73 30.86 99.78 99.92 99.99 91.19 96.33 98.77 90.52 90.69 45.14 

L 99.91 99.94 99.14 99.35 99.52 88.85 99.95 99.97 99.96 99.44 99.67 99.46 99.39 99.59 93.84 

N 99.16 99.13 94.71 99.44 99.76 99.82 98.55 97.75 83.61 99.34 98.98 92.98 99.39 99.37 96.28 

P 99.95 99.98 99.80 99.68 99.80 98.43 99.97 99.98 99.89 99.60 99.82 98.49 99.64 99.81 98.46 

R 99.94 99.94 99.22 99.67 99.50 89.13 99.95 99.97 99.94 99.44 99.61 99.11 99.55 99.56 93.85 

V 99.58 99.64 98.87 96.86 97.04 87.99 99.77 99.82 99.63 96.72 97.44 94.28 96.78 97.24 91.02 

f 99.92 99.96 99.30 95.41 96.73 22.45 99.96 99.99 100.0 95.82 99.16 100 95.56 97.93 36.47 

F 99.76 99.80 99.57 80.38 79.75 43.75 99.90 99.94 99.98 86.44 91.26 94.36 83.27 85.04 59.58 

! 99.89 99.94 99.73 85.96 85.95 38.72 99.94 99.99 99.99 88.24 99.08 94.75 86.79 91.96 54.33 

j 99.88 99.87 99.79 71.30 51.30 0 99.94 99.97 100.0 74.01 77.32 0 72.291 61.30 0 

Aver. 99.76 99.78 98.85 91.80 89.50 60.00 99.78 99.73 98.29 93.02 95.87 87.22 92.31 92.25 66.89 
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(a) (b) 

  
(c) (d) 

 

Fig. 9.  Boxplot of DNNs with 5 layers vs SVM-RBF, (a) False-positive rate of DNNs, (b) False positive rate of SVM, (c) False-negative rate of DNNs, (d) 

False-negative rate of SVM 

 

lower, with a small median value, whereas the false-

negative DNN is higher than the SVM. Minimizing the 

false-negative rate is one of the essential objectives for 

medical diagnostic rules, especially in imbalanced data. 

Medical practitioners prefer low false-negative rates to low 

false-positive rates. The consequences of a false-positive 

include an expensive diagnosis and invasive or 

overtreatment. Conversely, a high false-negative rate causes 

a late diagnosis and even death. 

The box plots show the data on relative risks from Table 

2, subdivided by 10 class quality levels. The boxes shift 

upward as the quality measure improves. The highest mean 

value is paced in the (P) class and the lowest in the normal 

class (N). This is caused by unevenly distributed data; 

normal classes can be considered other classes because the 

resulting beat resembles a normal class. From the 

distribution, normal data contain outlier data because of the 

diversity of data and the high distribution. However, as 

shown in Figs. 9 (c) and (d), by using the DNN class, (j) has 

the highest precision value, unlike the SVM. However, the 

number of outliers in the DNN classifier is greater than that 

in the SVM (Fig. 9 (c)). Normal data are also in the fusion 

of ventricular and normal (F) classes and the fusion of paced 

and normal (f) classes. Moreover, the width of the box shape 

in DNNs for normal classes has both minimum and 

maximum values compared with SVM, which only has a 

maximum value. This means that DNNs can observe the 

diversity of data in this class aside from the mean and 

maximum values for DNNs higher than SVM. 

To ensure the robustness and generalization ability, the 

proposed model is compared with four conditions: (i) with 

other ML algorithms (i.e., SVM and RF; Table 2), (ii) the 

combination between two feature extraction models (Table 

3), (iii) several previous studies (Table 4), and (iv) four 

datasets (Fig. 10). As shown in Table 3, two models of 

feature extraction are developed to test the five layers of 

DNNs. This study carries a combination of DNNs + DWT 

and DNNs + auto encoder (AE). AE is used as an 

unsupervised learning algorithm that applies to the DNNs. 

The difference between AE and DWT in the extraction 

process is that AE uses a learning algorithm, whereas DWT 

uses signal decomposition. However, the two feature 

extraction models are most suitably combined with the 

principle of backpropagation. Using low-dimensional 

feature extraction, DWT produces better performance results 

(Table 3). Specifically, in the ECG signal with a small 

number of data, such as the nodal escape (j), the proposed 

model still gives satisfying results, with an accuracy of 

99.98%. DNNs with AE have an accuracy of 99.66% and an 

F1-score of 72.29%, whereas DNNs with AE only have 

46.67% F1-score. In some cases, AE tends to overfit, 

although this can be mitigated by regularization. Moreover, 

it is computationally more complex and expensive. 

Therefore, the proposed model is robust with high 

generalization performance.  

As illustrated in Table 4 and based on the results, the 

proposed DWT-PCA-DNN model performs with high 

accuracy in the classification of 10 classes of beats and 
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outperforms another ML technique for all test records. The 

results are compared with those of other recent major 

techniques based on SVM by Qin et al. (2017) [1] using the 

same standard metrics, namely accuracy, sensitivity, and 

specificity, but only with six classes. The proposed ML 

model is compared with 15 existing models that comply 

with the AAMI standards and use all records from the MIT-

BIH arrhythmia database (Table 4). The results were 

discovered using the DNN system, with 99.76% accuracy, 

91.80% sensitivity, 99.78% specificity, 93.02% precision, 

and 92.31% F1-score. All values are compared with their 

SVM counterparts, and the overall performance is as good 

as that of DNNs. In this study, both DNNs and SVM 

produce high accuracy and high precision, with 90%–99% 

accuracy in the multiclass classification. The performance of  

some DNNs produces small values compared with other 

DNNs. However, a drawback of the DNN and SVM 

classification for clinical applications is that it lacks 

interpretability to evaluate the effect of each feature while 

extracting relevant discriminant biomarkers. Other 

benchmarks are utilized for analyzing the generalization 

using the MITDB, SVDB, and IncartDB datasets [38][39]. 

DNNs are validated to determine the model robustness using 

other datasets. All records, namely normal, ventricular, and 

normal and ventricular fusion for the MITDB; normal, 

supraventricular premature beats, and ventricular ectopic 

beats for the SVBD; and normal, ventricular ectopic beats, 

and supraventricular ectopy for the IncartDB. The results are 

shown in Fig. 10. All evaluations produce good 

performances, indicating that the proposed model of the 

classifier is satisfied to classify the unseen class. 

In conclusion, based on the experimental results, the 

TABLE III 

COMPARISON CLASSIFICATION PERFORMANCE BETWEEN TWO FEATURES EXTRACTION MODELS DWT AND AUTO ENCODER 

Class 

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Measure (%) 

DNNs 

DWT 

DNNs 

AE 

DNNs 

DWT 

DNNs 

AE 

DNNs 

DWT 

DNNs 

AE 

DNNs 

DWT 

DNNs 

AE 

DNNs 

DWT 

DNNs 

AE 

A 99.56 99.49 89.96 81.74 99.78 99.87 91.19 93.07 90.52 87.04 

L 99.91 99.93 99.35 99.41 99.95 99.97 99.44 99.65 99.39 99.53 

N 99.16 98.75 99.44 99.57 98.55 96.98 99.34 98.61 99.39 99.09 

P 99.95 99.94 99.68 99.44 99.97 99.97 99.60 99.58 99.64 99.51 

R 99.94 99.95 99.67 99.72 99.95 99.97 99.44 99.59 99.55 99.66 

V 99.58 99.39 96.86 93.87 99.77 99.78 96.72 96.70 96.78 95.27 

f 99.92 99.84 95.41 85.71 99.96 99.96 95.82 95.45 95.56 90.32 

F 99.76 99.60 80.38 66.67 99.90 99.83 86.44 74.29 83.27 70.27 

! 99.89 99.91 85.96 88.00 99.94 99.96 88.24 91.67 86.79 89.80 

j 99.88 99.85 71.30 43.75 99.94 99.94 74.01 50.00 72.29 46.67 

Aver. 99.76 99.66 91.80 85.79 99.78 99.62 93.02 89.86 92.31 87.71 

 
TABLE IV 

COMPARISON CLASSIFICATION PERFORMANCE WITH OTHER TECHNIQUES  

Feature Extraction Dimension Beats  

Type 

Data Total/ 

class  

Classifier K-fold  Sen. 

(%) 

Spec. 

(%) 

Acc. 

(%) 

Wavelet transform and 

morphological features [42] 

28 5 104569 ANN no 88.60 96.18 97.86 

Morphological features [41] 13 3 30873 SVM, NNs no 98.52 99.19 97.14 

Morphological features [43] 16 3 23590 SVM, NNs no 92.82 93.74 92.85 

Wavelet transform, cosine transform 

[44] 

18 4 1080 SVM no 98.60 95.50 96.50 

Wavelet transform [28] 24 5 1800 SVM, GA no 98.50 99.69 98.80 

Wavelet transform [45] 20 4 720 SVM no 98.62 99.54 98.61 

Approximate entropy  

wavelet packet [40] 

9 5 290 SVM, PNNs no 98.70 99.70 98.60 

Eigen vector method [46] 12 4 720 RNNs no 98.89 99.25 98.06 

Higher order statistics [47]  24 5 18299 RBFNN no 92.93 98.52 95.18 

Higher order spectral [17] 7 5 830 SVM no 90.00 87.93 85.79 

Geometrical features [48] 18 7 7185 SVM,  

k-NNs, 

BPNN 

no 97.52 99.65 98.06 

Cross correlation [49] 30 3 93246 NNs no 97.49 - 95.24 

Spectral correlation [50]  88 55 6259 SVM 10 99.20 99.70 98.60 

Non-linear and center-clipping 

transform [51] 

5 5 27280 NNs no 98.78 99.70 98.78 

Wavelet and PCA  356 12 109534/10 class SVM 10 89.50 99.73 99.78 

Wavelet and PCA (proposed) 356 12 109534/10 class DNNs  10 91.80 99.78 99.76 
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performance of the DNNs is stable and tends to increase 

along with the increasing amount of data. All works 

compared in this study use the MIT-BIH, MITDB, SVDB, 

and IncartDB datasets [39]. As shown in Fig. 10, the SVDB 

data recording with the noise signal in the raw data is 

difficult to recognize using the proposed model, although 

the number of data is less than that of MIT-BIH. 

Nevertheless, the proposed model with 175,000 data 

recording from IncartDB more than MIT-BIH, still produces 

good performances Although the classifier performance is 

reduced, the overall results are always satisfying. 

 

IV. CONCLUSION 

An accurate morphological classification of ECG signals 

is important to detect abnormalities in cardiac arrhythmia to 

produce an accurate diagnosis. This paper proposes a 

comparative study between DNNs, SVM, and RF for 

classifying different heartbeats. DWT and PCA are 

combined to obtain several features to produce a low-

dimensional feature. The 10-cross-validation scheme is 

designed to classify 10 types of ECG heartbeats using a set 

of 22 feature vectors from 107,049 beats. Based on the 

benchmarking with other techniques, the proposed ML 

model produces satisfactory results with 99.76% accuracy, 

91.80% sensitivity, 99.78% specificity, 93.02% precision, 

and 92.31% F1-score. The robustness of the model is tested 

using two models of feature extraction: DWT and AE. The 

model generalization is validated using four datasets, 

namely MITBH, SVDB, MITDB, and IncartDB, with 

satisfying performance. In the future, the proposed model 

will be considered to use advanced pre-processing based on 

several feature learning techniques. Feature extraction and 

classification, as an integrated and directly constructed 

decision-making function, will be investigated as a deep 

learning approach. Such a method will attract more attention 

due to its self-optimization over input features. This is an 

important process because of the effort required to develop a 

high-performance classifier. Enriching the samples of each 

arrhythmia type remains the most effective and fundamental 

approach that is almost always overlooked.  
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