

Abstract—A colony is a group of microorganisms produced

by the growth and reproduction of a single microorganism
species. A method of colony image feature extraction, essential
dimension estimation and dimension reduction based on digital
image processing technology was proposed. Firstly, based on
the HSI image color moments (first, second and third order
moments), nine color characteristics of the colony images were
extracted. Based on gray-level co-occurrence matrix (GLCM),
twenty texture features of colony images were obtained. Then,
three essential dimension estimation methods, namely, the
correlation dimension estimator, the maximum likelihood
estimator and the packing numbers estimator, are used to
estimate the dimension of the inner low-dimensional structure
of the high-dimensional data of the colony images. The results
of different dimension estimators were combined with six
different dimension reduction techniques (PCA, LDA, MDS,
ISOMAP, SNE and NCA) respectively to form 18 different
data dimension reduction methods. Based on the distance
criterion function, an optimal dimension reduction method for
the high-dimensional feature data of the colony images
corresponding to the maximum distance criterion function was
obtained.
Index Terms—Colony Image, Feature Extraction, Essential

Dimension Estimation, Data Dimension Reduction

I. INTRODUCTION
ICROORGANISMS refer to tiny biological individuals
that humans cannot see or see clearly with the naked

eyes and need to observe through a microscope. With the
human exploration of nature, microbial technology has been
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derived at the microbial level. The study of microbiological
technology often relies on the study of microbial images [1].
A colony is a microbial community formed by the growth
and reproduction of a single microbial species. This
development process is a transformation process from a
world invisible to human eyes at the micro level to a world
visible to human eyes at the macro level, which enable
human eyes to observe microbial populations without the
help of any auxiliary instruments [2]. If we want to obtain
some pure microorganisms with target characteristics, it will
inevitably face the problems of isolation and purification of
microbial strains. Compared with the microscopic images,
the colony image can provide convenience for the isolation
and purification of strain to the greatest extent in both
observation and operation. However, due to the
characteristics of the process, the task is a significant amount
of work, which requires the selection of hundreds or even
thousands of colonies. The realization of intelligent
classification of colony images will greatly improve the
efficiency of related works. Colony image is an important
research object in microbial related scientific research and
quality detection, which can be divided into bacterial colony,
mold colony and actinomycetes colony. In life, bacteria are
extremely widespread and can be found almost anywhere,
including in water, on biological surfaces, on mucous
membranes and so on. Mold is more distributed in wet place,
including soil, wet dead wood and so on. Most
actinomycetes are found in the soil, where they produce an
"earthy smell" after rain. In appearance, bacterial colonies is
more moist, transparent, smooth and uniform in texture.
Mold colonies are characterized by thick and long hyphae,
dry appearance, opacity, spidery, villous or cotton-floss
appearance. Actinomycetes colonies are compact, firm, dry
and wrinkled. These features can help researchers to provide
important reference for isolation, purification and medium
selection of strains, and also provide the possibility for
feature extraction and intelligent classification of colony
images. Through the extraction of image features, many
attribute feature variables about each image are obtained.
With the increasing number of samples, the computational
complexity and time also increase exponentially, which
results in the "dimensional disaster" [3]. In order to reduce
the amount of computation and improve the efficiency of
operation, usually high-dimensional data will be processed
by dimension reduction, the inner low-dimensional structure
will be extracted, and the low-dimensional space vector will
be constructed to describe the data samples in
high-dimensional space, so as to transform high-dimension
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data into low-dimensional data for operation. At the same
time, the low-dimensional data is required to retain the
effective information of the high-dimensional data for the
research problem as much as possible. Therefore, this paper
proposed a method of colony image feature extraction,
essential dimension estimation and dimension reduction
based on digital image processing technology, and verified
the effectiveness of the proposed strategy through
simulation experiments.

II. COLONY IMAGES AND FEATURE EXTRACTION
A. Colony Images
Microorganisms refer to the tiny individual organisms

that cannot be seen or seen with the naked eye and need to be
observed through a microscope, mainly including bacteria,
mold and actinomycetes. The study of microbial technology
often depends on the study of microbial images, and the
bacterial colony is exactly a macroscopic microbe cell group
that can be seen by naked eyes after the mass reproduction of
a single microbe. Fig. 1 shows some examples of the above
strains. Different strains of cells correspond to different
growth conditions, which include culture time, temperature,
PH, and culture medium. The culture medium is a nutrient
substrate prepared by a combination of different nutrients,
which is essential for the growth and reproduction of
microorganisms. The morphological characteristics of the
colony in the colony image are closely related to the
separation and purification of different strains. In traditional
methods, researchers will select colonies based on their own
morphological characteristics of different colonies and their
own experience. However, due to the different subjective
understandings of researchers, the mastery of morphological
characteristics is not comprehensive, which will inevitably
cause human errors in the selection, classification and
purification of colonies.

(a) Bacteria (b)Mold

(c) Actinomycetes

Fig. 1 Colony images.

Therefore, it is particularly important to classify colony
images with the help of modern digital image technology.
Modern digital image technology can realize the recognition
and classification of different colony images. The important
basis of this work is that different images of bacterial
colonies have different image characteristics. The
commonly used image features include color features,
texture features and shape features.

B. Color Feature Extractions
Digital images exist in the form of a matrix in which each

element corresponds to a pixel. According to color and
grayscale, there are four basic types: binary image, grayscale
image, index image and true-color RGB image. Among
them, each pixel point of the true color RGB image is
composed of R (red), G (green) and B (blue), and the
intensity of the primary color is also determined by each
primary color component. Their varying degrees of
superposition make up RGB color patterns with different
colors. Currently, this color pattern is one of the most widely
used color systems. Any color can be represented by R, G
and B. The three dimensional function can be expressed as
follows.

        , , , , , , , , , ,red green bluef x y z f x y z f x y z f x y z (1)

where,  , ,f x y z is the color in space coordinate spot
 zyx ,, ;  , ,redf x y z ,  , ,greenf x y z and  zyxfblue ,, are
respectively R, G and B component values in the spatial
coordinate spot  zyx ,, . However, for the colony image in
the plane image, the position is determined by the
two-dimensional coordinates, so the two-dimensional
function of the position coordinates can be expressed as:

        , , , , , ,red green bluef x y f x y f x y f x y (2)

where,  ,f x y is the value of each pixel in graphic image.
Although RGB color model is commonly used and

relatively simple, it is not the most suitable for the
characteristics of the colony images studied in this paper.
The colony image studied in this paper involves bacteria,
mold and actinomycetes. As each category of bacteria, mold
and actinomycetes has a variety of colonies of different
colors. So color, as an external representation of the colony,
cannot be distinguished from the types of bacteria, mold and
actinomycetes simply by R, G and B trichromatic fractions.
However, due to obvious differences in the brightness and
transparency of the colony images, the conversion of color
features from RGB mode to HSI mode can be used as an
important basis for discrimination.
HIS color space is a color pattern more consistent with the

characteristics of human vision, which reflects the way the
human visual system perceives color, with Hue, Saturation
and Intensity to describe color. Compared with RGB color
space, HSI color space simplifies image analysis and
processing. HIS color space model is shown in Fig. 2 [4].
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Fig. 2 HIS color space model.

In the HSI model, hue (H) is measured from 0 to 360
degrees. It can not only represent people's feelings towards
different colors, such as red and green, but also represent a
certain range of colors, such as warm colors and cool colors.
For example 0° is pure red, 2π/3 is pure green, and 4π/3 is
pure blue. Saturation (S) is the distance between any point in
the color space and axis I, indicating the depth or intensity of
the color. The brightness (I) is mainly affected by the light
source and represents the degree of lightness and darkness of
the color. In industrial applications, the value range of S [0,1]
corresponds to unsaturated to full saturation (no white). The
value range of I [0,1] corresponds to the color from dark to
light. HSI color space and RGB color space have different
representations of the same physical quantity, so they can be
converted to each other.

3
R G BI  

 (3)

 31 min , ,S R G B
R G B

     
(4)

   
     

1

2
cos

2

R G R B
H

R G R B G B

R B or G B


    
     

 

(5)

As a representation method of color characteristics, color
moments are proposed by Stricker and Orengo [5]. This
method is mainly composed of three parts, namely,
first-order moments (Mean), second-order moments
(Variance) and third-order moments (Skewness). Since the
color information distribution of an image is very important
for image recognition, nine characteristic components of the
color moment are used to represent the color characteristics
of the image, namely the first, second and third moments of
the H, S and I components respectively. First moment iu ,
second moment i and third moments is can be calculated
by:

,
1

1 N

i i j
j

u p
N 

  (6)

 
1
2

2

,
1

1 N

i i j i
j

p u
N




 
  
 

 (7)

 
1
3

3

,
1

1 N

i i j i
j

s p u
N 

 
  
 

 (8)

where, N is the total pixel number of the image, and ,i jp
represents the occurrence probability of the pixel whose
median value is j in i -th component of the HSI image. The
feature data of color feature extraction is listed in Table 1.

C. Texture Feature Extractions
The texture of an image reflects the features of the image

itself. Generally speaking, texture is a pattern with small
shapes and regular arrangement in a certain range of the
image, which is an important feature to describe the image.
As can be seen from Fig. 1, the colony texture in the image is
quite characteristic, so the statistical analysis method is
adopted. Among the statistical analysis methods, the
commonly used methods are histogram analysis and GLCM.
Although histogram is relatively simple and intuitive, it is a
measure of similarity, that is to say that even similar images
may have different texture features.

TABLE 1. FEATURE DATA BASED ON COLOR FEATURE EXTRACTION

Sampl
es

First order moment Second order
moment

Third order
moment

H S I H S I H S I

1 0.1
04

0.3
37

0.3
08

0.0
46

0.2
84

0.3
01

0.2
22

0.1
01

0.3
18

2 0.1
12

0.1
02

0.5
07

0.0
21

0.0
22

0.3
50

0.2
41

0.1
08

0.3
42

3 0.1
13

0.1
01

0.5
24

0.0
20

0.0
20

0.3
48

0.2
39

0.1
10

0.3
22

4 0.1
10

0.1
99

0.5
85

0.0
17

0.0
79

0.1
92

0.2
84

0.0
95

0.2
34

5 0.1
09

0.1
94

0.5
92

0.0
14

0.0
77

0.2
16

0.2
68

0.1
04

0.1
84

6 0.1
08

0.1
51

0.4
95

0.0
11

0.0
37

0.2
35

0.2
45

0.0
83

0.2
06

7 0.1
05

0.1
87

0.4
78

0.0
13

0.0
82

0.2
84

0.2
69

0.0
83

0.1
49

8 0.1
17

0.0
99

0.5
65

0.0
24

0.0
20

0.3
81

0.2
36

0.1
15

0.2
60

9 0.0
94

0.1
99

0.3
89

0.0
13

0.0
85

0.3
01

0.2
38

0.1
22

0.2
45

10 0.7
18

0.1
64

0.8
09

0.7
77

0.2
85

0.6
26

0.2
15

0.0
91

0.2
49

11 0.6
32

0.2
03

0.7
51

0.9
23

0.3
34

0.6
19

0.2
33

0.0
91

0.2
86

12 0.7
47

0.1
78

0.7
25

0.7
68

0.2
86

0.6
05

0.2
09

0.0
91

0.2
56

13 0.5
23

0.2
11

0.6
98

0.9
34

0.3
16

0.5
16

0.2
45

0.0
97

0.2
49

14 0.1
53

0.1
39

0.6
07

0.3
64

0.1
98

0.4
06

0.3
51

0.0
85

0.2
69

15 0.1
03

0.1
75

0.5
31

0.0
15

0.0
64

0.1
16

0.2
66

0.0
70

0.1
22

16 0.1
65

0.0
79

0.7
12

0.4
65

0.1
96

0.4
10

0.3
16

0.1
10

0.1
14

17 0.1
61

0.1
23

0.6
12

0.4
01

0.1
95

0.4
42

0.3
39

0.0
92

0.2
28

         

1000 0.1
21

0.0
95

0.7
16

0.3
49

0.2
61

0.2
63

0.3
60

0.1
31

0.0
94
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However, in the spatial position, the repeated occurrence
of grayscale forms the texture. Although there is a certain
distance between two pixels in the image, there will still be
grayscale relationship, which is called the grayscale spatial
correlation property. GLCM was proposed by Haralick et al.
[6] to describe an analysis method of texture, which is based
on the second-order combinational conditional probability
density function of image estimation. The joint probability
density of two pixels in the image space is defined as the
symbiotic matrix, which is used as the basis for defining a
set of texture features. Fig. 3 is a schematic diagram of
grayscale symbiosis matrix, where i and j represent the
grayscale values of corresponding pixel points [4].
Set  ,f x y is a two-dimensional digital image, and the

GLCM refers to the pixel with the gray level i in the
image  ,f x y appears at the same time with the pixel
 ,x x y y    having the deflection angle  , the distance
 , and the value j at the probability  , , ,P i j   .

       
  

, , , , , , , ,

, ; 0,1, , 1; 0,1, , 1x y

P i j x y x x y y f x y i

f x x y y j x N y N

         
         

(9)

where, , 0,1, , 1i j L  ; x and y are the image pixel
coordinates; L is the gray series; xN and yN are the
number of lines and columns in the image.
It is not intuitive to use symbiotic matrix to describe

texture features. Therefore, some parameters reflecting the
condition of the matrix are derived by using symbiotic
matrix, which can describe texture features from different
angles. Because of the abundant characteristic parameters,
gray co-occurrence matrix can describe the texture from
different angles. At first, Haralick[7] gave 14 characteristic
parameters, such as contrast, uniformity, entropy, and
variance, and average, energy, correlation, and entropy
based on GLCM. In this paper, 20 texture feature parameters,
such as angular second moment, entropy and non-similarity
were used to describe the texture features of bacterial colony
images. The calculation formula is shown in Table 2. Table
3 and Table 4 shows the texture feature parameters based on
GLCM.

Fig. 3 Gray-level co-occurrence matrix.

TABLE 2. TEXTURE FEATURE CALCULATION METHODS BASED ON GLCM

Texture feature Calculation method

Angular second moment   21 ,
i j

f p i j

Entropy     2 , log ,
i j

f p i j p i j 

Dissimilarity  
1

3
0 1 1

,
g g gN N N

n i j

f i j p i j


  

      
  

 

Contrast  
1

2
4

0 1 1

,
g g gN N N

n i j

f i j p i j


  

     
  

 

Uniformity  
 5

1 ,
1i j

f p i j
i j


 

Correlation
   

6

, x y
i j

x y

ij p i j
f

 

 





Moment of deficit  
 7 2

1 ,
1i j

f p i j
i j


 



Auto-correlation  8 ,
i j

f i j p i j  

Cluster shadow    3
9 ,

i j
f i j p i j    

Cluster protrusion    4
10 ,

i j

f i j p i j    

Maximum probability   11 max max ,
i j

f p i j

Sum variance    2
12 ,

i j

f i p i j 

Sum average  
2

13
2

gN

x y
i

f ip i




Sum variance    
2

2
14 15

2

gN

x y
i

f i f p i


 

Sum entropy     
2

15
2

log
gN

x y x y
i

f p i p i 


 

Variance 16 x yf variance of p 

Differential entropy     
1

17
0

log
gN

x y x y
i

f p i p i


 


 

Related information
measures

 18
1

max ,
HXY HXYf

HX HY




  
1
2

19 1 exp 2.0 2f HXY HXY     

    , log ,
i j

HXY p i j p i j 

      1 , log x y
i j

HXY p i j p i p j 

        2 logx y x y
i j

HXY p i p i p i p j 

Maximum correlation
Coefficient

 
1
2

20f Second lar gest eigenvalue of Q

     
   
, ,

,
k x y

p i k p j k
Q i j

p i p k


TABLE 3. TEXTURE FEATURE DATA BASED ON GLCM (1)

Sample
Angular
second
moment

Entropy Dissimilar
ity Contrast Uniformit

y Correlation Moment
of deficit Auto-correlation Cluster

shadow
Cluster

protrusion

1 0.012 0.908 0.563 0.460 0.407 0.544 0.118 0.614 0.478 0.613
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2 0.040 0.689 0.166 0.064 0.800 0.936 0.263 0.811 0.640 0.850

3 0.052 0.652 0.149 0.053 0.820 0.947 0.291 0.807 0.609 0.835

4 0.131 0.514 0.202 0.161 0.786 0.840 0.528 0.765 0.651 0.884

5 0.233 0.418 0.138 0.116 0.856 0.884 0.692 0.820 0.612 0.908

6 0.046 0.658 0.282 0.143 0.674 0.856 0.205 0.764 0.540 0.664

7 0.069 0.584 0.315 0.169 0.640 0.829 0.228 0.721 0.514 0.703

8 0.056 0.613 0.161 0.058 0.805 0.942 0.285 0.792 0.569 0.788

9 0.021 0.801 0.303 0.163 0.653 0.835 0.162 0.713 0.588 0.662

10 0.028 0.737 0.312 0.143 0.635 0.858 0.155 0.868 0.537 0.729

11 0.020 0.789 0.315 0.159 0.636 0.844 0.141 0.889 0.480 0.763

12 0.020 0.772 0.331 0.174 0.620 0.828 0.137 0.859 0.518 0.712

13 0.017 0.804 0.348 0.177 0.599 0.823 0.119 0.846 0.383 0.689

14 0.045 0.729 0.244 0.141 0.725 0.861 0.343 0.904 0.390 0.798

15 0.056 0.634 0.273 0.155 0.689 0.844 0.232 0.768 0.557 0.767

16 0.068 0.599 0.163 0.085 0.813 0.915 0.432 0.893 0.485 0.902

17 0.052 0.687 0.221 0.117 0.746 0.884 0.324 0.877 0.437 0.839

18 0.058 0.659 0.275 0.151 0.687 0.850 0.340 0.838 0.506 0.855

          
19 0.066 0.644 0.326 0.207 0.638 0.794 0.316 0.796 0.477 0.821

TABLE 4. TEXTURE FEATURE DATA BASED ON GLCM (2)

Sample Maximum
probability

Sum
variance

Sum
average

Sum
variance

Sum
entropy Variance Differential

entropy

Related
information
measures 1

Related
information
measures 2

Maximum
correlation

1 0.062 0.675 0.875 0.108 0.125 0.463 0.220 0.833 0.559 0.586

2 0.051 0.456 0.833 0.361 0.400 0.067 0.593 0.471 0.923 0.973

3 0.082 0.422 0.824 0.398 0.438 0.056 0.619 0.441 0.931 0.976

4 0.159 0.627 0.835 0.377 0.417 0.163 0.621 0.386 0.932 0.861

5 0.302 0.517 0.871 0.457 0.499 0.117 0.736 0.253 0.964 0.912

6 0.038 0.422 0.840 0.280 0.314 0.148 0.444 0.590 0.836 0.940

7 0.062 0.329 0.821 0.419 0.460 0.174 0.423 0.588 0.818 0.930

8 0.051 0.371 0.816 0.453 0.494 0.061 0.600 0.447 0.921 0.978

9 0.037 0.333 0.808 0.149 0.171 0.169 0.423 0.666 0.797 0.809

10 0.055 0.612 0.930 0.240 0.273 0.149 0.395 0.633 0.816 0.925

11 0.038 0.759 0.949 0.167 0.193 0.165 0.391 0.657 0.804 0.891

12 0.039 0.776 0.927 0.216 0.246 0.180 0.387 0.657 0.800 0.924

13 0.038 0.577 0.933 0.271 0.306 0.184 0.360 0.666 0.798 0.955

14 0.079 0.688 0.959 0.192 0.221 0.144 0.498 0.516 0.905 0.914

15 0.050 0.452 0.850 0.221 0.251 0.159 0.461 0.588 0.831 0.803

16 0.106 0.580 0.921 0.379 0.420 0.088 0.620 0.393 0.943 0.987

17 0.077 0.676 0.916 0.309 0.346 0.121 0.521 0.503 0.905 0.967

18 0.106 0.581 0.908 0.387 0.427 0.156 0.477 0.507 0.897 0.977

          
1000 0.155 0.598 0.900 0.335 0.374 0.212 0.433 0.584 0.837 0.954
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III. ESSENTIAL DIMENSION ESTIMATION OF HIGH
DIMENSIONAL FEATURES

By extracting color features and texture features from all
samples, image feature data containing a lot of feature
variable information are obtained, and these data have high
dimensional characteristics. It will cause huge computing
complexity and storage space overhead. High-dimensional
data generally contain a lot of redundant information relative
to the target problem. Such high-dimensional characteristics
often hide the internal relations and laws behind the data,
which is not conducive to discovering the data relations and
laws, and it becomes very difficult to process
high-dimensional data. Therefore, it is necessary to find a
suitable way to effectively process the high-dimensional
data and turn it into the low-dimensional data closely related
to the high-dimensional data to be processed. Such
low-dimensional data can better highlight the relationships
and laws among variables hidden in the high-dimensional
data. But the determination of the "essential" dimension of
the low-dimensional structure hidden in the
high-dimensional data is the key to the dimension reduction.
The ability to accurately find out the intrinsic "essential"
dimension of high dimensional data determines the ability to
better map high dimensional data to low dimensional data.
Assuming pR have n samples in high dimensional space

represented by 1 2, , , nX X X , while in low dimensional
space  mR m p represented by 1 2, , , nY Y Y . The
mapping from high-dimensional space to low-dimensional
space can be expressed as  i iX g Y , where 1,2, ,i n 

and m is the essential dimension.
Because the research of high-dimensional data processing

involves the development of many industries and fields, it
has been widely concerned by scholars at home and abroad.
The problem of essential dimension estimation is one of the
important research contents in the field of high-dimensional
data processing. As early as 1969, the definition of
"essential" dimension was proposed by Bennett [8], who
applied principal component analysis (PCA) to the
estimation of essential dimension of linear data. Later,
scholars made innovations and improvements on this basis,
and produced a series of PCA based methods applied to
global or local applications, which are called eigenvalue
methods. After entering the 21st century, with the
continuous development of manifold learning, people have a
deeper understanding of essential dimension, and put
forward many essential dimension estimation methods, such
as correlation dimension estimator [9], maximum likelihood
estimator [10], and cluster number estimator [11].

A. Estimation of Correlation Dimension
The correlation dimension estimator (CDE) calculates the

relative number of data points within the hypersphere with
radius r and use the number of data points within the
hypersphere in the radius r proportional to the dr . The
relative number of data points in the hypersphere with radius
r is calculated by:

    1 1

2
1

1,

0,

n n

i j i

i j

i j

C r c
n n

if x x r
where c

if x x r

  




   
 

 
(10)

Due to the value  C r is proportional to the dr ,  C r is
can be used to estimate the intrinsic dimension d . The
proper dimension d is given by the limit.

 loglim
0 log

C r
d

r r



(11)

Since the solution in Eq. (11) cannot be directly obtained,
 C r can be calculated by two r values. The essential

dimension d of data is given by the ratio shown in Eq. (12).

    
 

^ 2 1

2 1

log
log
C r C r

d
r r





(12)

B. Maximum Likelihood Estimate
The maximum likelihood estimation (MLE) can realize

the essential dimension estimation of high-dimensional data.
Suppose that given a point x , within a sufficiently small
range of R and a sphere  xS R with its radius, there is
f(x) ≈ C(C is the fixed value).

       
1

, ,0 , ,
n

i x
i

N t x t R N t x I X S t


    (13)

It can be seen that N t,x is the number of
points 1 2, , , nX X X falling into  xS t .

    1
, n

i xi
N t x I X S t


  is similar to Poisson process.

For 1 2, , , nX X X , the distance from the k -th nearest
neighbor in 1 2, , , nX X X to x is denoted as  kT x . Then
obtain:

      d
k

k f x V d T x
n
    (14)

where,    / 2 1[ / 2 1]dV d d    is the d -dimensional
unit sphere volume. Assuming that t is fixed,
      1dt f x V d dt  , where  t is the relative rate of

change of  N t to t ;  ln f x  . Then Eq. (15) can be
established [12].

        0 0
ln , ln ln

R R
L d t dN t t dt     (15)

Eq. (15) satisfies the following likelihood equation.

     

    
0 0

0 0

ln 1

ln

0

R R

R R

L

t dN t t dt

dN t t dt

  




 

 

 

 

 
(16)

It can be reduced to:

     

    
0 0

ln 1

ln

0

R R

d

L

t dN t t dt

N R e V d R

  


 

 

 

  (17)
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By      
0 0
ln 0

R R
t dN t t dt    ，obtain:

    0dN R e V d R  (18)

     

 
     

   
 

0 0

0

ln 1

ln

1 ln

ln 0

R R

R

d

L
d t dN t t dt

V d
N R tdN t

d V d

V d
e V d R R

V d


 




 

      
      

 

 (19)

By      
0 0
ln 0

R R
t dN t t dt    , obtain:

 
   

     
 0

1

ln ln 0
R d

V d
N R

d V d

V d
tdN t e V d R R

V d


 
   

 
 

    
 


(20)

By combining Eq. (18) and Eq. (20), obtain:

     
  1,^

1

1 ln
,

N R x

R
j j

Rd x
N R x T x





 
  
  

 (21)

In order to facilitate the calculation, the spherical
neighborhood is discarded and the neighborhood k is taken
for calculation, so Eq. (21) is transformed into:

   
 

1
1^

1

1 ln
1

k
k

k
j j

T x
d x

k T x






 
  

  
 (22)

where,  k iT x represents the radius of a hyperplane
centered on ix encompassing k neighboring points.

C. Packing Numbers Estimation
The packing numbers estimator (PNE) is based on the

number  N r covered by the radius r of the hypersphere
covering all data points in the data set X , which is
proportional to dr . Among them, this hypersphere is a
collection covering all data points in the data set X . Just
because  N r is proportional to dr , the essential
dimension of the data set X can be obtained by:

 lim log
0 log

N r
d

r r
 


(23)

Generally, it is difficult to obtain the number  N r
covered by the radius r in the data set X . Therefore, the
number of clusters  rM under the radius r is used instead
of  rN to solve this difficulty. This cluster is defined as the
largest cluster of independent subsets in the data set X . In
other words,  rM is the maximum number of data points in
X that can be covered by a single hypersphere with radius
r . In a data set of reasonable size, it is feasible to use  rM
to complete the calculation. The essential dimension of the
data set X can be obtained by the following limit.

 lim log
0 log

M r
d

r r
 


(24)

Since the essential dimension cannot be calculated by the
limit in Eq. (24), Eq. (25) can be used to estimate the
essential dimension.

    
 

^ 2 1

2 1

log
log
M r M r

d
r r


 


(25)

IV. DIMENSION REDUCTIONMETHOD FOR HIGH
DIMENSIONAL CHARACTERISTIC DATA

The essential dimension estimation methods of
high-dimensional data introduced in the previous section can
be used to obtain the essential dimension of
high-dimensional data set. Next, the application and
discussion of the dimension reduction methods for
high-dimensional data will be carried out. Common
dimension reduction methods include Principal Component
Analysis (PCA) [13], Linear Discriminant Analysis (LDA)
[14], Multi-dimensional Scaling (MDS) [15], Isomapetric
Mapping (ISOMAP) [16], Stochastic Neighbor Embedding
(SNE) [17], Neighborhood Component Analysis (NCA)
[18], etc.

A. PCA Dimension Reduction
Principle component analysis (PCA) reduces the

dimension of high-dimensional data to low-dimensional
data. It is to extract a set of basis vectors that express the
variable information of the high-dimensional original data to
the maximum extent, and then select the size of each sample
point in the high-level feature space. Several feature
directions with the largest changes are used as projection
directions to achieve feature extraction of data. Suppose
sample data  1 2, , , nX x x x  in d -dimensional space,
where n is the number of samples. The mean value of the
samples can be obtained by:

 
1

1 n

i
i

x E X x
n 

   (26)

PCA adopts the orthogonal transformation on variable X
to obtain a set of linearly independent variables

 1 2, , , mY y y y  .

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

n n

n n

m m m mn n

y x x x
y x x x

y x x x

  
  

  

   
    


    









(27)

where,  1 2, , , T
i i i im     is the unit projection vector on

subspace, where 1,2, ,i m  . Arrange Eq. (27) to obtain:

1

. . 1,

0,

n
T

i i
i

T
i j

T
i j

y x x

s t i j

i j

 

  

 



 

  

 



(28)
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The core idea of this method is to find the direction of the
largest variance, that is to say 2E y   is maximized as much
as possible.

 22 T T T TE y E X E xx C               
(29)

where, C represents the covariance matrix corresponding to
the sample data, which is defined as:

     
     

     

1 1 1 2 1

2 1 2 2 2

1 2

cov , cov , cov ,
cov , cov , cov ,

cov , cov , cov ,

n

n

n n n n

x x x x x x
x x x x x x

C

x x x x x x

 
 
 
 
 
  





  



(30)

where,      cov ,
T

i j i jx x E x x x x     
. In order to

make 2E y   reach the maximum value,  also needs to
satisfy the following conditions:

, 1,2, ,i i iC i n    (31)

where, i is uniquely determined by matrix C , which is
corresponding to the eigenvector obtained by matrix C
decomposition. Generally, when eigenvectors are used to
solve practical problems, not all eigenvectors are involved in
the problem, and most of the sample information can be
expressed by using only some principal components with a
large contribution rate. The contribution rate e of the
principal component determines the number of retained
feature vectors m , and the calculation formula is described
as follows.

1 2

1

100%m
n

i
i

e   




  
 




(32)

The eigenvectors corresponding to the first m largest
eigenvalues are thus obtained, and the new eigenspace
completes the mapping from the original high-dimensional
data to the low-dimensional space. This mapping can be
expressed as:

Y PX (33)

where, X is in the high-dimensional space, Y is in the
low-dimensional space, and P is a matrix composed of m
eigenvectors.

B. LDA Dimension Reduction
Linear discriminant analysis (LDA) reduces data from

high-dimensional space to low-dimensional space by
looking for low-dimensional features with the most
categorical information. These characteristics need to meet
certain conditions. While taking into account that the sample
data of the same type should be as compact as possible, the
sample data of different types should be dispersed as much
as possible. In order to meet the above conditions, it is
necessary to find a transformation matrix 0W to satisfy the
Fisher criterion.

 0 argmax
T

m

T
n

W S W
R W

W S W
 (34)

In Eq. (34), the inter-class dispersion mS and the
intra-class dispersion nS are given by:

   
1

c T
i

m i i
i

kS x x x x
k

   (35)

   
1 1

1ikc T

n ij i ij i
i j

S x x x x
k 

   (36)

where, c represents the total number of sample categories,
and the mean of all samples x is defined as:

1

1 k

i
i

x x
k 

  (37)

Eq. (37) is the generalized Rayleigh entropy of mS
relative to nS . When mS is positive, the extreme value of
 R W is obtained on the ellipsoid 1T

nW S W  . At this time,
there is the characteristic equation m nS W S W , where the
characteristic vector corresponding to the characteristic
value  is W , and there is  R W  . Remember that the
optimal solution of  R W is  0 1 2, , , sW w w w  , the
corresponding eigenvectors of the first s non-zero
eigenvalues 1 2, , , s   of /m nS S are 1 2, , , sw w w .

C. NCA Dimension Reduction
Nearest neighbor analysis (NCA) is to measure the

distance on high-dimensional data sets, and use this distance
measure  ,i jd x x to characterize a certain similarity
between ix and jx , so as to achieve the purpose of
dimension reduction. The algorithm randomly selects
nearest neighbors, and calculates the transformation matrix
in the Mahalanobis distance by optimizing the left-one-out
(LOO) cross-check result. Suppose there are n input
samples 1 2, , , nx x x in the DR space, and the
corresponding class labels 1 2, , , nc c c are attached, and a
distance measure is found to make the nearest neighbor
classification effect as optimal as possible. The Mahalanobis
distance transformation matrix Q is a symmetric positive
semi-definite matrix, that is TQ A A . The Mahalanobis
distance between two sample points can be calculated by:

     

   

, , ,
T

i j i j i j

T

i j i j

d x x x x Q x x

Ax xA Q Ax Ax



  
(38)

where, , 1,2, ,i j n  . When using LOO to calculate the
classification error, a differentiable Softmax function needs
to be introduced:

 
 

2

2

exp
, 0

exp

i j

ij ij

i kk i

Ax Ax
P p

Ax Ax


 
 

 
(39)

The relevant definition of ijP is described as follows. The
sample point ix selects a neighbor in a random manner, and
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it finally selects another sample point jx as its neighbor and
inherits the probability of its class label jc . The probability
that the sample point ix is correctly classified can be
calculated by:

i

i ij
j C

p p


  (40)

where,  i i jC j c c  .
Since the objective function needs to maximize the

number of correctly classified points, it is defined as:

 
i

ij i
i j C i

f A P p


   (41)

Eq. (41) is a continuously differentiable matrix function,
and A can be obtained by stochastic gradient method or
conjugate gradient method. The gradient method can be
expressed as:

2
i

T T
ij ij ij ik ik ik

i j C k

f A p x x p x x
A 

       
  (42)

where, jiij xxx  . When matrix A is a square matrix, the
dimension after learning from the NCA distance measure
will remain unchanged.

D. MDS Dimension Reduction
Multidimensional scaling (MDS) is a more classic

distance-preserving dimension reduction method. Its core is
to minimize the relative position and difference between
sample points after projecting high-dimensional variables.
In other words, the distance or similarity between the sample
points in the low-dimensional space and the high-order
space should be as consistent as possible. For the data
set  1 2, , , D

nX x x x R  , MDS usually uses distance
information to represent the difference between samples,
that is, the smaller the distance, the similarity between
samples will be higher. Its distance expression in high-level
space is described as:

1

1

D rr

ij im jm
m

d X X


    
 (43)

where, m is the feature dimension of the samples in the
high-level space, and when r is 2, it represents the
Euclidean distance.
According to Eq. (43), the distance matrix  ij n n

D d


 of
n samples in the data set X in the high-dimensional space
is calculated, and the characteristic of the samples in the
low-dimensional space is represented as  1 2, , , nY y y y  .
Because it is necessary to maintain the consistency of the
distance between the samples before and after the
transformation, that is to say that ij i jd y y  must be
satisfied. So Eq. (43) can be transformed into:

   

2

T

ij i j i j

T T T T
i i i j j i j j

T T T
i i i j j j

d y y y y

y y y y y y y y

y y y y y y

  

   

  

(44)

It can be seen that the distance in the high-dimensional
space can be represented by the inner product of the samples
in the low-dimensional space. Assuming that the sample
data after dimension reduction is the data after the centering
processing and the inner product matrix is A , where

T
ij i ja y y , then

1 1

0
n n

ij ij
i j

a a
 

   (45)

The inner product matrix A in the low-dimensional space
can be expressed as:

 2 2 2 2
. . ..

1
2ij ij i ja d d d d     (46)

Among them:

2 2
.

1

1 n

i ij
j

d d
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  (47)
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ijj d
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1
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(48)


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n

i

n

j
ijdn

d
1 1

2
2

2
..

1
(49)

Inner product matrix TA Y Y . Perform eigen
decomposition of matrix A to solve sample data Y in
low-dimensional space.

T TA U U Y Y   (50)
1
2 TY U  (51)

 1 2, , , ddiag      (52)

where,  is a diagonal matrix composed of eigenvalues,
and its eigenvalues are arranged from large to small, namely

1 2, , , d   ; U is a matrix composed of eigenvectors
corresponding to the eigenvalues in  , and all feature
vectors are pairwise orthogonal.

E. ISOMAP Dimension Reduction
Isometric mapping (ISOMAP) is an improvement based

on MDS. Its purpose is to keep the distance between two
data sample points as much as possible. This distance uses
the Geodesic distance  ,G i jd x x , not Euclidean the
distance  ,i jd x x . After the low-dimensional embedding
mapping is obtained by the MDS algorithm, the error value
between Geodesic distance  ,G i jd x x , and Euclidean
distance  ,i jd x x is minimized, so that the
low-dimensional embedding coordinates of the
high-dimensional space can be obtained, and the purpose of
dimension reduction is realized.
Calculate the Euclidean distance  ,i jd x x between all

sample points in the data sample set
 1 2, , , T n m

nX x x x R   , and determine the distance
between the sample point’s proximity. A nearby graph G
with a sampling point as a node is used to represent the
neighborhood relationship of the sampling point. Each node
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in G corresponds to each point in the high-dimensional data
set, and the connected edges represent its neighbor
relationship. By using Dijkstra's algorithm on the nearest
neighbor graph G , we can get the shortest distance

 ,G i jd x x between each node in G , and the geodesic
distance matrix     , , , , 1,2, ,G G i jD i j d x x i j n   . The
MDS algorithm is used to solve the low-dimensional
embedding in high-level sampling data.

F. SNE Dimension Reduction
Stochastic neighbor embedding (SNE) adopts the affine

transformation to map data points to a probability
distribution. First convert the Euclidean distance to
conditional probability to express the similarity between two
points. The number of samples in the high-dimensional
sample space is N , and the high-dimensional data is

Nxxx ,,, 21  . The probability of ix and jx is calculated
for all data point combinations.

  
  

2 2

2 2

exp 2

exp 2

i j i

j i
i k ik i

x x
p

x x






 


 
(53)

The parameter i here will vary with different data points
ix , and the parameter can be searched for an optimal i by

means of binary search. For low-dimensional iy , you can
specify that the variance of the Gaussian distribution is
1 / 2 , and their similarity can be defined as:

 
 

2

2

exp

exp

i j

j i
i kk i

x x
q

x x


 


 
(54)

If the dimension reduction effect is better, then j i j ip q .
Therefore, the objective function is:

  log j i
ij

ij j i

p
Y p

q
  (55)

Make the acquired value of the objective function  Y
as small as possible.

V. DIMENSION REDUCTION RESULTS AND
ANALYSIS

A. Dimension Reduction Performance Evaluation Index
The performance evaluation index of the dimension

reduction methods can use the distance criterion function
J between the classes and the samples within the class.

1
W BJ tr S S    (56)

where, WS is the within-class dispersion matrix, BS is the
between-class dispersion matrix, and  tr  represents the
trace of the solution matrix. The J value is used to reflect
the intra-class distance and the inter-class distance of the
data. When the intra-class distance of the data is large and
the intra-class distance is small, the current data has better
separability. The J value is larger, and the dimension
reduction effect is better. Through the study of 3 kinds of

common high-dimensional data essential dimension
estimation methods and 6 common dimension reduction
techniques, a more suitable dimension reduction method for
high-dimensional feature data processing of colony images
is found. The selected sample set is randomly divided into
training set and validation set at a ratio of 2:1. Then the
standard support vector machine (SVM) is adopted to
classify the sample set to obtain the classification accuracy
of different dimensions, and verify whether the dimension
reduction method found is the most suitable method for the
data processing for colony image feature data set.

B. Essential Dimension Estimation Result
The correlation dimension estimation, the maximum

likelihood estimation and the cluster number estimation are
adopted to estimate the essential dimension of the sample set.
The dimension estimation results are listed in Table 5.
According to the simulation algorithm, the result of the
essential dimension estimation listed in Table 5 is obtained.
Next, these three different dimensions are taken as the target
dimension of the low-dimensional space, and different
dimension reduction methods are used to reduce the
high-dimensional feature data of the colony images.

C. Comparison of Data Dimension Reduction Results
In order to find a more suitable combination of dimension

reduction method, three different dimension estimation
results are combined with six different dimension reduction
techniques (PCA, LDA, MDS, ISOMAP, SNE, and NCA) to
form 18 different methods as listed in Table 6. Compare the
value of the distance criterion function J to find the most
suitable dimension reduction method.
The CDE-based essential dimension estimation results

and six different dimension reduction techniques are
combined and tested, and the value of the distance criterion
function J is listed in Table 7, and the corresponding J
value line graph is shown in Fig. 4.

TABLE 5. ESSENTIAL DIMENSION ESTIMATION RESULTS OBTAINED BY
THREE DIMENSIONAL ESTIMATION METHODS

Estimation
method

Correlation
dimension

Maximum
likelihood

Number of
clusters

Dimension 2 6 7

TABLE 6. 18 DIFFERENT COMBINATIONS OF DIMENSION REDUCTION
METHODS

CDE MLE PNE

PCA CDE-PCA MLE-PCA PNE-PCA

LDA CDE-LDA MLE-LDA PNE-LDA

MDS CDE-MDS MLE-MDS PNE-MDS

ISOMAP CDE-ISOMAP MLE-ISOMAP PNE-ISOMAP

SNE CDE-SNE MLE-SNE PNE-SNE

NCA CDE-NCA MLE-NCA PNE-NCA
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TABLE 7. TEST RESULTS BASED ON THE COMBINATION OF CDE AND SIX
DIMENSION REDUCTION METHODS

Dimension
estimator

Dimension
reduction
technology

Combination
method J value

CDE

PCA CDE-PCA 2.49813

LDA CDE-LDA 0.43819

MDS CDE-MDS 2.49813

ISOMAP CDE-ISOMAP 2.67416

SNE CDE-SNE 2.45279

NCA CDE-NCA 0.84417

Fig. 4 Six dimension reduction results based on CDE estimation.

The MLE-based essential dimension estimation results
and six different dimension reduction techniques are
combined and tested, and the value of the distance criterion
function J is listed in Table 8, and the corresponding J
value line graph is shown in Fig. 5. The PNE-based intrinsic
dimension estimation results and six different dimension
reduction techniques are combined and tested, and the value
of the distance criterion function J is listed in Table 9, and
the corresponding J value line graph is shown in Fig. 6.

TABLE 8. TEST RESULTS BASED ONMLE COMBINED WITH SIX
DIMENSIONAL REDUCTION METHODS

Dimension
estimator

Dimension
reduction
technology

Combination
method J value

MLE

PCA MLE-PCA 2.90922

LDA MLE-LDA 2.82590

MDS MLE-MDS 2.90922

ISOMAP MLE-ISOMAP 2.94842

SNE MLE-SNE 2.83531

NCA MLE-NCA 2.80593

Fig. 5 Six dimension reduction results based on MLE estimation.

TABLE 9. TEST RESULTS BASED ON PNE COMBINED WITH SIX DIMENSIONAL
REDUCTION METHODS

Dimension
estimator

Dimension
reduction
technology

Combination
method J value

PNE

PCA PNE-PCA 2.93246

LDA PNE-LDA 2.93273

MDS PNE-MDS 2.93246

ISOMAP PNE-ISOMAP 2.94951

SNE PNE-SNE 2.84864

NCA PNE-NCA 2.89570

Fig. 6 Six dimension reduction results based on PNE estimation.

Seen from the J value shown in Table 7 and Fig. 4, it can
be concluded that the dimension reduction effect of
CDE-ISOMAP is the best, and the dimension reduction
effect of CDE-PCA, CDE-MDS and CDE-SNE is not much
different. But the dimension reduction effect of CDE-LDA
and CDE-NCA is far inferior to other four combinations.
Seen from the J value data in Table 8 and Fig. 5, it can be
concluded that the effect achieved between the six
combination methods based on MLE dimension estimation
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is not as great as the difference between six combination
methods based on CDE, and there is the difference between
advantages and disadvantages in the dimension reduction
effect, but the difference in J value is small. Among them,
the J value of MLE-ISOMAP is the largest, and the
dimension reduction effect is the best. From the J value
data in Table 9 and Fig. 6, it can be concluded that the J
value of the six combinations estimated based on the
essential dimension of PNE are basically consistent with the
results based on MLE in terms of overall differences, and the
J value of LDA has a small margin improvement, but the
best combination is PNE-ISOMAP.
In summary, by comparing the optimal combination of

each dimension reduction techniques, it can be found that
the optimal dimension reduction method on this
experimental data set is ISOMAP. But based on the
ISOMAP dimension reduction processing under three
estimators, the J value is shown in Table 10 and Fig. 7. It is
found that the J value difference between MLE-ISOMAP
and PNE-ISOMAP is very small, but there is a difference in
the data space by one dimension. In large-scale data
calculations, each additional dimension of data will cause
considerable computational burden. Therefore, due to the
consideration of time complexity and other calculation costs,
it is considered that MLE-ISOMAP is more suitable for the
dimension reduction processing of this data set than
PNE-ISOMAP.

D. MLE-ISOMAP Dimension Test
In order to further determine whether ISOMAP is suitable

for dimension reduction of the data set according to the
results of the essential dimension estimation of MLE,
ISOMAP is used to reduce the dimension of the data set to a
different target dimension, that is from the lowest dimension
of 1 to the highest dimension of the data set, 29 dimensions.
The standard SVM optimized by the classic wolf pack
algorithm is used to classify it, and the accuracy
corresponding to each dimension are compared to verify the
appropriate dimension. The ISOMAP is used to reduce the
impact of different dimensions on the accuracy of SVM
classification is shown in Fig. 8.
It can be seen from Fig. 8 that by comparing the accuracy

rates corresponding to different dimensions, the overall
higher accuracy rates are concentrated between 84% and
85%, and the feature dimension that first reaches this
accuracy range is 6, It is the essential dimension estimation
result given by MLE. In the process of data processing, each
additional one-dimensional feature data will greatly increase
the computational cost. For this reason, it is considered
necessary to use the least feature dimension to ensure better
accuracy. Therefore, it is considered that the dimension
reduction method of MLE-ISOMAP is very suitable when
performing dimension reduction processing on the data set
in this paper.

TABLE 10. ISOMAP DIMENSION REDUCTION TEST RESULTS UNDER THREE
ESTIMATORS

Dimension
estimator

Dimension
reduction
technology

Combination
method J value

CDE

ISOMAP

CDE-ISOMAP 2.67416

MLE MLE-ISOMAP 2.94842

PNE PNE-ISOMAP 2.94951

Fig. 7 Dimension reduction results of three combined methods based on
ISOMAP.

Fig. 8 Effects of ISOMAP with different reduced dimensions on SVM
classification accuracy.

VI. CONCLUSIONS
This article is dedicated to finding a more suitable method

for colony image feature extraction and sample data
processing, including the extraction of color feature
information and texture feature information of colony
images, and dimension reduction processing of
high-dimensional feature data. In terms of color feature
information extraction, the first-order moment, the
second-order moment and the third-order moment are
respectively used to calculate the H , S , and I components
in the HSI model to obtain the colony image sample set. The
texture feature information of each colony image is obtained
through the GLCM. The color features and texture features
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together form the feature variables with up to 29 dimensions
to form the high-dimensional information data to be
processed. Before the dimension reduction processing, the
high-dimensional data is estimated by three essential
dimension estimators for the inherent low-dimensional
structure. Then different dimension estimation results are
compared with PCA, LDA, MDS, ISOMAP, SNE and NCA.
These six different dimension reduction techniques are
combined to find the optimal data dimension reduction
strategy based on the distance criterion function. Finally, the
support vector machine (SVM) optimized by the classic
wolf pack algorithm is used to carry out the classification
simulation experiments. The results show that the
classification accuracy is concentrated between 84% and
85%; the comprehensive data dimension is as small as
possible. If the accuracy rate is as large as possible, it is
determined that the MLE-ISOMAP method performs better
dimension reduction processing on the high-dimensional
feature data of the colony images.
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