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Balanced Random Hyperboxes
for Class Imbalanced Problems

Thanh Tung Khuat and My Hanh Le

Abstract—A Random Hyperboxes (RH) classifier is a simple
but powerful randomization-based ensemble model, including
hyperbox-based classifiers used as base learners. Individual
learners in this ensemble model are trained on random sub-
spaces of both instance and feature spaces. This facet results
in a flexible mechanism to form a high-performing classifier
competitive with other ensemble models in the literature. Like
other machine learning models, however, the RH -classifier
also faces inefficiency when dealing with class-imbalanced
datasets. Meanwhile, data containing highly imbalanced class
distributions are prevalent in practical applications. Hence,
this paper proposes a new variant of the original RH model,
namely Balance Random Hyperboxes (BRH), to bypass this
drawback effectively. The proposed method uses an under-
sampling strategy to build individual learners instead of the
random sampling method employed in the original RH model.
The experiment conducted on software fault datasets, which
show a highly class-imbalanced property, indicated the pro-
posed method’s efficiency compared to the original RH model
and other ensemble models.

Index Terms—Balanced random hyperboxes, ensemble learn-
ing, randomization-based learning, class-imbalanced data, soft-
ware fault prediction.

I. INTRODUCTION

ANDOM hyperboxes (RH) classifier is a novel clas-
sification algorithm recently introduced in [1]. Exper-
imental results [1] proved that the RH classifier has been
competitive with other ensemble models such as Random
Forest [2], Light Gradient Boosted Machine (LightGBM)
[3], and Extreme Gradient Boosting (XGBoost) [4]. A RH
model contains many individual hyperbox-based classifiers,
in which each base learner is trained on a subset of
both samples and features. Hyperbox-based classifiers are
formed from basic components, i.e., hyperbox fuzzy sets and
membership functions, based on a certain architecture, for
example, a network. Fig. 1 shows an example of a resulting
hyperbox-based classifier trained on a two-class and two-
dimensional dataset. A comprehensive survey on hyperbox-
based classifiers can be found in [5]. General fuzzy min-
max neural network (GFMMNN) [6] is one of the typical
hyperbox-based classifiers resulting in high classification
performance for pattern recognition problems [7]. Therefore,
the original RH model [1] used GFMMNNS as base learners.
Similarly to Random Forest [2], the RH model also
belongs to the bagging ensemble group, where individual
classifiers are independently built from different subsets of
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An example of a hypebox-based classifier with its decision

instances and features. The ensemble of classifiers usually
increases the classification performance of single models [8],
[9] by combining decisions of base learners using several
combination strategies such as majority voting. However, if
neither of the base learners alone can deal with the class
imbalanced problem, then ensemble learning algorithms will
also face negative impacts of class imbalanced property on
the classification performance [8]. In classification, a class-
imbalanced issue happens when one class, frequently the one
(minority class) that describes the concept of interest, has a
number of instances much smaller than the ones from other
classes. If the classes in such datasets are able to be well
separated in the feature space, good classification accuracy
may be easily achieved regardless of the imbalance between
classes. However, the presence of class overlap and small
disjuncts [10] in most of the practical problems results in the
difficulty for learning algorithms to discriminate classes from
each other in imbalanced datasets. In this case, the learning
models are usually biased towards the class with a high
number of samples to optimize the overall accuracy without
taking into consideration of the relative distribution for each
class. In addition, the class imbalance problem is almost
popular in real-world problems, ranging from software de-
fects prediction [11], [12], [13], fraud detection [14], medical
diagnosis [15], [16], anomaly detection [17], [18], chemical
engineering applications [19], to many other research fields
[20]. As a result, it causes severe troubles when applying
machine learning algorithms to practical applications.

Like other ensemble models, however, the RH model also
shows the inefficiency on the imbalanced datasets because
its base learners, e.g., GFMMNNSs, are not designed with a
unique mechanism to deal effectively with class-imbalanced
problems. Therefore, this paper aims to modify the original
learning algorithm of the RH classifier so that it can tackle
classification problems on imbalanced datasets effectively.
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As a result, the random undersampling technique will be
deployed to build up the balanced training set for each
base learner rather than random subsampling in the original
RH classifier. The proposed method’s effectiveness will be
assessed on the software fault prediction problems, which
frequently show a two-class highly imbalanced characteristic.

With the rapid development of software systems in in-
dustrial sectors, there have been increased risks of potential
defects in software modules. However, testing processes are
expensive and time-consuming, and so it is challenging to
allocate rational resources and budgets for rigorous testing
and validation of all software elements in a software develop-
ment project. Hence, automated identification of vulnerable
software modules is highly expected in projects to support
project managers to allocate limited resources effectively for
software testing activities. For instance, potentially faulty
elements are given more effort to inspect and validate, which
aims to achieve a better quality of products. Like other real-
world problems, training sets of software fault classification
problems are highly imbalanced because most of the defects
in software systems only exist in a small number of modules.
As a result, numbers of faulty instances in software quality
datasets are much smaller than those of non-faulty patterns
[21]. Therefore, the software fault classification problem is
an appropriate subject to assess the efficiency of the proposed
approach.

The main contributions of this study can be listed as
follows:

« We propose a balanced random hyperboxes classifier as
a variant of the original random hyperboxes model for
class-imbalanced problems.

o We assess the performance of the proposed method
on the software fault prediction problem, which in-
cludes highly class imbalanced instances. The proposed
method is also compared to other ensemble models such
as the original RH [1], random forest (RF) [2], balanced
random forest (BRF) [22], and heterogeneous ensembles
with and without sampling techniques [23].

The rest of this paper is organized as follows. Section II
provides some background knowledge regarding GFMMNN
architecture, its training algorithms, and the original RH
model. Next, section III shows the details of the proposed
method. The experimental results and discussions of the
proposed method are presented in section I'V. Finally, section
V concludes key findings and informs potential research
directions for future studies.

II. BACKGROUND

Because base learners in the RH model are GFMMNNS,
this section first briefly describes the architecture of the
GFMMNN and its learning algorithms. Next, the detail of
the RH model is presented.

A. General Fuzzy Min-Max Neural Network

GFMMNN is a unified version of fuzzy min-max neural
networks for classification [24] and clustering [25]. It con-
tains three layers, i.e., input, hyperbox, and output layers.
Fig. 2 shows a general structure of GFMMNN. This kind
of neural network accepts the input patterns in the form of
intervals with lower and upper bounds. Hence, the input layer

comprises 2 - n nodes, in which the first n nodes contain
n-dimensional lower bounds, and the rest of n nodes are n-
dimensional upper bounds of each input pattern. Each input
node is fully connected to all m nodes in the hidden layer
(hyperbox layer). The connection weights from lower bound
input nodes to hyperbox nodes form a matrix V including
all minimum points of hyperboxes. Similarly, the connection
weights from upper bound input nodes to hyperboxes nodes
generate a matrix W containing all maximum points for
corresponding hyperboxes. The values of V and W will
be adjusted during the training process. In addition to min-
max points V and W, each hyperbox B; has an activation
function, 0 < b;(X, B;) < 1, called a membership function
as shown in Eq. (1) to compute the degree of fit from an
input pattern X = [X!, X*], where X! = {2},... 2!} and
X" = {a%,..., 2%} are lower and upper bounds of X, to
that hyperbox.

Class nodes

Input nodes

Hyperbox nodes

Fig. 2. A general structure of GFMMNN

bi(X, By) = min(min([1 — f(z} — wy;,7,)]

[1— f(vij — 2%, 7))

where f(u,7) is a ramp function presented in Eq. 2, v =
(71,72, ---,7yn) emcompasses the sensitivity parameters to
represent the speed of decreasing of membership values.

D

fluy)=qu-v, if0<p-vy<1 )
0, if p-vy<O0

Each hyperbox B; is linked to each class node c; in the
output layer by a weight u;; saved in a matrix U such that:

1,if class(B;) = ¢;
Ui = .
’ 0, otherwise

3)

The output layer contains p + 1 nodes for p classes and an
unlabelled node pg, in which node pg is used to connect all
unlabelled hyperboxes.

In the classification phase, each input pattern X is assigned
to the class of the hyperbox B; showing the maximum
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membership value of b;. If there are many hyperboxes with
different classes showing the same maximum membership
value, hyperbox with the smallest Manhattan distance from
the input pattern to its central point is selected as a final
winner hyperbox to determine the predicted class.

B. Learning Algorithms for GFMMNN

To build GFMMNN models, we need to use learning
algorithms to generate and adjust the sizes of hyperboxes
to cover all training input patterns. In this paper, we focus
on supervised learning problems, so the learning algorithms
in this part are presented for training sets with given classes
for all samples. This study assesses the effectiveness of the
proposed method on two learning algorithms for GFMMNNSs
used as base learners in the RH classifier; therefore, this
section presents both original and improved versions of
online learning algorithms for the GFMMNN.

Online learning algorithms for the GFMMNN use a single
scan through training input patterns to build and adjust
hyperboxes covering those input patterns. For each input
pattern, X = [X!, X¥], with a class label cx, online learning
algorithms’ main steps are presented as follows.

1) Original Online Learning Algorithm:

The original online learning algorithm for the GFMMNN
(Onln-GFMM) introduced in [6] includes three main steps,
i.e., creation of new hyperboxes or expansion of existing
hyperboxes, overlap test, and hyperbox contraction.

As a new input pattern X comes to the GFMMNN, the
Onln-GFMM first selects the existing hyperboxes with the
same class as cx to compute membership values between X
and these hyperboxes. Next, these hyperboxes are considered
as expandable candidates to cover X beginning from the
hyperbox with the maximum membership value. If the max-
imum membership degree gets a value of one, the learning
process continues to handle the next training sample. In
contrast, a three-step procedure is performed as follows:

a) Hyperbox expansion: The selected expandable hy-
perbox B; will be checked for the expansion condition, i.e.,
a predefined maximum hyperbox size 6 using Eq. (4).

max (w;j, rj) — min(vijmé-) <0, Vjiel[l,n] &)

If the constraint in Eq. (4) is satisfied, the hyperbox B; is
extended to a new size to cover X as follows:

wij 4 max(wgy, T4); vij min(vij,:cé-), Vi e [l,n] (5)

Otherwise, the hyperbox with the next highest membership
value is considered for expansion. If there is at least one
hyperbox B; expanded, it will be tested for overlap with the
hyperboxes representing other classes than cx. If all of the
selected hyperboxes cannot be extended to contain X, a new
hyperbox B; is generated with the same coordinates as X,
and the algorithm continues with the next training sample.
b) Hyperbox overlap test: Overlap test operation is
conducted between the newly expanded hyperbox B; and
other hyperboxes Bj representing different classes. There
are four overlap test cases for each dimension j as below
(initially 6°'¢ = 1):
i SUkj < wij < Wiy;

Vyj
Case I:
5716"1}

= min(wij — Vkj, 501(1)

Vi S5 < Wiy < Wijs

67“511)

Case 2: . e gold
= min(wg; — v;;,0)

Vij < Vkj < Wy < Wi

6”74611)

Case 3: . ; old
= min(min(wg; — vij, Wij — Vk;), 0°%)
Uy < Vij < Wij < Wy

Case 4:

oY «— min(min(wkj — Vij, Wij — ’Ukj), 5Old)

If one of the above four cases happens for every dimension
7, there is an overlapping region between B; and Bj,. We set
up A = j for which §"* gets the minimum value. If there
is at least one dimension such that no overlap occurs, we
assign A = —1, and the learning algorithm continues with
the next training pattern.

¢) Hyperbox Contraction: If A # —1, the A" dimen-

sion is adjusted to narrow down the size of hyperbox B;.
Four contraction procedures corresponding to four overlap
test cases are presented as follows:

Via S UpA < Wina S WEA
Case I: new __ . new __ ( old + old)/2
Win = VA = UgA T WiA

VA S VA < WEA S WA

Case 2:

‘o new new old old
Uin" = wp” = (WEA + vin)/2
Via < VA < WEA < WiA :

ew old

Case 3: if wia — via < wia — Vpa then VJRY = wPA
otherwise, w'$" = v{id
VkA < VA S Win < WEA

Case 4: if wian — vka < WA — via then vERY = wflAd

otherwise, wps" = v2id

2) Improved Online Learning Algorithm:

One of the drawbacks of the Onln-GFMM algorithm is
that the contraction process usually results in high mis-
classification when a high value of 6 is used. Therefore,
an improved online learning algorithm for the GFMMNN
(IOL-GFMM) was introduced in a recent study [26]. The
IOL-GFMM learning algorithm eliminates the contraction
step from the learning process, and it adds a new constraint
for the expanded hyperbox, i.e., no creation of overlapping
regions with existing hyperboxes of other classes. As a result,
the learning process of this algorithm comprises two main
procedures: expansion of hyperboxes and hyperbox overlap
test.

a) Hyperbox expansion: Similar to the Onln-GFMM
algorithm, when a new training input pattern X goes to
the network, the IOL-GFMM learning algorithm will select
all existing hyperboxes showing the same class as cx and
then computing membership values from X to all selected
hyperboxes. If the maximum membership value is one,
the input pattern is fully contained in a hyperbox, and
thus the algorithm will continue considering the next input
pattern. Otherwise, the selected hyperboxes are considered
as expandable candidates to cover X beginning from the
hyperbox with the highest membership degree and according
to the decreasing order of membership values until there
is one hyperbox satisfied. Assuming that B; is an expand-
able hyperbox candidate, B; will be first checked for the
maximum hyperbox size condition shown in Eq. (4). If this
condition is met, the coordinates of B; will be temporarily
expanded to new sizes using Eq. (5); otherwise, another
hyperbox candidate with the next highest membership value
is considered. If B; is expanded, it will be checked for
overlap as follows.

Volume 48, Issue 2: June 2021



TAENG International Journal of Computer Science, 48:2, IJCS 48 2 20

b) Hyperbox overlap test: This procedure is carried out
between the newly expanded hyperbox B; and all existing
hyperboxes showing other classes than cx. The overlap test
for each pair of hyperboxes is checked utilizing the above
four test cases as in the Onln-GFMM algorithm. If there is at
least one hyperbox which overlaps with B;, the cooperates
of B; are reverted to its values before expanding, and another
hyperbox with the next highest maximum membership value
is chosen, and the above learning process is iterated. In
contrast, the new coordinates of B; remain unchanged,
and the learning algorithm continues with the next training
input patterns. If no expandable hyperbox candidates can be
expanded to cover the input pattern X, a new hyperbox is
generated with the same coordinates as X and the learning
algorithm continues to consider the next training sample.

C. Random Hyperboxes Model

The RH classifier proposed in [1] is an ensemble model
of GFMMNNSs used as base learners. Each GFMMNN is
trained on a subset of both samples and features. The learning
algorithm of this model uses a parameter my to specify the
maximum number of features used in each base learner and a
parameter mg to regulate the sampling rate for samples. The
RH model contains IV base learners, and the predicted class
is the majority voting of predicted classes returning from all
base learners. Given a training set, the building process of
base learners is performed as follows.

For each base learner, the algorithm will generate a subset
of training samples with a stratified sampling rate of m.
Then, from this generated subset of training data, the algo-
rithm generates a random integer number d between 1 and
my. Next, d features are uniformly randomly selected from n
input features to form a new training set with a subset of both
input samples and features. Finally, this subset is employed
to train a GFMMNN base learner using the above online
learning algorithms. It can be noted that each base learner
is trained on only d features of input training samples, so
in the classification phase, this base learner only generates
predicted values using the same d features out of n features
of each unseen pattern X.

III. THE PROPOSED BALANCED RANDOM HYPERBOXES

It can be seen that the original RH model uses the stratified
random sampling to create a subset of training samples, so
the resulting subset of training samples is still imbalanced.
This fact reduces the classification performance of the RH
classifier on class-imbalanced datasets because GFMMNN
base learners do not work well on the imbalanced data. To
cope with this drawback, this paper proposes a modified
version of the original RH classifier, called Balanced Random
Hyperboxes (BRH). The main steps of the proposed method
are shown in Fig. 3.

We use a random undersampling technique to select sam-
ples from majority classes rather than using stratified random
sampling as in the original algorithm. The number of chosen
majority samples is equal to the number of samples from the
minority class. This operation creates a balanced training set
with equal numbers of samples for all classes. Base learners
are then trained on different balanced training sets, in which
the minority samples are the same, but the majority sample

Input data

Random undersampling[for majority samples

v

Balanced data with Balanced data with Balanced data with
full features full features full features

Random sampling Random sampling Random sampling
for feature space for feature space for feature space

Balanced data with a Balanced data with a Balanced data with a
subset of features subset of features subset of features

Training Training Training

GFMMNN GFMMNN GFMMNN

Majority voting

‘ Balanced Random Hyperboxes ‘

Fig. 3. Main steps of a balanced random hyperboxes model

sets are different from each other. Next, from each balanced
set with full features, the algorithm selects a set of d features
(1 < d < my) randomly as in the original RH model to train
the GFMMNN base learners. The training algorithms for
base learners are the online learning algorithms mentioned
above.

Similar to the original RH model, the final predicted class
of the BRH model is generated by majority voting from all
predicted classes of base learners.

IV. EXPERIMENT AND DISCUSSION

The classification performance of the proposed method is
assessed on the two-class software fault datasets, which are
highly imbalanced.

A. Datasets and Evaluation Measures

Experiments were conducted on ten highly imbalanced
binary datasets of software defect problems presented in
[23]. Table I describes statistics information of the selected
datasets, including the number of samples (#Sample), the
number of features (#Feature), the number of defective sam-
ples (#Defect), the number of non-defective samples (#Non-
Defect), the proportion of defective samples to all samples
for each dataset (%Defect).

To assess the classification performance of classifiers on
the class imbalanced datasets, the research community usu-
ally uses precision, recall, and Fl-score formed from true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) in a confusion matrix. If a defective
sample is correctly predicted, then it is called a true positive.
If a non-defective sample is exactly classified, it is called a
true negative. If a defective sample is classified as a non-
defective sample, this case is a fault negative. In case that a
non-defective sample is incorrectly classified as a defective
sample, a false positive occurs. Precision, Recall, and F1-
score are shown as below:

TP

Precision = —————
recision TPLFP (6)
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TABLE 1
INFORMATION OF EXPERIMENTAL DATASETS
ID | Dataset #Feature | #Sample | #Defect | #Non-Defect | %Defect
1 M1 21 7782 1672 6110 21.49
2 KC3 39 194 36 158 18.56
3 PC1 37 705 61 644 8.65
4 ant 1.7 20 745 166 579 22.28
5 ivy 2.0 20 352 40 312 11.36
6 camel 1.6 20 965 188 777 19.48
7 tomcat 20 858 77 781 8.97
8 xalan 2.4 20 723 110 613 15.21
9 poi 2.0 20 314 37 277 11.78
10 | synapse 1.2 20 256 86 170 33.59
TABLE II
AVERAGE F1-SCORE OF CLASSIFIERS OVER 30 ITERATIONS
ID | Dataset IOL-RH | IOL-BRH | OnIn-RH | Onin-BRH RF BRF NonSa-HE | DB-HE | SB-HE
1 IM1 0.15266 0.44665 0.16091 0.35371 0.21741 | 0.43751 0.1944 0.4203 0.4179
2 KC3 0.11585 0.41197 0.11945 0.41011 0.18579 | 0.40006 0.1667 0.4084 0.4037
3 PC1 0.04521 0.35687 0.03751 0.30977 0.19583 | 0.33949 0.2 0.3337 0.3263
4 ant 1.7 0.43023 0.58611 0.42095 0.5364 0.54003 | 0.58312 0.5278 0.6261 0.6037
5 ivy 2.0 0.23635 0.39474 0.23035 0.37009 0.3142 0.38711 0.2759 0.3937 0.3719
6 camel 1.6 0.08073 0.37672 0.08008 0.41829 0.23871 | 0.43283 0.2321 0.4413 0.4209
7 tomcat 0.03798 0.38772 0.03281 0.32597 0.19955 | 0.34933 0.2222 0.3899 0.3907
8 xalan 2.4 0.09076 0.45351 0.09153 0.42293 0.2703 0.45372 0.2535 0.4535 0.437
9 poi 2.0 0.11227 0.34526 0.0821 0.34387 0.239 0.35968 0 0.3354 0.335
10 | synapse 1.2 0.55093 0.65866 0.56891 0.65669 0.61431 | 0.66069 0.5333 0.6487 0.6451
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Recall = — 11 7
= TPYFN 7

I B 2 - Precision - Recall ®
- seore = Precision + Recall

It can be seen that recall does not show how many samples
are incorrectly classified as “defective” samples. Similarly,
precision does not provide how many defective samples are
misclassified. In contrast, F1-score combines both precision
and recall, so it overcomes the drawback of each measure.
Hence, Fl-score was used to assess the performance of
classifiers in this study.

B. Experimental Settings

Experiments were conducted to assess the effectiveness
of the BRH model using the Onln-GFMM learning algo-
rithm (Onln-BRH) and the IOL-GFMM algorithm (IOL-
BRH) compared to the original RH model using the Onln-
GFMM algorithm (OnIn-RH) and the IOL-GFMM algorithm
(IOL-RH) for building base learners. The performance of
the proposed method was also compared to the random
forest (RF) [2] and balanced random forest (BRF) [22], the
heterogeneous ensemble model without sampling techniques
(NonSa-HE), the heterogeneous ensemble model with base
learners trained on the different balanced training sets (DB-
HE), and the heterogeneous ensemble classifier with base
estimators trained on the same balanced training set (SB-
HE) [23].

To compare with the outcomes in [23], we used the
same experimental settings presented in that paper. For each
dataset, 50% of the original data were stratified-sampled
randomly to build a training set, and the rest were used as
a testing set. This operation was repeated 30 times, and the
average Fl-score over these 30 iterations is reported in this
paper.

For the RH model, we used the same settings presented
in [1]: the sampling rate m, = 0.5, the maximum number of
used features my = 24/n, the number of base learners N =
100, the maximum hyperbox size § = 0.1, and sensitivity
parameter v = 1. For the BRH model, we alse set m; =
2y/n, N = 100, § = 0.1, and v = 1. For RF and BRF,
we used the maximum tree depth of decision trees as 10
[27], N = 100, maximum number of used features for each
decision tree as 24/n. For RF, resampling rate was set to 0.5.

C. Experimental Results and Discussions

Table II presents the average Fl-score of different clas-
sifiers over 30 iterations. To facilitate the comparison step,
we rank the performance of classifiers for each dataset. The
classifier giving the best F1-score is ranked first, the classifier
resulting in the second-best Fl-score is ranked second, and
so on. After that, the average rank for each classifier over
ten datasets is computed and reported in Table II.

Fig. 4 shows the changes in Fl-score over 30 iterations
of the RH model and BRH model using Onln-GFMM
and IOL-GFMM algorithms on four representative datasets.
From these outcomes, it can be observed that the classi-
fication performance of the proposed method outperforms
the original RH model for both Onln-GFMM and IOL-
GFMM algorithms used to train base learners. These facts

confirm the efficiency of using undersampling techniques
to build balanced training sets from which the ensemble
model can deal effectively with class-imbalanced datasets.
For several datasets with high imbalance, such as PCI and
tomcat, the proposed method is much better than the original
RH classifier when the classification performance has been
enhanced about ten times.

In comparison to other ensemble models, the performance
of the BRH model using the IOL-GFMM learning algorithm,
in general, is also better than those using balanced random
forest and the heterogeneous ensemble model with different
balanced training sets generated by random undersampling.
It can also be seen that other ensemble models also achieved
much better performance when they were combined with
sampling techniques to build balanced training sets.

CD=38

9 8 7 6 5 4 3
1 1

- o
- -

Onin-RH 84| 21 |0L-BRH
IOL-RH 82 L 25 BRF
NonSa-HE 7-2 26 DB-HE
RF 6.1 3.6 sB-HE
4.3 Onin-BRH
Fig. 5.  Critical Difference diagram for the average performance of

classifiers using Nemenyi test.

To better understand the difference between classifiers,
statistical testing methods were used to calculate the statis-
tical difference. Applying the Friedman rank-sum test [28]
for average ranks of nine classifiers on ten datasets, we can
obtain the F-distribution value Fr = 49.1897. Because the
critical value of F'(9 —1,(9—1)-(10—1)) = F'(8,72) for
a significance level a = 0.05 is 2.0698 < 49.1897, the null
hypothesis is rejected at a high level of confident. This means
that there are statistically significant differences between the
F1 values of classifiers. Therefore, a post hoc procedure was
performed to find the differences among pairs of classifiers.
The post hoc test used in this study is Nemenyi test [29].
The Critical Difference (CD) diagram with Nemenyi test for
a = 0.05 is shown in Fig. 5.

It can be observed that there are statistically significant dif-
ferences in the classification performance between IOL-BRH
and IOL-RH, between Onln-BRH and Onln-RH. This result
indicates that the proposed method significantly enhances the
original RH classifier’s performance by generating different
balanced training sets for base learners. The performance of
the IOL-BRH model is also statistically better compared to
all other considered ensemble models without using sampling
techniques. However, there are no statistically significant
differences in the performance among ensemble models
using the sampling techniques, i.e., IOL-BRH, BRF, DB-HE,
SB-HE, and Onln-BRH.

Although the proposed BRH can achieve high and com-
petitive classification performance for imbalanced datasets
in comparison to other classifiers, the interpretability of
hyperbox-based individual models is lost. One of the ad-
vantages of using hyperbox representations is that we can
combine the hyperboxes generated by base learners to create
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a single interpretable model [30]. However, this technique is
only available for the base learners with the same number of
used features. In the original RH as well as BRH, the base
learners are built from a subset of features, so a new method
of aggregation needs to be developed to deal with this issue.
Another problem that also needs to put more effort is the
construction of mathematical properties and generalization
error bounds of the BRH model similar to the original RH
model as presented in [1]. With the rapid increase in the
volume of data, it is desirable to obtain the algorithms with
incremental learning ability. The GFMMNN using the orig-
inal online learning and IOL-GFMM algorithms may meet
this requirement. Nonetheless, when building an ensemble
model, we have to build a variety of base learners. As a
result, alternative methods need to be developed to ensure
both the incremental learning capability and the diversity of
base learners.

V. CONCLUSION AND FUTURE WORK

This paper proposed the balanced random hyperboxes
classifier to improve the original random hyperboxes for
class-imbalanced classification problems. The undersampling
technique was used to construct balanced training sets for
base learners. This modification significantly enhanced per-
formance of the original random hyperboxes model on the
imbalanced datasets. Experimental results on highly imbal-
anced software defect datasets confirmed the efficiency and
effectiveness of the proposed approach. The classification
performance of our proposed classifier is also competitive
with other ensemble models using sampling techniques.

Future studies focus on assessing the performance of
the proposed method on multi-class imbalanced datasets.
Many other sampling techniques will also be applied to
constructing balanced training sets for base learners. We
also aim to introduce a cost-sensitive learning method and
a weighted learning method to improve the original random
hyperboxes model besides the sampling methods proposed
in this paper.
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