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Abstract—Of late, pressure and need to manage emergencies
in production systems with multiple objective functions are
mounting. Information and Communication Technology (ICT)
is one system where optimal response is needed for high level
management amidst complex conflicting selection criteria. This
paper designs an approach for solving this class of complexity
in Multi-Objective Linear Programming problems (MOLP)
with fuzzy objective functions. We take advantage of the
Embedding theorem for fuzzy numbers to measure complex
functions with several quantities within a production channel.
Using C++ (Netbeans) with MATLAB, some design comparison
and analysis with Nearest Interval Approximation (NIA) based
defuzzification works are carried out. The gains of the design
presented here are demonstrated in some benchmark problems
solved for ease of application.

Index Terms—MOLP, fuzzy numbers, defuzzification, embed-
ding theorem.

I. INTRODUCTION

Mathematical programming problems with several objec-
tive functions are features of naturally occurring processes
of science, engineering and technology; Andreas and Wu-
Sheng [2], Bunn [11], Charnes and Cooper [3], Charnes and
Cooper [4]. In telecommunications engineering for instance,
traffic processes are known to exhibit several functions
within a transportation channel; Levoy et al. [29]. Again,
traffic control robots must deal with complex functions
for higher order optimal control; Drenick and Ko [40]. In
multiprocessing computing, multi-linear programming is a
pre-requisite for high level operational computing; Drenick
and Drenick [37]. Essentials of network calculus require
the specific treatment of several competing goals in pro-
gramming; Georgiev et al. [16] for complex problems such
as the ones exemplified above; Oberman and Ruan [31].
Such goals cannot arbitrarily be squeezed within the narrow
framework of a single objective function without maximizing
the risk of invalidation. Instances and examples in line
with the endorsed paradox of Ignazio [25] and the Arrow
impossibility theorem of Zeleny [34] are clear in Ergott [32],
Drenick [40], Eiselt et al. [17], Goicoechea et al. [5] and
Drenick and Drenick [37]. Beside the reasons above, it is
known in optimization parlance that conflicting goals onto a
multi-objective programming framework involve parameter
uncertainty capable of stunting critical choices that render
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results less desirable. As a result, new methodologies are
needed for reasons to do with optimal decision programming.
For more on the benefit of MOLP problems on several
production systems, see Oberman and Ruan [31], Simon [20],
Gizegorreswski [38]. A feasible challenge in programming a
complex production system is seeking a definite distribution
for randomized statements, quantities and variables that are
somewhat infinite in structure. The case of MOLP network
problem with open boundaries suffices; Warid et al. [42],
Abdulqadeer et al. [7], Li et al. [23], Xu and Jin [10].

Here, decision makers face the task of approximating
functions when seeking preferred solution. Zhang and Li [39]
observed that most MOLP problems with open boundaries
have infinite structures. The case of MOLP problem of
an open road linking two points in space suffices. If the
surface is long enough, the process of execution is time
consuming principally due to dimension issues considered
for effective programming. With more care, such problems
are daunting if not impossible to complete. The difficulty
here is in finding suitable distribution without loss of reality.
Another challenge facing real life MOLP problems is their
nonlinearity; Das and Dennis [21] principally due to the
magnitude of embedded fuzzy quantities; Sarmad et al. [1].
Here, the case of the internet traffic programming suffices;
Boxma and Cohen [36] and Medhi [24]. Thus, it is in place
to construct new methods for MOLP problems; Rakowska et
al. [26], Katopis and Lin [15] and Eschenauer et al. [18] for
effective operations.

Our aim is to design one approach for somewhat more
harder class of MOLP problems with quantifiers like most,
many, few, not very many, almost all, frequently and so on.
These quantifiers are found in traffic channels of telecommu-
nication and computer systems where complex fuzzy quanti-
ties such as ” most passenger alight”, ” almost all passenger
alight”, ” few passenger alight”, must be considered for
better management given “optimum optimorun”. These day
to day quantifiers of ICT are infinite in magnitude as well
as nonlinear in dimension. A MOLP problem involving such
quantifiers must take account of conflicting criteria without
loss of reality for optimal solution.

The case of MOLP for betting games suffices in this
respect; Jiang et al. [19]. Thus, a resort to sufficing solution
along Zadeh’s extension principle and Simon’s bounded ra-
tionality principle is imperative and well posed; see Luhand-
jula and Rangoaga [33], Franck et al. [29], Georgiev et al.
[16]. Within this resort, we design a novel defuzzification
procedure for such quantities passing through a communi-
cation channel with infinite functions and derived results
are implemented on C + + with NetBeans and MATLAB.
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Furthermore, we provide examples demonstrating how such
quantifiers can be defuzzified under optimum optimorun for
effective or efficient programming of MOLP problems.

II. RELATED LITERATURE

Given a classical universal set X , a real valued function
µA : X → [0, 1] is called the membership function of A and
defines the fuzzy set A of X; Luhandjula and Rangoaga [33].
The ordered pairs (x, µA(x)) for all x ∈ X is a measurable
space. The above definition covers the case even where X
is of infinite cardinality; Zhu et al. [28]. The set of support
of A is the set of all elements x ∈ X for which the pair
(x, µA(x)) ∈ A for all µA(x) > 0. If A is fuzzy with finite
support {a1, a2, a3, ..., am}, then A is described as follows;
A = {µ1

a1
+ µ2

a2
+ µ3

a3
+ ... + µm

am
} where each µi = µA(ai)

for i = 1, ...,m; Nguyen and Nguyen [43].
In what follows, A ⊆ X is denoted by ă with mem-

bership function µ. It is worthy of note that µ has an
inverse on < or any of its subset by the completeness
axiom. Thus, µ has a support defined as the crisp set
Supp(µ) = {x ∈ < | µ(x) > 0}. Again, the core of µ
denoted by ker(µ) = {x ∈ < | µ(x) = 1}. If ker(µ) 6= ∅,
then such a µ-membership is normal in A ⊆ X; Saade [22].
Suppose α ∈ < exists such that µα = {x ∈ < | µ(x) ≥ α}.
Then µα is the α-cut of µ; Quevedo [27] and is convex on
X if it is at least quasi-concave.

Bana and Coroianu [6] have shown that every convex
differentiable fuzzy functions with support Supp(µ) is iso-
morphic to some convex programming problem under certain
conditions. The isomorphism in this case is induced naturally
by the Euclidean metric known for the open interval <.

Thus, given a fuzzy set consisting of convex and dif-
ferentiable functions f, g1, ..., gm : <n → <, the support
x̄ ∈ X naturally solves a convex programming problem of
the form min f(x) : gi(x) ≤ hi(x) i ∈ {1, 2, ...,m} for
some hi ∈ < provided that there exists ζi such that (1.)
∇f(x̄) +

∑m
i=1 ζi∇g(x̄) = 0. (2.) g(x̄) − hi ≤ 0. (3.)

ζi ≥ 0. (4.) ζi(hi − g(x̄)) = 0. Consequently, constraining a
given MOLP problem lies in its uniqueness given embedded
constraints.

Again, Landoli et al. [30] and Bana and Coroianu [6] have
proved that, given a fuzzy space F(<), a fuzzy set A ∈ F(<)
on [a, b] ⊆ < has a preserved ambiguity provided that

a ≥
∫ 1

0

(
α+

1

2

)
ALdα+

∫ 1

0

(
−α+

1

2

)
AUdα (1)

and

b ≤
∫ 1

0

(
−α+

1

2

)
ALdα+

∫ 1

0

(
α+

1

2

)
AUdα (2)

In this case, the interval [a, b] ⊆ < of A ∈ F(<) is unique for
a cut α of A. We make the following proposition for those
α cuts in the neighbourhood of complex fuzzy constraints
subject in this work.

Proposition 1: Suppose f, g1, ..., gm : <n → < are
convex and differentiable functions with a cut α. If F(<)
is bounded given the ambiguity of fuzzy set A ∈ F(<),
then there exists a closed interval I = [a, b] ⊆ < such that
arbitrary g′is resides in I .

Proof: We proof for two functions f, g ∈ F(<). By
Stone-Weistrass theorem, the measure p such that

p(f, g) = sup{d(f(x), g(x)) | x ∈ X} (3)

is finite and d(f(x), g(x)) = p(f, g) is continuous since both
f, g are differentiable. Applying the triangular inequality on
the right side of (3) yields

d(f(x), g(x)) ≤ d(f(x), g(y)) + ξ + d(f(y), g(x)) (4)

Hence,

d(f(x), g(x))− ξ ≤ d(f(x), g(y)) + d(f(y), g(x)) (5)

By symmetry,1

ξ − d(f(x), g(x)) ≤ d(f(x), g(y)) + d(f(y), g(x)) (6)

So that

| h(x)− h(y) |≤| d(f(x), g(x))− d(f(y), g(y)) | (7)
≤ d(f(x), g(y)) + d(f(y), g(x)) ≥ 0 (8)

satisfying proposition (3). Thus, there exists x̄ ∈ < which
solves a differentiable convex programming problem. To
show that arbitrary f ∈ F(<) has a limit point x ∈ <,
observe that f and g are continuous since they are differ-
entiable. Consequently, there exists ε > 0 and δ > 0 such
that

| h(x)− h(y) |≤| d(f(x), f(y)) + d(g(x), g(y)) |< ε (9)

whenever d(x, y)) < δ. Hence arbitrary function h ∈ F(<)
is continuous. By Bolzano-Weistrass boundedness theorem,
I ∈ < exists a.s. It remains to be shown that p(f, g) is a
metric on C(<). By Stone-Weistrass, the measure p(f, g) is
finite. Let f, g1, g2 ∈ F(<), we show that

p(f, g2) ≤ p(f, g1) + p(g1, g1) (10)

by (3) and the arguments of (4) through (8) triangular
inequality holds.

III. METHODS AND ASSUMPTIONS

We consider an optimisation problem consisting of several
fuzzy objective functions f, g1, ..., gm : <n → < under
crisp constraints satisfying (1) and (2) respectively. We
supposed that fi′s are differentiable functions in < satisfying
proposition 1. Without loss of generality, we restrict the fi′s
to be semi-deterministic with the objective that

P1 =
{

max(f̄1(x), f̄2(x), f̄3(x), ..., f̄m(x))
}
, x ∈ X (11)

Subject to

a1X1 + a2X2...+ anXn ≤ h1 (12)
b1X1 + b2X2...+ bnXn ≤ h2 (13)
c1X1 + c2X2...+ cnXn ≤ h3 (14)

... (15)

... (16)
X1 ≥ 0, X2 ≥ 0, ..., Xn ≥ 0 (17)

where f̄i(x), i = 1, 2, . . . . . . ,m are fuzzy functions and
ai′s, bi′s, ci′s, ..., hi′s are vector valued functions.

1ξ = d(f(y), g(y)).
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The problem presented in (11) through (17) depicts real-
life problems to do with optimal allocation management
where day to day activities are governed by continuity of
functions with ambiguities. Fuzzy objective functions (FoF )
for this class of problems provide systematic framework for
dealing with uncertain quantities like most, many, few, not
very many, almost all, commonly known for these problems.

We supposed that f̄i(x)), i = 1, 2, . . . . . . ,m are semi-
linear to guarantee existence of solution. There are two
approaches of interest for the MOLP problem in question.
The Approximation approach (NIA) and the Equivalence
approach (EA). As stated in section II, these approaches
exist in the literature only that to the best of our knowledge,
the EA is not applied on the specific fuzzy quantities of
interest in this work.

The NIA approach here is closely related to that of
Luhandjula and Rangoaga [33] directly. Here, it is coded
and presented for comparison purpose principally. The idea
is to approximate f̄i(x), i = 1, . . . .,m in (11) by the NIA
and then solve an optimization problem. Afterwards, the
same f̄i(x), i = 1, ...,m is solved using the EA over a
discrete interval; see Appendix A and Appendix B. These
Appendices represent pseudo codes designed primarily for
(11) and implemented using C + + with NetBeans IDE
7.0.1 and MATLAB R2013a. The hardware requirements
are on personal computer equipped with intel (R) CoreTM2
Duo CPU with a processor speed of 2.5GHz, 3GB of RAM,
32bit Operating System, 135GB of Hard Disk and runs under
windows Vista.

IV. NUMERICAL RESULTS

Appendix A and Appendix B present pseudo codes for ap-
proaching (11) under the NIA and the EA. From Appendix
A, we observed that the NIA approach for (11) has few
problems to do with the execution of complex ambiguities
(11) is subjected to; that is (12) to (17). The designed
pseudo codes for (P1)

′′′
of P1 via the NIA approach

finds it easier to produce gains sequel to coarseness and
computational inefficiency. We understand that the ease of
coarseness emanates from the treatment of the entire FoF
over the continuous interval for executing P1.

Again, we observed that overlapping during execution
is minimal and eventually, made the process less harder
to execute. This way, the coupled effect of FoF over the
continuous fuzzy interval creates less time for the NIA
approach to execute (P1)

′′′
for P1 leading to good computa-

tional efficiency stated above. Moreover, the entire execution
process is completed over the fuzzy space, suggesting that the
NIA pseudo codes designed here is effective in generating
(P1)

′′′
for P1 over the interval. Again, the NIA pseudo

codes treats the entire process in few steps by locating the
maximum FoF at random and carrying out the process much
more faster than the EA; see Table IV.

On the other hand, the EA (Appendix B) seeking Pareto
optimal solution of P1 as a discretized problem (PI)v of
P1 strikes a balance between computational tractability and
effectiveness. This development is traced to the discretized
intervals required by the EA approach. Clearly, it becomes
tough for the EA to execute (PI)v of P1 over equivalent
intervals as in proposition 1 without overlapping. This over-
lapping in execution makes the EA execute the task less

efficiently compared to the NIA approach. The EA must
identify the maximum FoF in each sub interval, finds the
supremum FoF before execution. The magnitude of the
pseudo codes in this case speaks volumes in this respect;
see Appendix B.

We concluded that a Pareto optimal solution of (PI)v is
tantamount to that of (PI)

′′′
where gi′s of proposition 1

are replaced by Kgi′s in the case of the EA. This way,
when h is small as in proposition 1, Kgi′s approximate gi′s
for this class of MOLP problems effectively. Moreover, the
greater the value of K, the less efficient is the EA and vice
versa. This claim holds good in view of the increasing size
of overlaps in finding the supremum FoF . Fortunately, the
EA transcends over all FoF in the execution process before
an integration process.

This aspect places more effectiveness points in favour of
the approach compared to the NIA approach that only scans
over an interval. Thus, The EA is effective with high compu-
tation tractability in terms of the size of a problem while the
NIA approach is efficient with slow computation in terms
of memory usage and execution time. The high effectiveness
of the EA; see Table V especially as the number of FoF
increases becomes weaker when the average FoF values is
small. Finally, we concluded that the two approaches studied
in this work are able to successfully convert the FoF to
deterministic ones with the NIA approach making gains in
efficiency and the EA in effectiveness.

Theorem 2: An execution point x∗ ∈ [a, b] is Pareto
optimally efficient for P1 if the overlap constant K−→1 from
above.

Proof: This is in view of the effect of K as in Appendix
B. Additionally, it is sequel to the relation Kgi′s ∼ gi′s when
h of proposition 1 is small. Now, suppose that x∗ ∈ [a, b]
is Pareto optimal for P1. Then there exists no other point
x ∈ [a, b] of proposition 1 such that

f̄1(x∗) ≤ f̄i(x); ∀ i ∈ [1, 2, 3, ...,m] (18)

Again, there is no x ∈ [a, b] such that

f̄i(x
∗) ≤ f̄i(x); ∀ i ∈ [1, 2, 3, ...,m] (19)

By (1) and (2), f̄i(.) is order preserving for each x ∈ [a, b]
including x∗. Thus

Πf̄i(x
∗) ≤ Πf̄i(x) = KΠf̄i(x); ∀i ∈ [1, 2, 3, ...,m] (20)

The LHS of (20) are the gi′s and the RHS are the Kgi′s
which holds only if K = 1 so that Kgi′s of the EA goes to
gi′s of the NIA approach. Given that the NIA approach is
efficient, it follows directly that the EA is efficient at K = 1
and completes the proof.

Theorem 3: The bridge between the EA and the NIA
approaches is the scaling constant K ∈ <.

Proof: By Theorem 2, each gi′s of the NIA has an
equivalent Kgi′s in the EA. Suppose by contradiction that
x∗ is Pareto optimal for (P1)v and not Pareto optimal for
(P1)iv . This implies that Theorem 2 does not hold at K = 1.
Again, there is x∗ ∈ [a, b] such that

Kgiα(x∗) ≤ Kgiα(x∗), ∀(i, α) ∈ [a, b] (21)

And no K ∈ < such that

Kgiα̃(x∗) ≤ Kgiα̃(x∗), ∀(i, α̃) ∈ [a, b] (22)
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Thus, by (22), x∗ is not an optimal point for (P1)iv .
Consequently, there exists x ∈ [a, b] such that

giα(x∗) ≤ giα(x), ∀(i, α) ∈ [a, b] (23)

And

g1α′s(x
∗) ≤ g1α′s(x), ∀(1, α) ∈ [a, b] (24)

Let α ∈ [0, 1] be an arbitrary point such that for some ω.,
we have 0 ≤ ωj(α) ≤ δij . Then by (23) and (24), we have

m∑
j=0

ωj(α)[giαj(x
∗)− giαj(x)] ≤ 0, ∀ j ≤ J (25)

Since α is arbitrarily chosen, then (25) implies directly that
there is such x ∈ [a, b] such that (22) holds good for some
K ∈ <. This contracts our claim in (21) and so if x∗ is
Pareto optimal for (P1)v , it follows that it is Pareto optimal
for (P1)iv given K ∈ <. Hence K is the bridge in view of
the continuity assumption2 on g′s as in Lemma 1.

V. MAIN RESULTS

Theorem 4: Let F be a choice correspondence defined on
some Ωn satisfying (PI)v and (PI)

′′′
for PI . Then for any

x, ym ∈ <+ such that ym → y 6= x, there exists M 6= K = 1
such that

{y} = F (ch{x, y})⇒ F (ch({x, ym}))] (26)

And

{x} = F (ch{x, y})⇒ F (ch({x, ym}))] (27)

Proof: Take ε > 0 such that x is an exterior point
of Nε(x). By the NIA, there exists a δ > 0 such that
for some K ∈ <+, we have F (K) ⊆ Nε(y) ∀ K ∈
Nδ(ch{x, y}). Since limm→∞ ym = y, it implies directly
that limm→∞(ch{x, ym}) = ch({x, y}). Consequently,
there exists M > 0 such that ch{x, ym} ∈ Nδch({x, y})
for all m > M. Hence, we are guaranteed that whenever
m > M, we have F (ch{x, ym}) ∈ Nε(y). Finally, since x
is an exterior point of Nε(y) then (26) holds good. Similar
arguments holds good for (27) trivially in respect of the EA.

Theorem 5: Let F be a choice correspondence defined on
some Ωn satisfying (PI)v and (PI)

′′′
for PI . Then, there

does not exist such F on Ωn that satisfies both (P1)v and
(P1)

′′′
for computational efficiency and effectiveness.

Proof: Suppose by contradiction that such F correspon-
dence for computational efficiency and effectiveness on Ωn

for the NIA and the EA exists. Let x, y ∈ <+ such that
for some i, j ∈ {1, ..., n},we have xi > yi and xj < yj in
either efficiency or effectiveness. By the EA, there exists a
λ∗ > λ∗ > 1 such that F (ch{x, λy}) = x (theorem 4) for
all λ ∈ (1, λ∗) and F (ch{x, λy}) = λy (part 2 of theorem
4) for all λ ∈ (λ∗,∞). Thus, λ 7→ F (ch{x, λy}) is not
continuous on (λ, λ∗) for either the computational efficiency
or effectiveness respective of the NIA and and the EA. This
discontinuity suffices for the nonexistence of a unique NIA
and the EA schemes for both computational efficiency and
effectiveness.

2ET: Execution Time, AA: Approximation Approach.

Theorem 6: There is a Choquet bargaining solution be-
tween the (P1)

′′′
of the NIA and the (P1)v of the EA

relative to computational efficiency and effectiveness.
Proof: We show that there exists a monotonic capacity

υ on {1, 2, 3, ..., n} such that any choice F of computational
efficiency over effectiveness (or vice versa) on a set S ∈ Ωn

is

F (S) = arg max
x∈S

∫
xdυ ∀ S ∈ Ωn (28)

Assume by contradiction that F satisfies both the NIA
and the EA on computational efficiency and effectiveness
without a Choquet bargain. Then by theorem 5, there exists
a continuous and strictly monotonic map W : <n → < such
that

F (S) = arg max
x∈S

W (S) ∀ S ∈ Ωn (29)

(29) implies that given W and for any x, y ∈ <n, we
have W (x + y) = W (x) + W (y); hence comonotonic.
Since W is continuous and monotonic, there exists some
ξx, ξy > 1 such that W (x) = W (ξxIn) and also that
W (y) = (ξyIn) implying that {x, ξxIn} = F (ch{x, ξxIn})
and {y, ξyIn} = F (ch{y, ξyIn}) (theorems 4 and 5).
But since W is comonotonic with x and ξxIn, we have
F ({x + y, ξxIn + y}) = {x + y, ξxIn + y} by the NIA
and the EA implying that W (x + y) = W (ξxIn + y).
The same analysis holds for y. Since W is strictly additive,
by Schmeidler representation theorem, W has a monotonic
capacity υ such that υ(A) = W (χA) ∀ A ⊆ {1, 2, ..., n}
and the theorem holds goods.

VI. DISCUSSION AND CONCLUSION

This work implements the MOLP Problems with Fuzzy
Objective Functions using the NIA and the EA. The aim
is to design an approach for somewhat more harder class
of MOLP problems with quantifiers like most, many, few,
not very many, almost all, frequently and so on. We proved
analytic results vital for smoothing the two approaches
studied in this work. Numerical results are demonstrated and
pseudo codes are designed with the proposed pseudo-codes
statistically evaluated using IBM SPSS statistics 20.

It is clearly shown in Appendix C that a trade-off relation-
ship exists between ET and memory usage in the EA and the
NIA. The Pearson correlation coefficient for this relation-
ship is 0.896 showing a strong relationship between ET and
memory usage statistically significant at p = 0.016(p < 0.05
for a two tailed test).

On the other hand, Appendix D shows that there is a
weak trade-off relationship between ET and magnitude of
FoF in the EA and the NIA as established by the Pearson
correlation coefficient (0.449) which shows that they are
statistically less significant at p = 0.372(p > 0.05 for a
two tailed test).

Finally, Appendix E shows that there is a moderate
trade-off relationship between memory usage and magnitude
of FoF in the EA and the NIA as established by the
Pearson correlation coefficient (0.651) at significant level
p = 0.651(p > 0.05for a two tailed test).

Generally, efficiency and effectiveness are key criteria for
evaluating performance of a MOLP problem with FoF ;
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Mangaraj [9] and Mouzas [41]. The effectiveness of approach
given increasing magnitude of fuzzy objective values is of
special interest in this study. On the other hand, there is
the subject of efficiency of an algorithm principally based
on execution time and/or memory usage. Widely, algorithms
with fast execution time and sizeable memory usage are more
efficient than their converse cases; Folorunso et al. [35].
Thus, pseudo-codes designed for optimization purpose must
achieve either the effectiveness superiority or the efficiency
one. On some specific notes, there are interests in sacrificing
more execution time and memory space algorithms and vice
versa for high level effectiveness; Lofti et al. [14], Nicoara
[13].

In this work, we follow the effectiveness in design
paradigm in defining the optimal solution from the two
pseudo-codes implemented on the NIA and the embedding
theorem leading to the Pareto approximation (EA). Table V
and Table V I have shown that the execution time (ET ) and
memory usage for both algorithms are good in the general
sense. Though, the NIA values are better compared with
those of the EA sequel to the later using more information
involving defuzzification of the complex fuzzy quantities;
(see Tables I , II and III) more than the NIA approach.
More explicitly, the EA has to create an integral space for
the union of all discrete spaces over the process leading to
loss of memory usage and time for higher effectiveness and
reliability so to speak; see Table V and Table V I . By, so
doing, it ensures the consideration of all ambiguities attached
to given FoF in the solution process of the MOLP problem
strongly more than the NIA.

One concludes that the EA on open MOLP problems like
the case studied here; (that is P1) with complex FoF is more
effective; Golany [8] for smart systems where effectiveness
is special in the application of total ambiguities for optimal
control.

On the basis of quality of solution, it can also be inferred
from Tables IV , V , V I that the superiority of the EA
over the NIA approach is out of question and superb. This
is sequel to the distinctive treatment of total ambiguities
because of the discretization employed in this work. Our
result outperforms the approximations via NIA of Xu and
Jin [10] in effectiveness and reliability making the design
presented in this work fit for smart systems of transportation
and communication working under complex interactions.

In conclusion, from the statistical perspective, Appendices
C, D and E have shown that there is less relationship
between effectiveness (magnitude of the FoF ) and efficiency
(ET and memory usage) in the two approaches implying that
the value of K might not be unity in the real sense.
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VII. APPENDICES

A. The NIA Design for PI

INPUT: e,f,alpha_upper,alpha_lower,lamda1,
lamda2,g11,g12,g21,g22,n
OUTPUT: mew1,mew2, x1, x2
PROCESS

funct evaluate_integrad(e, f, alpha_upper,
alpha_lower)
begin
return ( ((f - e) * pow(alpha_upper, 2)
/2 + e * alpha_upper) - ((f - e) *
pow(alpha_lower, 2) / 2 + e * alpha_
lower));
end
funct c(n,e, f)
begin
return evaluate_integrad(e, f, 1, 0);
end

funct mew_1( c,i_size_of_array, lamda1,
lamda2,g11, g12,mew2, result)
begin
if (g11 == 0) return false;
result = -1*(lamda1 * c[1] + lamda1

*c[2] + lamda2 * c[5] + lamda2 * c[6]
+ mew2 * g12) / g11;
return true;
end

funct mew_2(c,i_size_of_array, lamda1,
lamda2,g11,g12, g21,g22,result)
begin
if ((g11 * g22 - g12 * g21) == 0)
return false;
result = -1*((lamda1 * c[3] * g11
+ lamda1* c[4] * g11 +
lamda2 * c[7] * g11 + lamda2

*c[8] * g11)- (lamda1 * c[1]

* g21 + lamda1 * c[2] * g21
+ lamda2 * c[5]

* g21 + lamda2 * c[6] * g21))
/ (g11 * g22 - g12 * g21);
return true;
end
main function
int main(int argc, char**argv)
begin
if (load_C_from_file("input.txt", C,
i_size_of_array,lamda1, lamda2,
g11, g12, g21, g22) == NULL) return 0;
c = new float[i_size_of_array + 1];
for (int i = 1; i <= i_size_of_array;
i++)

begin
split_text_into_two_numbers(C_
global[i], e, f);
c[i] = evaluate_integrad(e, f,
1, 0);
cout << "INTEGRAND(" << e << ","
<< f << ") or
c[" << i << "]: " << c[i] << "\n";
end
if (load_lambdas_from_file("lambdas.
txt", s_lamdas,
i_count_of_lambdas)
== NULL) return 0;
s_lamdas = C_global;
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if( load_coefficients_from_file
("coefficient.txt",
s_coefficient, i_size_of_array)
== NULL) return 0 ;
s_coefficient = C_global;
i_count_of_lambdas = 20 ;
for (int i = 1; i <= i_count_of_
lambdas; i++)
begin
lamda1 = rand();
lamda2= rand() ;
if (mew_2(c, i_size_of_array,
lamda1,lamda2, g11, g12, g21,
g22, mew2) ==
false) return 0;
if (mew_1(c, i_size_of_array,
lamda1,lamda2, g11, g12, mew2,
mew1) == false)
return 0;
if (mew1>0 && mew2>0)
begin
cout << "(" << lamda1 <<
"," << lamda2
<< ","
<< mew1 << "," << mew2
<<")\n" ;
end
end
split_text_into_six_numbers
(s_coefficient[1], a1,
b1, c1, d1, e1, f1);
x_1( a1, b1, c1, d1,
e1, f1, x1) ;
x_2( a1, b1, c1, d1,
e1, f1, x2) ;
cout << "The Satisficing Solution
="<<"(" << x1<<","<<x2<<")\n";
return 0;
end

B. The EA Design for P1

Step 1 Fix an acceptable upper bound
for the roughness of the grid h,
say epsilon >0.
Step 2 Read data of [( P1)]ˆ’’’.
Step 3 Put i=1,l_i=2, alpha_(l_i1 )=0,
alpha_(l_i2 )=1.
S_li={alpha_(l_i1 ),alpha
_(l_i1 )}

Step 4 Compute
h=[max]_(alpha in I) [min]
_(1 leq j leq s) | alpha-
alpha_(l_ij ) |,
where s is such that
alpha_(l_is )=1.
Step 5 check whether h leq epsilon.
If yes, go to Step 6
otherwise
take a finer discretization
of I,

S_(l_(i+1) )
Put l_i=l_(i+1) and go to Step 4.

Step 6 Write [( P1)]ˆv.
Step 7 Find a Pareto optimal solution of
[( P1)]ˆv.
Step 8 Print xˆ* is a satisficing solution
of [( P1)]ˆ’’’.
Step 9 Stop.

The Pseudo codes:

INPUT: alpha, lambda
OUTPUT: m_c1,m_c2
PROCESS
Funct getFirstVector(alpha , lamda)
begin
return new ListItem(lamda * (1 + alpha)

/ 2, lamda * (9 + alpha) / 5);
end

funct getSecondVector(alpha, lamda)
begin
return new ListItem(lamda * (3 - alpha)

/ 2, lamda * (3 - alpha));
end

funct getThirdVector(alpha ,lamda)
begin
return new ListItem(lamda * 2 * alpha,

lamda * alpha);
end
funct getFourthVector(alpha , lamda)
begin
return new ListItem( lamda * (3 - alpha),

lamda * (3 - 2 * alpha));
end

main function
int main(int argc, char** argv)
begin
if (load_coefficients_from_file
("coefficients1.txt",
s_coefficient,i_size_of_array)
== NULL) return 0;

s_coefficient = C_global;
ListItem *pRootOfList =
new ListItem(0, 0);
ListItem *pListItem;
cout << "The Objective Functions of
the Discretized
Problem" << "\n";float alpha = 0;
int n = 20;
for (int m = 1; m <= n; m++)
begin
if (load_lambdas_from_file("lambda.txt",
s_lamdas, i_count_of_lambdas)
== NULL) return 0;
s_lamdas = C_global;
alpha = 0;
iLammda = 1;
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while (alpha <= 1)
begin
pListItem = getFirstVector1(alpha,
atof(s_lamdas[iLammda++].c_str()));
if (pListItem->setNext(pRootOfList))
pRootOfList = pListItem;
pListItem->print();
pListItem = getSecondVector(alpha,
atof(s_lamdas[iLammda++].c_str()));
pListItem->setNext(pRootOfList);
if (pListItem->setNext(pRootOfList))
pRootOfList = pListItem;
pListItem->print();
pListItem = getThirdVector(alpha,
atof(s_lamdas[iLammda++].c_str()));
pListItem->setNext(pRootOfList);
if (pListItem->setNext(pRootOfList))
pRootOfList = pListItem;
pListItem->print();
pListItem = getFourthVector(alpha,
atof(s_lamdas[iLammda++].c_str()));
pListItem->setNext(pRootOfList);
if (pListItem->setNext(pRootOfList))
pRootOfList = pListItem;
pListItem->print();
alpha = alpha + 0.25;
cout << "\n";
end
cout << "The Single objective
Optimization Solution=" <<
pRootOfList->sumItemsOnList
(pRootOfList)->m_c1() << "x1" << "+";
cout << pRootOfList->sumItemsOnList
(pRootOfList)->m_c2() << "x2 \n";
end
return 0;
end

C. Correlations on Execution time and Memory Usage

execution_time Memory_usage
Pearson Correlation 1 .896*

execution_time
Sig. (2-tailed) .016

N 6 6
Pearson Correlation
Memory_usage .896* 1
Sig. (2-tailed) .016

N 6 6

*Correlation is significant at the 0.05
level (2-tailed).

D. Correlations on Execution time and Magnitude of FoF

execution_time Magnitude of FoF
Pearson Correlation 1 .449

execution_time
Sig. (2-tailed) .0372

N 6 6
Pearson Correlation .449 1

Magnitude of FoF
Sig. (2-tailed) .372

N 6 6

*Correlation is significant at the 0.05
level (2-tailed).

E. Correlations on Magnitude of FoF and Memory use

execution_time Magnitude of FoF
Pearson Correlation 1 .651

Magnitude of FoF
Sig. (2-tailed) .161

N 6 6
Pearson Correlation .651 1
Memory use
Sig. (2-tailed) .161

N 6 6

*Correlation is significant at the 0.05
level (2-tailed).

F. Numerical Demonstrations
We demonstrate these variations by constructing certain

fuzzy MOLP problems E1, E2, E3 and provide numerical
illustrations3 for added clarity. Here,

E1 : max(c̃11x1 + c̃12x2, c̃
2
1x1 + c̃22x2) (30)

Subject to

X1 +X2 ≤ 6 (31)
2X1 +X2 ≤ 9 (32)
X1 ≥ 0, X2 ≥ 0 (33)

The triangular FoF of E1, E2 and E3 are respectively given
in Tables I , II , III for some constraints as given below

TABLE I
Triangular fuzzy numbers for E1

c̃11 c̃12 c̃21 c̃22
(0.5, 1, 1.5) (1.8, 2, 3) (0, 2, 3) (0, 1, 3)

E2 : max(c̃11x1 + c̃12x2 + c̃13x3, $, c̃
3
1x1 + c̃32x2 + χ) (34)

Subject4 to

2X1 +X2 +X3 ≤ 2 (35)
X1 −X2 −X3 ≤ −1 (36)
X1 + 3X2 +X3 ≤ 5 (37)

X1 ≥ 0, X2 ≥ 0, X3 ≥ 0 (38)

E3 : max(c̃11x1 + c̃12x2 + c̃13x3 + c̃14x4, ., ., ς (39)

Subject to

3X1 + 2X2 + 5X3 +X4 ≤ 55 (40)
X1 + 2X2 +X3 +X4 ≤ 26 (41)
X1 +X2 + 3X3 + 2X4 ≤ 30 (42)
2X1 +X2 + 3X3 +X4 ≤ 10 (43)

X1 ≥ 0, X2 ≥ 0, X3 ≥ 0, X4 ≥ 0 (44)

3ς = c̃41x1 + c̃42x2 + c̃43x3 + c̃44x4).
4$ = c̃21x1 + c̃22x2 + c̃23x3, χ = c̃33x3.
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TABLE II
Triangular fuzzy numbers for E2

c̃11 c̃12 c̃13 c̃21 c̃22
3, 4, 5 6, 7, 8 9, 210, 11 12, 13, 14 15, 16, 17
c̃32 c̃13 ∆ = c̃23 ∆ = c̃33

18, 19, 20 21, 22, 23 24, 25, 26 27, 28, 29

TABLE III
Triangular fuzzy numbers for E3

c̃11 c̃12 c̃13 c̃14 c̃21
1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15
c̃22 c̃23 ∆ = c̃24 ∆ = c̃31 ∆ = c̃32

16, 17, 18 19, 20, 21 22, 23, 24 25, 26, 27 28, 29, 30
c̃33 c̃34 ∆ = c̃41 ∆ = c̃42 ∆ = c̃43

31, 32, 33 34, 35, 36 37, 38, 39 40, 41, 42 43, 44, 45
c̃44

46, 47, 48

TABLE IV
Execution time Analysis

Constraints ET using EA(ms) ET using AA (ms)
2 266 47
3 896 63
4 1000 281

TABLE V
Memory Usage Analysis

FoF Size Approach Memory Usage (Kbyte)
2 EA 15.7
2 NIA 15.3
3 EA 16.8
3 NIA 16.1
4 EA 17.4
4 NIA 16.3
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