An Optimization Reconstruction Algorithm Based on Regularization and Backtracing

Xinhe Zhang and Yufeng Liu

Abstract—In compressed sensing (CS), the traditional matching pursuit algorithms have a narrow adaptability to the sparsity and a higher time complexity. To expand the adaptability to sparsity and reduce the time complexity, a regularized-subspace pursuit (R-SP) algorithm is proposed. The regularization rule of the regularized orthogonal matching pursuit (ROMP) algorithm and the backtracking mechanism of the subspace pursuit (SP) algorithm are used to improve the accuracy of atom selection. The results of experiment show that in one-dimensional signal, the reconstruction probability of each algorithm is almost the same when the sparsity K is small. However, when the sparsity K increases, the R-SP algorithm has higher reconstruction probability and obvious advantages of reconstruction time. In two-dimensional images, the reconstruction performance of R-SP algorithm is slightly worse than ROMP algorithm. What’s more, the R-SP algorithm widens the range of sparsity K, shortens the reconstruction time and achieves the complementary advantages when compared with other algorithms.

Index Terms—Compressed sensing, matching pursuit, reconstruction algorithm, backtracking mechanism

I. INTRODUCTION

With the advent of the era of big data, the development of hardware devices cannot meet the theoretical requirements for some high-frequency signals according to Nyquist sampling theory. Under this background, compressed sensing (CS) theory emerged [1-2]. When the compressed sensing was put forward, it attracted the attention of researchers in more than half of the industrial fields. One after another, the theory of compressed sensing was applied in different fields, and the pleasing results were obtained.

Compressed sensing theory adopts a new way to collect and compress signals, which combines the high-speed sampling of original signals with compression to directly obtain the compressed data. In recent years, compressed sensing theory has been a research hotspot in the fields of image compression [3], medical imaging [4], radar imaging [5], remote sensing satellite photography [6], quantum state tomography [7], and so on, and a large number of research achievements have emerged.

Compressed sensing theory consists of three parts: signal sparse representation, observation matrix construction and reconstruction algorithm. Compressed sensing is aimed at sparse signal, but most signals in nature are not sparse. Therefore the signal should be sparsely processed by multiplying a sparse matrix; it makes the signal is sparse in another transform domain. The transformation methods include discrete cosine transform (DCT), discrete Fourier transform (DFT), wavelet transform (WT), and so on [8-9]. The number of rows of observation matrix should be less than the number of columns. The compressed signal is obtained by multiplying the observation matrix with the sparse signal. Unfortunately, the design of observation matrix is very difficult. Many studies have shown that Gaussian matrix and partial Hadamard matrix can be used as observation matrix. At the receiver side, the compressed signal needs to be reconstructed, and the reconstruction algorithm is of great significance to the reconstruction of the compressed signal.

The research on the signal reconstruction has been a hot spot in this field. After more than ten years of research and development, the reconstruction algorithm can be divided into three categories: greedy algorithm, convex optimization algorithm, and combined algorithm [10]. The convex optimization algorithm is based on ℓ_1 norm to solve an approximation solution of a convex optimization problem, such as interior point method [11], iterative hard threshold algorithm [12] and FOCUSS algorithm [13]. The greedy algorithm is to find the approximate solution by solving the ℓ_0 norm, and solves the original signal by means of sparse approximation, such as orthogonal matching pursuit (OMP) algorithm [14], regularized orthogonal matching pursuit (ROMP) algorithm [15], subspace pursuit (SP) algorithm [16], compressive sampling matching pursuit (CoSaMP) algorithm [17], and so on. The combined algorithm, such as Fourier sampling algorithm [18], has a relatively good reconstruction performance. However, due to various constraints and strict requirements on the system, it cannot be widely applied in the compressed sensing theory.

Greedy algorithm is widely used because of its high precision and fast running speed. Many studies have shown that the traditional matching pursuit algorithm relies on the sparsity K, which is far less than the observation dimension M. If the signal sparsity does not meet the requirements of the algorithm, the reconstruction accuracy is greatly reduced. Therefore, it is of great significance to expand the adaptability to sparsity K. In this paper, the regularized-subspace pursuit (R-SP) algorithm combining the ROMP algorithm and SP...
algorithm is proposed. Simulation experiments on one-
dimensional signal and two-dimensional image are carried out
to evaluate the reconstruction probability, average run time
and peak signal to noise ratio (PSNR) parameters.

The following are the novel contributions of this paper:
1) The R-SP algorithm proposed in this paper combines the
ROMP algorithm and SP algorithm in greedy algorithm. And
the adaptability of R-SP algorithm to sparsity K has
exceeded that of SP and ROMP algorithms.

2) In one-dimensional signal reconstruction, the
reconstruction probability of the proposed R-SP algorithm is
higher than other algorithms. In two-dimensional image
reconstruction, R-SP algorithm obtains the time advantage
and reconstruction accuracy of ROMP algorithm, and the
adaptability to sparsity K of SP algorithm.

Notation: Boldface uppercase/lowercase letters represent
the matrices and vectors, respectively. $\| \|$ represents the
magnitude of a complex quantity or the cardinality of a given
set. $\| \|$ and $\| \|$ represent the zero- and one-norm of a vector,
respectively. \mathbb{R} stands for the field of real numbers. $(\cdot)^T$
represents the transpose of a vector or matrix.

II. COMPRESSED SENSING

Consider a real-valued, finite-length, one-dimensional,
discrete-time signal $x \in \mathbb{R}^N$. We say that the signal x is
K-sparse when it has at most K nonzero, i.e., $\|x\|_0 \leq K$,
where $\|x\|_0 = \# \{i | x_i \neq 0\}$, that is a total number of
non-zero elements in a vector. Give a signal $x \in \mathbb{R}^N$, we consider
measurement systems that acquires M linear measurements.
We can represent the system mathematically as
\[y = \Phi x, \tag{1} \]
where $y \in \mathbb{R}^M$ is the observation vector and $\Phi \in \mathbb{R}^{M \times N}$
is the observation matrix, respectively. Generally, M is much
smaller than N. The observation matrix Φ must allow the
reconstruction of signal x from M measurements. A
necessary and sufficient condition is that, the observation
matrix Φ should meet the restricted isometry property (RIP)
[19]:
\[(1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2, \tag{2} \]
where $\delta \in (0,1)$. The RIP property states the one-to-one
mapping relationship between the original space and the
sparse space. That is, the signal x can be reconstructed and
the uniqueness is guaranteed.

We are concerned with the problem of the recovery of the
unknown signal x from the observation signal y. (1) can be
formulated into an ℓ_0-norm minimization problem, which
seeks a solution to the problem:
\[\hat{x} = \arg \min_x \|x\|_0 \quad s.t. \quad y = \Phi x. \tag{3} \]

Since the object function $\| \|$ is non-convex, (3) is
potentially difficult to solve. One avenue for translating this
problem into something more tractable is to replace $\| \|$ with
its convex approximation $\| \|_1$. Specifically, we consider
\[\hat{x} = \arg \min_x \|x\|_1 \quad s.t. \quad y = \Phi x, \tag{4} \]
where $\|x\|_1 = \sum_{i=1}^N |x_i|$ is the ℓ_1-norm of the vector x.

The main advantage of the ℓ_1-norm minimization is that it is
a convex optimization problem that can be solved
efficiently by linear programming techniques.

Specially, when greedy algorithms are used to solve (3), the
reconstruction accuracy will be slightly reduced and the
corresponding reconstruction time will be significantly
shortened, which is more widely applied than other
algorithms [20].

III. THE PROPOSED R-SP ALGORITHM

The OMP algorithm, a sequential selection method, only
selects the most relevant atom in the process of atom selection.
It is shown that the signal recovery performance of OMP
algorithm is good when the correlations between any two
columns of the observation matrix are small. Its symbol error
rate curve exhibits a flooring tendency even at moderate
signal to noise ratio. In each iteration, OMP identifies the
index which has maximum absolute correlation with the
remaining atoms. It is shown that the signal recovery performance of OMP
algorithm has a fast speed, but it has a narrow
adaptability to the sparsity K. Under the same sparsity K, to
accurately recover the original signal x, the observation
dimension M must be greater than that of OMP, SP and
other algorithms. When the observation dimension M is the
same, ROMP algorithm has higher requirements to sparsity
K, which is far less than the observation dimension M.

Moreover, the backtracing mechanism used in SP algorithm
increases the accuracy of atom selection. Compared with
ROMP algorithm, SP algorithm has expanded the adaptive
range of sparsity K. Based on the shortcomings of the above
algorithms, an R-SP algorithm combining ROMP algorithm
and SP algorithm is proposed in this paper. In the first stage,
ROMP algorithm is used to select partial atoms. When
the number of selected atoms meets the requirements, the second
stage is entered. In the second stage SP algorithm is adopted to
recover the signal. The number of atoms selected in the first
stage is added to the number of atoms selected by SP
algorithm, and then the backtracing mechanism is utilized to
improve the reconstruction performance. The precision of
atom selection in the first stage and the backtracing
mechanism in the second stage provide double insurance for
atom selection, which improve the precision of atom selection
of the R-SP algorithm.

The main steps of R-SP algorithm are summarized below.

Input: Observation matrix $\Phi \in \mathbb{R}^{M \times N}$, observation vector
$y \in \mathbb{R}^N$, signal sparsity K.

Output: The estimated signal \hat{x}.

The first stage:
1) Initialization the residual \(r_i^{(1)} = y \), the index set \(\Lambda_i^{(1)} = \emptyset \), the atom set \(\Phi_{\Lambda_i^{(1)}} = \emptyset \), where \(\emptyset \) represents empty set, the iteration counter \(t = 1 \).

2) Calculate the correlation coefficient between residual \(r_i^{(1)} \) and observation matrix \(\Phi_i \), i.e., \(u = [\Phi_i r_i^{(1)}] \), and choose a set \(J \) of \(K \) biggest coordinates or all of its nonzero coordinates in \(u \) (if the number of nonzero value is less than \(K \)).

3) Regularize: Among all subsets \(J_0 \subset J \) with comparable coordinates \(|u(i)| \leq |u(j)| \) (\(i, j \in J_0 \)), choose subset \(J_0 \) with the maximum energy including the largest correlation coefficient.

4) Augment the index set and the matrix of chosen atoms: \(\Lambda_i^{(2)} = \Lambda_i^{(1)} \cup J_0 \) and \(\Phi_{\Lambda_i^{(2)}} = [\Phi_{\Lambda_i^{(1)}}, \Phi_{J_0}] \).

5) Solve a least squares problem of \(y = \Phi_{\Lambda_i^{(2)}} \hat{x}_i^{(1)} \) to obtain an approximate solution: \(\hat{x}_i^{(1)} = \arg \min_{x_i^{(2)}} \| y - \Phi_{\Lambda_i^{(2)}} x_i^{(2)} \|_2 \).

6) Calculate the residual \(r_i^{(1)} = y - \Phi_{\Lambda_i^{(2)}} \hat{x}_i^{(1)} \).

7) If \(|\Lambda_i^{(1)}| > \text{ceil}(K/2) \), go to step 8). Increment \(t \), if \(t \leq K \) go to step 2; else go to step 8).

The second stage:

8) Initialization the residual \(r_0^{(2)} = r_i^{(1)} \), the index set \(\Lambda_0^{(2)} = \Lambda_i^{(1)} \), the atom set \(\Phi_{\Lambda_0^{(2)}} = \Phi_{\Lambda_i^{(1)}} \), and the iteration counter \(i = 1 \).

9) Calculate the correlation coefficient between residual \(r_i^{(2)} \) and observation matrix \(\Phi_i \), i.e., \(u = [\Phi_i r_i^{(2)}] \), and choose a set \(L_0 \) of \(K \) biggest coordinates or all of its nonzero coordinates in \(u \) (if the number of nonzero value is less than \(K \)).

10) Augment the index set \(\Lambda_i^{(2)} = \Lambda_i^{(2)} \cup L_0 \).

11) If the length of \(\Lambda_i^{(2)} \) is greater than the observation dimension \(M \), then \(\hat{x} = 0 \), and go to step 16; otherwise augment the matrix of chosen atoms \(\Phi_{\Lambda_i^{(2)}} = [\Phi_{\Lambda_i^{(2)}}, \Phi_{L_0}] \).

12) Solve a least squares problem of \(y = \Phi_{\Lambda_i^{(2)}} \hat{x}_i^{(2)} \) obtain a new signal estimation: \(\hat{x}_i^{(2)} = \arg \min_{x_i^{(2)}} \| y - \Phi_{\Lambda_i^{(2)}} x_i^{(2)} \|_2 \).

13) Obtain the signal \(\hat{x}_i^{(2)} \) from the \(K \) maximum elements of \(\hat{x}_i^{(2)} \), the corresponding index set \(\Lambda_i^{(2)} \) and atom set \(\Phi_{\Lambda_i^{(2)}} \); and update the index set \(\Lambda_i^{(2)} = \Lambda_i^{(2)} \).

14) Update the residual: \(r_i^{(2)} = y - \Phi_{\Lambda_i^{(2)}} \hat{x}_i^{(2)} \).

15) If \(i \leq K \), then \(i = i + 1 \), go to step 9; if \(i > K \) or residual \(r_i^{(2)} = 0 \), quit the iteration and go to step 16).

16) Obtain the estimated signal \(\hat{x} \).

IV. SIMULATION

To verify that the R-SP algorithm proposed in this paper improves the adaptability to sparsity \(K \) and reduce the run time, a series of simulation experiments are carried out. The experimental environment is CPU Core i5-5200U, main frequency is 2.20GHz, the memory is 4GB, and the simulation software is MATLAB R2016a.

A. One-Dimensional Signal Reconstruction Experiments

Experiment 1: The reconstruction probability is compared under the condition of fixed \(K \) and varying \(M \).

The random signal with length of 256 is generated randomly, and the observation matrix \(\Phi \) is \(M \times N \) Gaussian matrix. When the error between the reconstructed signal \(\hat{x} \) and the original signal \(x \) is less than \(10^{-6} \), we consider that the original signal has been reconstructed successfully. The reconstruction probability is the percentage ratio of the number of successful reconstructions to the number of experiments. When the sparsity \(K \) is 25 and 40, the reconstruction probability curves are shown in Fig. 1 and Fig. 2, respectively.

![Fig. 1. Simulation curves of reconstruction probability versus the number of measurements when sparsity K=25.](image)

![Fig. 2. Simulation curves of reconstruction probability versus the number of measurements when sparsity K=40.](image)
Experiment 2: The reconstruction probability experiment is conducted under the condition of fixed M and varying K.

The random signal with length of 256 is generated randomly, the sparsity K is ranged from 10 to $\frac{1}{2}M$, and the observation matrix Φ is $M \times N$ Gaussian matrix. When the observation dimension M is equal to 128 and 160, and reconstruction probability curves are shown in Fig. 3 and Fig. 4, respectively.

Fig. 3. Simulation curves of reconstruction probability versus sparsity K when observation dimension $M = 128$.

Fig. 4. Simulation curves of reconstruction probability versus sparsity K when observation dimension $M = 160$.

We can conclude from the simulation curves in Fig. 3 and Fig. 4 that when the observation dimension M is the same, the reconstruction probability decreases with the increase of sparsity K. Compared with other algorithms, the R-SP algorithm proposed in this paper still has a high reconstruction probability in the case of bigger sparsity K, which improves the applicable range.

Experiment 3: The average run time of different algorithms is compared in this experiment. The random signal with length of 256 is generated randomly, the observation dimension M is 128, and the sparsity K is ranged from 5 to 45, and the observation matrix Φ is $M \times N$ Gaussian matrix. We assume that the sparsity K is 30. In the same experimental conditions, OMP, ROMP, SP, CoSaMP and the R-SP algorithm proposed in this paper are compared. The parameter peak signal-to-noise (PSNR) is used to evaluate the reconstructed performance. The PSNR comparison results of different algorithms are listed in TABLE I.

TABLE I

<table>
<thead>
<tr>
<th>M/N</th>
<th>OMP</th>
<th>ROMP</th>
<th>SP</th>
<th>CoSaMP</th>
<th>R-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>26.51</td>
<td>27.32</td>
<td>27.27</td>
<td>26.73</td>
<td>27.42</td>
</tr>
<tr>
<td>0.6</td>
<td>27.76</td>
<td>29.57</td>
<td>28.73</td>
<td>28.81</td>
<td>28.76</td>
</tr>
<tr>
<td>0.7</td>
<td>28.55</td>
<td>30.74</td>
<td>29.50</td>
<td>29.71</td>
<td>29.52</td>
</tr>
<tr>
<td>0.8</td>
<td>29.10</td>
<td>31.97</td>
<td>29.93</td>
<td>30.14</td>
<td>29.96</td>
</tr>
</tbody>
</table>

According to TABLE I, when the compression ratio is 0.5, there is little different in the PSNR of each reconstruction algorithm. With the increase of compression ratio, the PSNR of all algorithms increases. Among them, the PSNR value of ROMP algorithm increases fastest and the reconstruction quality is the best. The PSNR values of R-SP, SP and CoSaMP algorithms are almost the same, and the

From the above experimental curves Fig.1 – Fig. 6, we can conclude that the R-SP algorithm combines the time superiority of ROMP algorithm with the reconstruction accuracy of SP algorithm. That is, the R-SP algorithm outperforms the performance of ROMP and SP algorithms.

B. Two-Dimensional Image Reconstruction Experiments

Experiment 4: Lena image with 256×256 pixels is used in this experiment. The observation matrix Φ is an $M \times N$ Gaussian matrix. Since the image is a non-sparse signal, the image must be sparsely processed by multiplying a $N \times N$ wavelet transform matrix. We assume that the sparsity K is 30. In the same experimental conditions, OMP, ROMP, SP, CoSaMP and the R-SP algorithm proposed in this paper are compared. The parameter peak signal-to-noise (PSNR) is used to evaluate the reconstructed performance. The PSNR comparison results of different algorithms are listed in TABLE I.

TABLE I

<table>
<thead>
<tr>
<th>M/N</th>
<th>OMP</th>
<th>ROMP</th>
<th>SP</th>
<th>CoSaMP</th>
<th>R-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>26.51</td>
<td>27.32</td>
<td>27.27</td>
<td>26.73</td>
<td>27.42</td>
</tr>
<tr>
<td>0.6</td>
<td>27.76</td>
<td>29.57</td>
<td>28.73</td>
<td>28.81</td>
<td>28.76</td>
</tr>
<tr>
<td>0.7</td>
<td>28.55</td>
<td>30.74</td>
<td>29.50</td>
<td>29.71</td>
<td>29.52</td>
</tr>
<tr>
<td>0.8</td>
<td>29.10</td>
<td>31.97</td>
<td>29.93</td>
<td>30.14</td>
<td>29.96</td>
</tr>
</tbody>
</table>

According to TABLE I, when the compression ratio is 0.5, there is little different in the PSNR of each reconstruction algorithm. With the increase of compression ratio, the PSNR of all algorithms increases. Among them, the PSNR value of ROMP algorithm increases fastest and the reconstruction quality is the best. The PSNR values of R-SP, SP and CoSaMP algorithms are almost the same, and the
reconstruction quality is slightly worse. The PSNR of OMP algorithm increases slowly, and reconstruction quality is the worst.

Experiment 5: To illustrate the advantages of the proposed R-SP algorithm, the influence of different sparsity K on the reconstruction performance is studied. Lena image with 256×256 pixels is used in the experiment. The observation matrix ϕ is \(M \times N \) Gaussian matrix, and the sparse matrix is \(N \times N \) wavelet transform matrix. The sparsity K is ranged from 30 to 65, and the PSNR and reconstruction time under different sparsity K are compared. OMP, ROMP, SP, CoSaMP and R-SP algorithms are compared in this paper under the same experimental conditions. The PSNR and reconstruction time of all above-mentioned algorithms under different sparsity K are listed in TABLE II and TABLE III, respectively.

TABLE II

<table>
<thead>
<tr>
<th>K</th>
<th>OMP</th>
<th>ROMP</th>
<th>SP</th>
<th>CoSaMP</th>
<th>R-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>26.50</td>
<td>27.27</td>
<td>27.27</td>
<td>26.73</td>
<td>27.42</td>
</tr>
<tr>
<td>35</td>
<td>26.61</td>
<td>27.28</td>
<td>26.89</td>
<td>26.12</td>
<td>27.50</td>
</tr>
<tr>
<td>40</td>
<td>26.63</td>
<td>27.21</td>
<td>26.62</td>
<td>25.26</td>
<td>27.24</td>
</tr>
<tr>
<td>45</td>
<td>26.70</td>
<td>26.99</td>
<td>26.33</td>
<td>18.48</td>
<td>27.46</td>
</tr>
<tr>
<td>50</td>
<td>26.84</td>
<td>25.66</td>
<td>25.15</td>
<td>11.66</td>
<td>25.88</td>
</tr>
<tr>
<td>55</td>
<td>26.85</td>
<td>25.51</td>
<td>23.32</td>
<td>12.83</td>
<td>25.95</td>
</tr>
<tr>
<td>60</td>
<td>26.43</td>
<td>20.99</td>
<td>22.97</td>
<td>14.81</td>
<td>24.83</td>
</tr>
<tr>
<td>65</td>
<td>26.72</td>
<td>20.84</td>
<td>12.77</td>
<td>7.24</td>
<td>24.06</td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>K</th>
<th>OMP</th>
<th>ROMP</th>
<th>SP</th>
<th>CoSaMP</th>
<th>R-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.1723</td>
<td>0.4227</td>
<td>4.3478</td>
<td>6.5039</td>
<td>4.1881</td>
</tr>
<tr>
<td>35</td>
<td>1.5634</td>
<td>0.5212</td>
<td>6.0710</td>
<td>8.6890</td>
<td>6.2680</td>
</tr>
<tr>
<td>40</td>
<td>1.9850</td>
<td>0.5766</td>
<td>7.7060</td>
<td>11.9484</td>
<td>7.8870</td>
</tr>
<tr>
<td>45</td>
<td>2.2056</td>
<td>0.6916</td>
<td>9.1747</td>
<td>12.8017</td>
<td>9.9858</td>
</tr>
<tr>
<td>50</td>
<td>2.6532</td>
<td>0.8189</td>
<td>13.3665</td>
<td>0.3625</td>
<td>12.1869</td>
</tr>
<tr>
<td>55</td>
<td>3.0784</td>
<td>0.8674</td>
<td>15.5423</td>
<td>0.3733</td>
<td>14.6208</td>
</tr>
<tr>
<td>60</td>
<td>3.5987</td>
<td>0.8592</td>
<td>18.0144</td>
<td>0.3815</td>
<td>15.8059</td>
</tr>
<tr>
<td>65</td>
<td>4.0994</td>
<td>0.8566</td>
<td>0.2452</td>
<td>0.0475</td>
<td>6.8765</td>
</tr>
</tbody>
</table>

As can be seen from TABLE II, OMP and R-SP algorithms have a wide adaptability to sparsity K, and can reconstruct the image more accurately when the sparsity is large. While ROMP and SP algorithms have a narrow adaptability to the sparsity K. With the increase of the sparsity K, the reconstruction performance will decline and recovery probability will be reduced. When sparsity K exceeds 60, ROMP and SP algorithms cannot reconstruct the signal accurately. CoSaMP has the worst adaptability to sparsity K, and the image cannot be reconstructed when the sparsity K is larger than 40. Compared with SP and ROMP algorithms, the proposed R-SP algorithm expands the adaptability to sparsity K.

We can conclude from TABLE III, the reconstruction time of R-SP algorithm has obvious advantages over SP algorithm. Considering TABLE II and TABLE III, we can conclude that R-SP algorithm obtains the time advantage and reconstruction accuracy of ROMP algorithm, and combines the adaptability of SP algorithm to sparsity K. Compared with ROMP and SP algorithms, R-SP algorithm proposed in this paper achieves a better reconstruction performance.

V. CONCLUSION

In this paper, R-SP algorithm is proposed. In the first stage, partial atoms are selected by using the atoms selection rule of ROMP algorithm. In the second stage, SP algorithm is adopted to increase the accuracy of selected atoms by using the backtracing mechanism. Base on the simulation curves, the adaptability of R-SP algorithm to sparsity exceeds that of OMP, ROMP, SP and CoSaMP algorithms. Except ROMP algorithm, R-SP algorithm has obvious advantages in reconstruction time. The combination of ROMP algorithm and SP algorithm achieves a better reconstruction performance.

REFERENCES

XINHE Zhang was born in Hebei Province, P. R. China, received the B.S. degree in Application of Electronic Technology from Anshan Iron and Steel Technology, Anshan, P. R. China, the M.S. degree in Control Theory and Control Engineering from Anshan University of Science and Technology, Anshan, P. R. China, the Ph.D. degree in Communication and Information Systems from Dalian University of Technology, Dalian, P. R. China, in 2002, 2005, 2017. His research interests include signal processing and compressed sensing.

YUFENG LIU was born in Hebei Province, P. R. China, received the B.S. degree in Electrical Engineering and Automation from Yantai Nanshan College, Yantai, P. R. China, in 2018. He is currently pursuing the M.S. degree in Control Engineering with University of Science and Technology Liaoning, Anshan, P. R. China. His research interest is compressed sensing and its applications.