
 

  
Abstract—In compressed sensing (CS), the traditional 

matching pursuit algorithms have a narrow adaptability to the 
sparsity and a higher time complexity. To expand the 
adaptability to sparsity and reduce the time complexity, a 
regularized-subspace pursuit (R-SP) algorithm is proposed. The 
regularization rule of the regularized orthogonal matching 
pursuit (ROMP) algorithm and the backtracing mechanism of 
the subspace pursuit (SP) algorithm are used to improve the 
accuracy of atom selection. The results of experiment show that 
in one-dimensional signal, the reconstruction probability of each 
algorithm is almost the same when the sparsity K is small. 
However, when the sparsity K increases, the R-SP algorithm has 
higher reconstruction probability and obvious advantages of 
reconstruction time. In two-dimensional images, the 
reconstruction performance of R-SP algorithm is slightly worse 
than ROMP algorithm. What’s more, the R-SP algorithm 
widens the range of sparsity K, shortens the reconstruction time 
and achieves the complementary advantages when compared 
with other algorithms. 

 
Index Terms—Compressed sensing ， matching pursuit, 

reconstruction algorithm, backtracing mechanism 

I. INTRODUCTION 
ITH the advent of the era of big data, the development 
of hardware devices cannot meet the theoretical 

requirements for some high-frequency signals according to 
Nyquist sampling theory. Under this background, compressed 
sensing (CS) theory emerged [1-2]. When the compressed 
sensing was put forward, it attracted the attention of 
researchers in more than half of the industrial fields. One after 
another, the theory of compressed sensing was applied in 
different fields, and the pleasing results were obtained. 

Compressed sensing theory adopts a new way to collect and 
compress signals, which combines the high-speed sampling of 
original signals with compression to directly obtain the 
compressed data. In recent years, compressed sensing theory 
has been a research hotspot in the fields of image compression 
[3], medical imaging [4], radar imaging [5], remote sensing 
satellite photography [6], quantum state tomography [7], and 

Manuscript received December 15, 2020; revised March 30, 2021. This 
work was supported in part by the Excellent Talents Training Program of 
University of Science and Technology Liaoning (Grant No. 2017RC10) and 
the Doctoral Scientific Research Foundation of Liaoning Province (Grant No. 
2020-BS-225). 

Xinhe Zhang is an Associate Professor of School of Electronic and 
Information Engineering, University of Science and Technology Liaoning, 
Anshan, 114051 China. (corresponding author, phone: 86-412-5929725; 
email: 527075114@qq.com, xhzhang@ustl.edu.cn). 

Yufeng Liu is a Postgraduate of School of Electronic and Information 
Engineering, University of Science and Technology Liaoning, Anshan, 
114051 China. (email: 892824208@qq.com). 

so on, and a large number of research achievements have 
emerged. 

Compressed sensing theory consists of three parts: signal 
sparse representation, observation matrix construction and 
reconstruction algorithm. Compressed sensing is aimed at 
sparse signal, but most signals in nature are not sparse. 
Therefore the signal should be sparsely processed by 
multiplying a sparse matrix; it makes the signal is sparse in 
another transform domain. The transformation methods 
include discrete cosine transform (DCT), discrete Fourier 
transform (DFT), wavelet transform (WT), and so on [8-9]. 
The number of rows of observation matrix should be less than 
the number of columns. The compressed signal is obtained by 
multiplying the observation matrix with the sparse signal. 
Unfortunately, the design of observation matrix is very 
difficult. Many studies have shown that Gaussian matrix and 
partial Hadamard matrix can be used as observation matrix. 
At the receiver side, the compressed signal needs to be 
reconstructed, and the reconstruction algorithm is of great 
significance to the reconstruction of the compressed signal.  

The research on the signal reconstruction has been a hot 
spot in this field. After more than ten years of research and 
development, the reconstruction algorithm can be divided 
into three categories: greedy algorithm, convex optimization 
algorithm, and combined algorithm [10]. The convex 
optimization algorithm is based on 1 norm to solve an 
approximation solution of a convex optimization problem, 
such as interior point method [11], iterative hard threshold 
algorithm [12] and FOCUSS algorithm [13]. The greedy 
algorithm is to find the approximate solution by solving the 

0  norm, and solves the original signal by means of sparse 
approximation, such as orthogonal matching pursuit (OMP) 
algorithm [14], regularized orthogonal matching pursuit 
(ROMP) algorithm [15], subspace pursuit (SP) algorithm [16], 
compressive sampling matching pursuit (CoSaMP) algorithm 
[17], and so on. The combined algorithm, such as Fourier 
sampling algorithm [18], has a relatively good reconstruction 
performance. However, due to various constraints and strict 
requirements on the system, it cannot be widely applied in the 
compressed sensing theory. 

Greedy algorithm is widely used because of its high 
precision and fast running speed. Many studies have shown 
that the traditional matching pursuit algorithm relies on the 
sparsity K , which is far less than the observation dimension 
M . If the signal sparsity does not meet the requirements of 
the algorithm, the reconstruction accuracy is greatly reduced. 
Therefore, it is of great significance to expand the adaptability 
to  sparsity K . In this paper, the regularized-subspace pursuit 
(R-SP) algorithm combining the ROMP algorithm and SP 
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algorithm is proposed. Simulation experiments on one- 
dimensional signal and two-dimensional image are carried out 
to evaluate the reconstruction probability, average run time 
and peak signal to noise ratio (PSNR) parameters. 

The following are the novel contributions of this paper: 
1) The R-SP algorithm proposed in this paper combines the 

ROMP algorithm and SP algorithm in greedy algorithm. And 
the adaptability of R-SP algorithm to sparsity K  has 
exceeded that of SP and ROMP algorithms. 

2) In one-dimensional signal reconstruction, the 
reconstruction probability of the proposed R-SP algorithm is 
higher than other algorithms. In two-dimensional image 
reconstruction, R-SP algorithm obtains the time advantage 
and reconstruction accuracy of ROMP algorithm, and the 
adaptability to sparsity K  of SP algorithm. 

Notation: Boldface uppercase/lowercase letters represent 
the matrices and vectors, respectively.   represents the 
magnitude of a complex quantity or  the cardinality of a given 
set. 

0
  and 

1
  represent the zero- and one-norm of a vector, 

respectively.   stands for the field of real numbers. ( )T
  

represents the transpose of a vector or matrix. 

II. COMPRESSED SENSING  
Consider a real-valued, finite-length, one-dimensional, 

discrete-time signal N∈x . We say that the signal x  is 
K -sparse when it has at most K  nonzero, i.e., 

0
K≤x , 

where ( )0
# 0ii x= ≠x , that is a total number of non-zero 

elements in a vector. Give a signal N∈x , we consider 
measurement systems that acquires M linear measurements. 
We can represent the system mathematically as 

=y Φx ,                          (1) 

where M∈y  is the observation vector and M N×∈Φ  is 
the observation matrix, respectively. Generally, M  is much 
smaller than N . The observation matrix Φ  must allow the 
reconstruction of signal x  from M  measurements. A 
necessary and sufficient condition is that, the observation 
matrix Φ  should meet the restricted isometry property (RIP) 
[19]: 

( ) ( )2 2 2

2 2 2
1 1δ δ− ≤ ≤ +x Φx x ,           (2) 

where ( )0,1δ ∈ . The RIP property states the one-to-one 
mapping relationship between the original space and the 
sparse space. That is, the signal x  can be reconstructed and 
the uniqueness is guaranteed. 

We are concerned with the problem of the recovery of the 
unknown signal x  from the observation signal y . (1) can be 
formulated into an 0 -norm minimization problem, which 
seeks a solution to the problem: 

  0
ˆ arg min

. .s t

=

=
x

x x

y Φx
.                    (3) 

Since the object function 
0
  is non-convex, (3) is 

potentially difficult to solve. One avenue for translating this 

problem into something more tractable is to replace 
0
  with 

its convex approximation 
1
 . Specifically, we consider 

1
ˆ arg min

. .s t

=

=
x

x x

y Φx
,                         (4) 

where 
1

1

N

i
i

x
=

= ∑x  is the 1 -norm of the vector x . 

The main advantage of the 1 -norm minimization is that it 
is a convex optimization problem that can be solved 
efficiently by linear programming techniques.  

Specially, when greedy algorithms are used to solve (3), the 
reconstruction accuracy will be slightly reduced and the 
corresponding reconstruction time will be significantly 
shortened, which is more widely applied than other 
algorithms [20].  

III. THE PROPOSED R-SP ALGORITHM 
The OMP algorithm, a sequential selection method, only 

selects the most relevant atom in the process of atom selection. 
It is shown that the signal recovery performance of OMP 
algorithm is good when the correlations between any two 
columns of the observation matrix are small. Its symbol error 
rate curve exhibits a flooring tendency even at moderate 
signal to noise ratio. In each iteration, OMP identifies the 
index which has maximum absolute correlation with the 
current residual. Only one atom is selected in each iteration, 
and it takes multiple iterations to recover original signal. 
ROMP algorithm has a fast speed, but it has a narrow 
adaptability to the sparsity K . Under the same sparsity K , to 
accurately recover the original signal x , the observation 
dimension M  must be greater than that of OMP, SP and 
other algorithms. When the observation dimension M  is the 
same, ROMP algorithm has higher requirements to sparsity 
K , which is far less than the observation dimension M . 
Moreover, the backtracing mechanism used in SP algorithm 
increases the accuracy of atom selection. Compared with 
ROMP algorithm, SP algorithm has expanded the adaptive 
range of sparsity K . Based on the shortcomings of the above 
algorithms, an R-SP algorithm combining ROMP algorithm 
and SP algorithm is proposed in this paper. In the first stage, 
ROMP algorithm is used to select partial atoms. When the 
number of selected atoms meets the requirements, the second 
stage is entered. In the second stage SP algorithm is adopted 
to recover the signal. The number of atoms selected in the first 
stage is added to the number of atoms selected by SP 
algorithm, and then the backtracing mechanism is utilized to 
improve the reconstruction performance. The precision of 
atom selection in the first stage and the backtracing 
mechanism in the second stage provide double insurance for 
atom selection, which improve the precision of atom selection 
of the R-SP algorithm. 

The main steps of R-SP algorithm are summarized below.  
Input: Observation matrix M N×∈Φ , observation vector 

N∈y , signal sparsity K . 
Output: The estimated signal x̂ . 

The first stage:  
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1) Initialization the residual (1)
0 =r y , the index set (1)

0Λ  
= ∅ , the atom set (1)

0Λ
= ∅Φ , where ∅  represents empty set, 

the iteration counter 1t = . 
2) Calculate the correlation coefficient between residual 

(1)
1t −r  and observation matrix Φ , i.e., (1)

1
T

t −=u Φ r , and choose 

a set J  of K  biggest coordinates or all of its nonzero 
coordinates in u  (if the number of nonzero value is less than 
K ). 

3) Regularize: Among all subsets 0J J⊂  with comparable 

coordinates ( ) 2 ( )i j≤u u  ( 0i j J∈, ), choose subset 0J  
with the maximum energy including the largest correlation 
coefficient.  

4) Augment the index set and the matrix of chosen atoms: 
(1) (1)

1 0t t J−Λ = Λ   and 
-1 0

(1) (1)
t t JΛ Λ  Φ = Φ ,Φ . 

5) Solve a least squares problem of (1) (1)
t tΛ=y Φ x  to obtain a 

approximate solution: 
(1)

(1) (1) (1)

2
ˆ arg min

t
t

t tΛ= −
x

x y Φ x . 

6) Calculate the residual (1) (1) (1)ˆ
tt tΛ= −r y Φ x . 

7) If ( )0
2t ceil KΛ > , go to step 8). Increment t , if 

t K≤ go to step 2); else go to  step 8). 
The second stage:  

8) Initialization the residual (2) (1)
0 t=r r , the index set (2)

0Λ  
(1)
t= Λ , the atom set  

0

(2) (1)
tΛ Λ=Φ Φ , and the iteration counter 

1i = . 
9) Calculate the correlation coefficient between residual 

(2)
1i−r  and observation matrix Φ , i.e., (2)

1
T

i−=u Φ r , and  

choose a set 0L  of K  biggest coordinates or all of its 
nonzero coordinates in u  (if the number of nonzero value is 
less than K ). 

10) Augment the index set (2) (2)
1 0i i L−Λ = Λ  . 

11) If the length of (2)
iΛ  is greater than the observation 

dimension M , then ˆ 0=x , and go to step 16); otherwise 
augment the matrix of chosen atoms 

-1 0

(2) (2) ,
i i LΛ Λ  Φ = Φ Φ . 

12) Solve a least squares problem of  (2) (2)
i iΛ=y Φ x  obtain a 

new signal estimation: 
( 2)

(2) (2) (2)

2
ˆ arg min

i
i

i iΛ= −
x

x y Φ x . 

13) Obtain the signal (2)ˆ iKx from the K  maximum elements 

of (2)ˆ ix , the corresponding index set (2)
iKΛ  and atom set (2)

iKΦ ; 

and update the index set (2) (2)
i iKΛ = Λ . 

14) Update the residual: (2) (2) (2)ˆi iK iK= −r y Φ x . 
15) If i K≤ , then 1i i= + , go to step 9); if i K>  or 

residual (2) 0i =r , quit the iteration and go to step 16). 

16) Obtain the estimated signal x̂ .  

IV. SIMULATION 
To verify that the R-SP algorithm proposed in this paper 

improves the adaptability to sparsity K  and reduce the run 
time, a series of simulation experiments are carried out. The 
experimental environment is CPU Core i5-5200U, main 

frequency is 2.20GHz, the memory is 4GB, and the 
simulation software is MATLAB R2016a. 

A. One-Dimensional Signal Reconstruction Experiments 
Experiment 1: The reconstruction probability is compared 

under the condition of fixed K  and varying M .  
The random signal with length of 256 is generated 

randomly, and the observation matrix Φ  is M N×  Gaussian 
matrix. When the error between the reconstructed signal x̂  
and the original signal x  is less than 610− , we consider that 
the original signal has been reconstructed successfully. The 
reconstruction probability is the percentage ratio of the 
number of successful reconstructions to the number of 
experiments. When the sparsity K  is 25 and 40, the 
reconstruction probability curves are shown in Fig. 1 and Fig. 
2, respectively. 

 
Fig. 1.  Simulation curves of reconstruction probability versus the number of 
measurements when sparsity =25K . 

 
Fig. 2.  Simulation curves of reconstruction probability versus the number of 
measurements when sparsity =40K . 

It can be seen from Fig. 1 and Fig. 2 that when the sparsity 
K  is small, the reconstruction probability is basically the 
same except ROMP algorithm. With the increase of sparsity 
K , the reconstruction probability of R-SP algorithm is higher 
than that of other algorithms in the condition of the same 
observation dimension M . 
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Experiment 2: The reconstruction probability experiment 
is conducted under the condition of fixed M  and varying K . 

The random signal with length of 256 is generated 
randomly, the sparsity K  is ranged from 10 to 4

5 M , and the 
observation matrix Φ  is M N×  Gaussian matrix. When the 
observation dimension M is equal to 128 and 160, and 
reconstruction probability curves are shown in Fig. 3 and Fig. 
4, respectively.  

 
Fig. 3.  Simulation curves of reconstruction probability versus sparsity K 
when observation dimension 128M = . 

 
Fig. 4.  Simulation curves of reconstruction probability versus sparsity K 
when observation dimension 160M = . 

We can conclude from the simulation curves in Fig. 3 and 
Fig. 4 that when the observation dimension M is the same, 
the reconstruction probability decreases with the increase of 
sparsity K . Compared with other algorithms, the R-SP 
algorithm proposed in this paper still has a high 
reconstruction probability in the case of bigger sparsity K , 
which improves the applicable range. 

Experiment 3: The average run time of different 
algorithms is compared in this experiment. The random signal 
with length of 256 is generated randomly, the observation 
dimension M  is 128, and the sparsity K  is ranged from 5 to 
45, and the observation matrix Φ  is M N×  Gaussian matrix. 
The average run time simulation curves are shown in Fig. 5.  

It can be seen from Fig. 5 that the run time of the proposed 
R-SP algorithm is almost the same to that of the other 

algorithms when the sparsity K  is small. With the increase of 
sparsity K , the run time of all the algorithms increases. In all 
above-mentioned algorithms, the run time of CoSaMP 
algorithm increases rapidly, and the ROMP algorithm runs the 
fastest. When the sparsity K  is greater than 40, the R-SP 
algorithm has the obvious advantage over SP, OMP, and 
CoSaMP algorithms.  

 
Fig. 5.  Simulation curves of average run time versus sparsity K.  

From the above experimental curves Fig.1 – Fig. 6, we can 
conclude that the R-SP algorithm combines the time 
superiority of ROMP algorithm with the reconstruction 
accuracy of SP algorithm. That is, the R-SP algorithm 
outperforms the performance of ROMP and SP algorithms. 

B. Two-Dimensional Image Reconstruction Experiments 
Experiment 4: Lena image with 256 256×  pixels is used 

in this experiment. The observation matrix Φ  is an M N×  
Gaussian matrix. Since the image is a non-sparse signal, the 
image must be sparsely processed by multiplying a 
N N× wavelet transform matrix. We assume that the sparsity 
K  is 30. In the same experimental conditions, OMP, ROMP, 
SP, CoSaMP and the R-SP algorithm proposed in this paper 
are compared. The parameter peak signal-to-noise (PSNR) is 
used to evaluate the reconstructed performance. The PSNR 
comparison results of different algorithms are listed in 
TABLE I.  

TABLE I  
PSNR COMPARISON OF DIFFERENT ALGORITHMS (UNIT: DB) 

M/N OMP ROMP SP CoSaMP R-SP 

0.5 26.51 27.32 27.27 26.73 27.42 

0.6 27.76 29.57 28.73 28.81 28.76 

0.7 28.55 30.74 29.50 29.71 29.52 

0.8 29.10 31.97 29.93 30.14 29.96 

According to TABLE I, when the compression ratio is 0.5, 
there is little different in the PSNR of each reconstruction 
algorithm. With the increase of compression ratio, the PSNR 
of all algorithms increases. Among them, the PSNR value of 
ROMP algorithm increases fastest and the reconstruction 
quality is the best. The PSNR values of R-SP, SP and 
CoSaMP algorithms are almost the same, and the 
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reconstruction quality is slightly worse. The PSNR of OMP 
algorithm increases slowly, and reconstruction quality is the 
worst. 

Experiment 5: To illustrate the advantages of the proposed 
R-SP algorithm, the influence of different sparsity K  on the 
reconstruction performance is studied. Lena image with 
256 256×  pixels is used in the experiment. The observation 
matrix Φ  is M N×  Gaussian matrix, and the sparse matrix 
is N N×  wavelet transform matrix. The sparsity K  is 
ranged from 30 to 65, and the PSNR and reconstruction time 
under different sparsity K  are compared. OMP, ROMP, SP, 
CoSaMP and R-SP algorithms proposed in this paper are 
compared under the same experimental conditions. The 
PSNR and reconstruction time of all above-mentioned 
algorithms under different sparsity K  are listed in TABLE II 
and TABLE III, respectively.  

TABLE II 
PSNR COMPARISON OF ALGORITHMS UNDER DIFFERENT SPARSITY 

K OMP ROMP SP CoSaMP R-SP 
30 26.50 27.27 27.27 26.73 27.42 
35 26.61 27.28 26.89 26.12 27.50 
40 26.63 27.21 26.62 25.26 27.24 
45 26.70 26.99 26.33 18.48 27.46 
50 26.84 25.66 25.15 11.66 25.88 
55 26.85 25.51 23.32 12.83 25.95 
60 26.43 20.99 22.97 14.81 24.83 
65 26.72 20.84 12.77 7.24 24.06 

TABLE III 
 RECONSTRUCTION TIME OF ALGORITHMS UNDER DIFFERENT SPARSITY 

(UNIT: S) 
K OMP ROMP SP CoSaMP R-SP 
30 1.1723 0.4227 4.3478 6.5039 4.1881 
35 1.5634 0.5212 6.0710 8.6890 6.2680 
40 1.9850 0.5766 7.7060 11.9484 7.8870 
45 2.2056 0.6916 9.7147 12.8017 9.9858 
50 2.6532 0.8189 13.3665 0.3625 12.1869 
55 3.0784 0.8674 15.5423 0.3733 14.6208 
60 3.5987 0.8592 18.0144 0.3815 15.8059 
65 4.0994 0.8566 0.2452 0.0475 6.8765 

As can be seen from TABLE II, OMP and R-SP algorithms 
have a wide adaptability to sparsity K , and can reconstruct 
the image more accurately when the sparsity is large. While 
ROMP and SP algorithms have a narrow adaptability to the 
sparsity K . With the increase of the sparsity K , the 
reconstruction performance will decline and recovery 
probability will be reduced. When sparsity K  exceeds 60, 
ROMP and SP algorithms cannot reconstruct the signal 
accurately. CoSaMP has the worst adaptability to sparsity K , 
and the image cannot be reconstructed when the sparsity K  is 
larger than 40. Compared with SP and ROMP algorithms, the 
proposed R-SP algorithm expands the adaptability to 
sparsity K . 

We can conclude from TABLE III, the reconstruction time 
of R-SP algorithm has obvious advantages over SP algorithm. 
Considering TABLE II and TABLE III, we can conclude that 
R-SP algorithm obtains the time advantage and reconstruction 
accuracy of ROMP algorithm, and combines the adaptability 

of SP algorithm to sparsity K . Compared with ROMP and 
SP algorithms, R-SP algorithm proposed in this paper 
achieves a better reconstruction performance. 

V. CONCLUSION 
In this paper, R-SP algorithm is proposed. In the first stage, 

partial atoms are selected by using the atoms selection rule of 
ROMP algorithm. In the second stage, SP algorithm is 
adopted to increase the accuracy of selected atoms by using 
the backtracing mechanism. Base on the simulation curves, 
the adaptability of R-SP algorithm to sparsity exceeds that of 
OMP, ROMP, SP and CoSaMP algorithms. Except ROMP 
algorithm, R-SP algorithm has obvious advantages in 
reconstruction time. The combination of ROMP algorithm 
and SP algorithm achieves a better reconstruction 
performance. 
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