
The Maximum (k,m)-Subsets Problem is in the

Class NEXP
Khalil Challita, Member, IAENG, Jacques Bou Abdo

Abstract—In this paper we define and solve the following
new problem: Given a set of n elements, we are interested in
determining the largest number of subsets of size k that have at
most m elements in common. We prove that in the worst-case
scenario, a brute force solution requires a double exponential
time with respect to n. Afterwards, we show that our problem
is in the class NEXP by reducing it to the succinct K-coloring
problem. We use in our proof ordered binary decision diagrams
to determine whether there is an edge between two nodes of a
graph that corresponds to an instance of our problem. We also
show that it is at least EXP-hard.

Index Terms—K-coloring, binary decision diagrams, com-
plexity classes.

I. INTRODUCTION

G
IVEN a cluster of n computers, we wish to sepa-

rate them in tightly connected sub-clusters of size k
each, such that any couple of sub-clusters have at most m
computers in common. More precisely, we are interested

in maximizing the number of sub-clusters that satisfy the

abovementioned condition.

Using set theory, we can formulate this problem simply as

follows: Let S be a set of n elements and Uk,n its subsets

of size k < n. Compute the largest set Sk ⊆ Uk,n such

that any couple of Sk share at most m elements. A formal

description of our problem is given in Section III. Since

two additional parameters (i.e. k and m) are included in

the formulation of this problem, we decided to name it the

maximum (k,m)-subsets problem. To our knowledge, no one

has solved it before, although one can find similar problems

in the literature such as the maximum subarray problem [24],

and the k maximum sums one [27].

Our main aim in this paper is to determine how much hard

it is to solve this problem in general, which is a fundamental

step prior to proposing any algorithm that answers our ques-

tion for specific values of n, k, and m. The seminal paper by

Cook [2] where he showed that Boolean satisfiability is NP-

complete, followed by Karp [6] who extended Cook’s result

to include twenty-one new NP-complete problems, paved

the way for many researchers to classify a wide variety of

problems in the computer science field [26], [30], [21].

We determine an upper bound for the maximum (k,m)-

subsets problem by reducing it to the succinct K-coloring

problem. We already know that the latter is complete for

the class NEXP [15]. For technical reasons, our proof in

Section V uses a well-known data structure (namely binary

decision diagrams), instead of Boolean circuits. It is worth

Manuscript received January 21, 2020; revised December 20, 2020.
Khalil Challita is an Associate Professor in the Department of Computer

Science, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon, (e-mail:
kchallita@ndu.edu.lb).

Jacques Bou Abdo is an Assistant Professor in the College of Business
and Technology, University of Nebraska at Kearney, USA, (e-mail: bouab-
doj@unk.edu).

noting that this structure was first introduced by Lee [1],

before being investigated further by many computer scien-

tists [7], [8], [9], [20], [4]. We also show in Section IV

that this problem is EXP-hard. Determining the difficulty of

solving a problem is of utmost importance [33], [25], [32].

Complexity results and optimization algorithms were sug-

gested in other fields such as in mathematics [22], [23],

artificial intelligence [3], theoretical computer science [5],

[28], [31], and biology [28].

The remainder of this paper is divided as follows.

Section II gives a brief overview of some previously es-

tablished results that are relevant to our problem, including

Boolean circuits and the succinct K-coloring problem. We

formally define the maximum (k,m)-subsets problem in Sec-

tion III. We propose in Section IV a brute force algorithm

for solving it. In the worst case scenario, we show that the

leading factor is a double exponential with respect to n (we

adopt here the notation given by Cormen [19] to compute the

running time of our algorithm). We briefly describe ordered

binary decision diagrams in Section V, before showing that

our problem is in the class NEXP. Section VI concludes our

work.

II. PRELIMINARIES

We recall in this section some previously established

results we need for solving our problem. As we already stated

in the Introduction, our main proof in Section V consists in

reducing the maximum (k,m)-subsets problem to the succinct

K-coloring problem. Galperin and Wigderson [13] showed

that the former problem is in the class NEXP. Later on,

Papadimitriou and Yannakakis [15] proved that it is complete

for its class.

Generally speaking, we know from Papadimitriou [17] that

all the NP-complete problems become NEXP-complete when

the input is exponentially more succinct than the description

of the original problem. This result can be extended to

include many well known NP-complete problems such as

SAT, Hamilton Path, K-Coloring, Knapsack, and Max Cut,

where Boolean circuits were chosen to (succinctly) represent

graphs.

Shannon [18] was the first to apply Boolean logic [10] to

electric circuit design. Since then, his seminal work found

applications in a wide variety of different fields such as

cryptography, mathematics, and biology [11], [14], [12].

Recall that a Boolean circuit is a directed acyclic graph,

where a node falls into one of the following three categories:

an input node with no incoming edges, a constant node that is

either true or false, and a gate node labeled with one of the

following logical connectives {∨,∧,¬}. Figure 1 includes

two examples of such circuits. The one in (a) computes

the exclusive-or function, and the one in (b) represents the

function f(x1, x2) = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2).

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_25

Volume 48, Issue 2: June 2021

__

¬

∨

¬

∧

∧

x1 x2

(b) (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2)(a) x1 ⊕ x2

x1 x2

¬ ¬

∨
∨

∧

Fig. 1. Example of Boolean circuits.

Papadimitriou and Yannakakis [15] used a succinct rep-

resentation of a graph (with exponentially many nodes) in

order to prove the NEXP-completeness of the problems they

tackled. Formally speaking, given a graph GC with n nodes

(where n = 2b), a succinct representation of G is a Boolean

circuit C with 2b input nodes such that the following holds:

for every couple of nodes 1 ≤ i < j ≤ n, there is an

edge between i and j if and only if C accepts the binary

representation of the b-bit integers i and j.

In our case, we used an ordered binary decision diagram (as

described by Bryant [16]) to represent a Boolean function

instead of using a Boolean circuit. The reason behind this

choice is straightforward. As we shall see in Section V,

an ordered binary decision diagram (OBDD) allows us to

naturally perform the following task: given a set S of size

n and two subsets L ⊆ S and L′ ⊆ S of size k < n,

determine the number of elements the subsets L and L′ have

in common.

We next formulate our problem.

III. PROBLEM FORMULATION

Given a set Un that contains n elements, and given two

integers k and m that satisfy m ≤ k < n, we consider

the subsets of Un that have size k. We know that there are

exactly Ck
n such subsets. More precisely, we are interested in

solving the problem of determining the maximum number of

subsets of size k that have at most m elements in common.

Formally, the problem can be defined as follows:

Definition 1: Maximum (k,m)-subsets problem

Let n, k,m, where Un = {a1, . . . , an}, and 0 ≤ m ≤ k < n.

We denote by Uk,n = {L ⊆ Un : Card(L) = k} the set of

subsets of Un that have exactly k elements.

We say that Fm
k,n ∈ 2Uk,n is a maximum (k,m)-subset of Un

if it satisfies the following conditions:

1) ∀L,L′ ∈ Fm
k,n, Card(L ∩ L′) ≤ m.

2) ∀F ′ ∈ 2Uk,n that satisfies the above condition, we have

Card(F ′) ≤ Card(Fm
k,n).

In this case we say that this problem has a solution of size

K = Card(Fm
k,n) ≤ Ck

n.

Example 1: Let U4 = {a1, a2, a3, a4}, k = 2, and m = 1.

One can easily check that a solution to this problem is simply

given by:

F 1
2,4 = {{a1, a2}, {a1, a3}, {a1, a4}, {a2, a3}, {a2, a4},

{a3, a4}}, where F 1
2,4 happens to be equal to the set of all

subsets of U4 of size two (i.e. U2,4).

Indeed, each element of F 1
2,4 has a cardinal equal to two,

and the intersection of any couple of elements in F 1
2,4 is less

than or equal to one. To conclude, it is easy to see that the

above set is the largest one that satisfies the conditions stated

in Definition 1 since Card(F 1
2,4) = C2

4 = 6.

Example 2: Let U5 = {a1, a2, a3, a4, a5}, k = 3, and

m = 1.

It is straightforward to see that a possible solution for this

problem is given by F 1
3,5 = {{a1, a2, a3}, {a1, a4, a5}}.

Note that this solution is not unique since

F ′ = {{a1, a2, a3}, {a3, a4, a5}} is another possible

one.

Now any attempt to add a set of size k = 3 to F 1
3,5 results

in violating the first constraint given in Definition 1 .

The trivial case where m = 0 can be solved in linear

time. Indeed, given Un and a positive integer k, we consider

subsets that contain k successive elements from Un. By

construction, the intersection of any two subsets in F 0
k,n is

empty. Moreover, card(F 0
k,n) = n/k.

Example 3: Let U7 = {a1, a2, a3, a4, a5, a6, a7}, k = 2,

and m = 0.

A solution to our problem has size three:

F 0
2,7 = {{a1, a2}, {a3, a4}, {a5, a6}}

and card(F 0
2,7) = 7/2 = 3.

It is worth noting that if we modify condition (1) in

Definition 1 so as to reason with subsets of Uk,n that have

exactly m elements in common, then solving our problem

becomes trivial as shown in Proposition 1.

Proposition 1: Using the same notation given in Defini-

tion 1, let the first condition be: ∀L,L′ ∈ Fm
k,n, Card(L ∩

L′) = m.

We certify that Card(Fm
k,n) = Ck−m

n−m.

Without loss of generality, consider any subsets of Uk,n that

have m elements in common (e.g. {a1, a2, . . . , am}). Once

we fix m elements in a subset of size k ≥ m, we choose the

remaining k−m elements out of n−m elements. Therefore,

the total number of subsets of size k we can build and that

have m elements in common is equal to Ck−m
n−m.

Example 4: Let U100, k = 20, and m = 10.

There are at most C20−10
100−10 = C10

90 subsets of U100 of size 20
that have exactly 10 elements in common.

In the next section we show how to solve our problem

using a brute-force approach.

IV. BRUTE FORCE

Given a set Un of size n, an integer k < n and a target

0 ≤ m < k, a straightforward algorithm for solving our

problem consists in enumerating all the subsets of Un of

size k. Then we process the set of all subsets of Uk,n as

follows: for each subset we check whether the intersection

of any couple of its elements is less than or equal to m. If

this is the case, and if the selected subset is the largest one

we considered so far, then we update Fm
k,n accordingly.

Proposition 2: The running time of Algorithm 1 is

T (n) = O(n2 × (Ck
n)

2 × 2C
k
n)

proof Obviously, lines 1 and 2 require Θ(Ck
n + 2C

k
n) =

Θ(2C
k
n) steps. Next we determine the running time of the

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_25

Volume 48, Issue 2: June 2021

__

Algorithm 1 Maximum (k,m)-subsets problems

Require: n, k,m ∈ N, where k < n and 0 ≤ m < k
1: Compute Uk,n

2: Compute 2Uk,n

3: Fm
k,n = ∅ {Initialization to the empty set}

4: for all Tk ∈ 2Uk,n do

5: for all L,L′ ∈ Sk, (where L 6= L′) do

6: if Card(L ∩ L′) > m then

7: break

8: end if

9: end for

10: if Card(Tk) > Card(Fm
k,n) then

11: Fm
k,n = Tk

12: end if

13: end for

14: return Fm
k,n

nested two for loops.

Let Tk ∈ 2Uk,n . For each couple of elements in Tk, we test

whether they have more than m elements in common. If

this is the case we discard this set. Otherwise (i.e. we have

∀L,L′ ∈ Tk; |L∩L′| ≤ m), we compute the cardinal of Tk

and, if necessary, update Fm
k,n (lines 10 and 11).

Note that computing the intersection of two sets of size k
requires Θ(k2). Therefore, the test at line 6 requires at most

O(k2) operations. Moreover, we have to repeat this operation

for any couple of elements in Tk (i.e. inner for loop at line

5), for a total of O(k2)×Θ(l(l + 1)/2) = O((kl)2), where

Card(Tk) = l.

Since the for loop at line 4 is repeated Θ(2C
k
n) times, we

deduce that the overall running time of the algorithm is

T (n) = O((kl)2 × 2C
k
n).

It is easy to see that STk
∈ 2Uk,n may contain up to Ck

n

elements, which gives us l = O(Ck
n).

Before concluding, note that k may also depend on n (e.g.

k = n/2). Therefore the running time of Algorithm 1 is

T (n) = O(n2 × (Ck
n)

2 × 2C
k
n).

Proposition 3: For k = Θ(n), we need O(2n−1) opera-

tions to compute Ck
n.

proof Let k = n
2 . We have:

Ck
n =

n!

k!(n− k)!

=
n!

n
2 !(n− n

2)!

=
n!

n
2 !× n

2 !

Recalling Stirling’s approximation for the factorial function

(i.e. n! ≈
√
2πn

(

n
e

)n
):

C
n
2

n ≈
√
2πn

(

n
e

)n

(

√

2π n
2

(

n
2

e

)
n
2

)2

≈
√
2πn

(

n
e

)n

2π n
2

(

n
e

)n × 1
2n

≈
√
2πn

2πn
× 2n−1

= Θ

(

1√
n
× 2n−1

)

= O(2n−1)

Corollary 1: A set Un that contains n elements has O(2n)
subsets of size k = Θ(n) each.

Corollary 2: In the worst case scenario, Algorithm 1 runs

in

T (n) = O(n2 × 22n × 22
n−1

)

where the leading factor is a double exponential.

Proposition 4: The maximum (k,m)-subsets problem is

EXP-hard.

proof Let k = Θ(n). The number of subsets of size k is

obviously exponential with respect to n.

Let m = k − 1. Our solution Fm
k,n contains all the subsets

of Un of size k, and enumerating them requires exponential

time.

V. NEXP-COMPLETNESS RESULT

We show in this section that our problem belongs to

the class NEXP by reducing it to the succinct K-coloring

problem.

Definition 2: We say that an ordered binary decision dia-

gram OBDD represents the set Un for an integer m < n if it

is built as described below, where we assume that the levels

of the OBDD are numbered from 1 (i.e. the root) to n+ 1.

For all i where 1 ≤ i ≤ n, level i contains 2i−1 internal

nodes ai.
The last level consists of terminal nodes with values 0 or

1. Given such a node x, we determine its value as follows:

We consider the path from the root to x. If the number of

times we go to the left is less than or equal to m, then we

assign to x the value 1; otherwise we assign it the value 0

(see Figure 2 (a) for an example).

Definition 3: Let an OBDD that represents a set Un for

an integer m. We say that the OBDD accepts two subsets

L ∈ Un and L′ ∈ Un if we reach a terminal node with

value 1 after following these steps: Starting from the root of

the OBDD, and for all 1 ≤ i ≤ n we check to see if the

processed node ai belongs to both L and L′. If this is the

case then we go to the left, otherwise we go to the right.

In other words, an OBDD accepts two subsets L and L′

if and only if card(L ∩ L′) ≤ m.

Examples 5 and 6 illustrate our idea.

Example 5: Let U4 = {a1, a2, a3, a4} and m = 1.

The OBDD in Figure 2 (a) (or its reduced form in part (b))

allows us to reason about the intersection of subsets of U4.

Given L = {a1, a3} and L′ = {a3, a4} for example, we

check that: a1, a2 and a4 do not belong to L ∩ L′, and that

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_25

Volume 48, Issue 2: June 2021

__

a1

a2 a2

a3 a3 a3 a3

a4 a4 a4 a4 a4 a4 a4 a4

0 0 0 0 0 0 0 1 0 0 0 1 1 1 10

(a)

a1

a2a2

a3 a3

a4

10

(b)

Fig. 2. OBDD (and its reduced form) that represents the set U4 for m = 1.

a3 ∈ L ∩ L′. So starting from the root, we go right-right-

left-right.

In this case the OBDD accepts the subsets L and L′.

Example 6: Let U5 = {a1, a2, a3, a4, a5} and m = 1.

Given L = {a1, a3, a5} and L′ = {a1, a3, a4}, we easily

check that the OBDD in Figure 3 does not accept the subsets

L and L′.

a1

a2 a2

a3 a3

a4 a4

a5

0 1

Fig. 3. Reduced OBDD that represents the set U5 for m = 1.

We indicate in Figure 4 the general form of a reduced

ordinary binary decision diagram where the initial set has

n elements. This efficient representation requires only O(n)
space instead of the original O(2n) space. We notice that we

have only two final states (i.e. 0 and 1), and that the graph

has two diagonals: one with the elements a1, a2, . . . , an−1,

and the other one with the elements a2, a2, . . . , an.

Below is a pseudo-code that determines whether or not an

OBDD accepts two subsets of Un.

a1

a2 a2

a3 a3

a4

10

an

a(n−1)

Fig. 4. General form of a reduced OBDD that represents the set Un for
m = 1.

Algorithm 2 Return true if card(L ∩ L′) ≤ m, and false

otherwise.

Require: OBDD representing Un = {a1, . . . , an} for m
1: Let L ⊆ Un, L′ ⊆ Un, where card(L) = card(L′) = k
2: (Optional) Sort the elements in L and L′

3: i = 1, counter = 0
4: while (i ≤ n) do

5: if ai ∈ L ∩ L′ then

6: go to the left

7: i = i+ 1, counter = counter + 1
8: else

9: go to the right

10: i = i+ 1
11: end if

12: end while

13: if (counter ≤ m) then

14: return 1
15: else

16: return 0
17: end if

Proposition 5: Determining if the intersection of two sub-

sets of size k contains less than m elements can be done in

T (n) = O(n log n).

proof The result can be easily derived from Algorithm 2.

Indeed, sorting the subsets requires O(k log k). The test on

line 5 can be done in constant time since the subsets are

sorted. For that we can simply use two counters j and j′ for

the subsets L and L′, respectively. We compare ai to aj ∈ L
and to aj′ ∈ L′ in constant time, then increment the counters

accordingly. Since the while loop is entered O(n) times, the

overall running time of the algorithm is O(n+klogk). In the

worst case we have k = O(n), therefore T (n) = O(nlogn).
Note that if the subsets are not sorted, then the test on line 5

would require O(k) steps. The leading factor for the while

loop (and also for the whole algorithm) becomes O(kn) =
O(n2).

We next prove that our problem is NEXP-complete by

reducing to it the succinct K-coloring problem. For this

purpose we consider graphs that have Ck
n nodes and where

k = Θ(n). We know from Proposition 3 that they contain an

exponential number of nodes with respect to n (and therefore

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_25

Volume 48, Issue 2: June 2021

__

w.r.t. k).

Intuitively, each node of the graph corresponds to a subset

of Un of size k.

Proposition 6: Let K be some positive integer, and

m, k, n such that 0 < m ≤ k < n.

For any instance Pm,k,n of the maximum (k,m)-subsets

problem, there is a graph Gm,k,n such that if Pm,k,n has

a solution of size K then Gm,k,n is K-colorable.

proof Our reduction R is straightforward and can be done

in polynomial time with respect to the size of the input.

Intuitively, a node i of the graph Gm,k,n is the encoding

of a distinct subset of Un of size k, that we denoted by

Si (recall Definition 1). Let Pm,k,n be an instance of the

maximum (k,m)-subsets problem. The reduction R associates

to this instance the graph Gm,k,n with Ck
n vertices, where

node i corresponds to the subset Si. We next consider the

OBDD that represents the set Un for m (as described in

Definition 3). For any couple of nodes i and j of Gm,k,n,

we check whether the OBDD accepts the subsets Si and Sj .

If this is the case (i.e. the subsets Si and Sj have less than

m elements in common), we add an edge between i and j;

otherwise we don’t.

Clearly, if Pm,k,n has a solution of size K then Gm,k,n is

K-colorable.

VI. CONCLUSION

Given a set S of size n, we tackled in this paper the

problem of determining the largest number of subsets of

S of size k that have at most m elements in common.

We showed that this problem is at least EXP-hard and at

most NEXP-complete. Our main proof reduces the maximum

(k,m)-subsets problem to the succinct K-coloring problem,

and uses very well-known data structures to represent graphs;

namely ordered binary decision diagrams.

Besides showing whether this problem is EXP-complete or

NEXP-complete, we intend to determine its tractable in-

stances. More precisely, we would like to investigate whether

there is a polynomial-time solution to our problem for some

specific values of m, k, and n.

REFERENCES

[1] C. Y. Lee, ”Representation of Switching Circuits by Binary-Decision
Programs”, Bell System Technical Journal, vol 38, pp. 985–999, 1959.

[2] S. Cook, ”The Complexity of Theorem Proving Procedures”, Proceed-

ings of the third Annual ACM Symposium on Theory of Computing

(STOC71), pp. 151–158, 1971.
[3] K. Challita, ”Infinite RCC8 Networks”, International Journal of Artifi-

cial Intelligence, vol. 15, pp. 147–162, 2017
[4] Renzo Roel P. Tan, Jun Kawahara, Kazushi Ikeda, Agnes D. Garciano,

and Kyle Stephen S. See, ”Concerning a Decision-Diagram-Based
Solution to the Generalized Directed Rural Postman Problem,” IAENG

International Journal of Computer Science, vol. 47, no.2, pp. 302–309,
2020

[5] K. Challita, ”A Semi-Dynamical Approach for Solving Qualitative Spa-
tial Constraint Satisfaction Problems”, Elsevier, Theoretical Computer

Science, pp. 29-38, 2012.
[6] R. Karp, ”Reducibility Among Combinatorial Problems”, In R. E.

Miller; J. W. Thatcher; J.D. Bohlinger (eds.), Complexity of Computer

Computations. New York: Plenum., pp. 85–103, 1972.
[7] R. T. Boute, ”The Binary Decision Machine as a programmable

controller”, EUROMICRO Newsletter, Vol. 1(2), pp. 16–22, 1976.
[8] S. B. Akers, ”Binary Decision Diagrams”, IEEE Transactions on

Computers, pp. 509–516, 1978.
[9] Randal E. Bryant, ”Graph-Based Algorithms for Boolean Function

Manipulation”, IEEE Transactions on Computers, pp. 677–691, 1986.
[10] G. Boole, ”Mathematical Analysis of Logic”, MacMillan, Barclay

and MacMillan, Cambridge, 1847.

[11] G. Brassard and C. Crépeau, ”Zero-Knowledge Simulation of Boolean
Circuits”, Advances in Cryptology, pp. 223–233, 1987.

[12] W.-L. Chang, M. Guo, M.S.-H. Ho, ”Fast parallel molecular algorithms
for DNA-based computation: factoring integers”, IEEE Transactions on

NanoBioscience, pp. 149–163, 2005.
[13] H. Galperin, A. Wigderson, ”Succinct representations of graphs”,

Information and Control, pp. 183–198, 1983.
[14] Y. Laffont, ”Towards an algebraic theory of Boolean circuits”, Journal

of Pure and Applied Algebra, pp. 257–310, 2003.
[15] C. Papadimitriou, M. Yannakakis, ”A note on succinct representations

of graphs”, Information and Control, pp. 181–185, 1986.
[16] R. Bryant, ”Symbolic Boolean Manipulation with Ordered Binary

Decision Diagrams”, ACM Computing Surveys, Vol. 24, No. 3, pp.
293–318, 1992.

[17] C. Papadimitriou, ”Computational Complexity”, Addison Wesley,
1994.

[18] C. E. Shannon, ”A Symbolic Analysis of Relay and Switching
Circuits”, American Institute of Electrical Engineers Transactions, pp.
713–723, 1938.

[19] T. Cormen, C. Leiserson, R. Rivest, C. Stein, ”Introduction to Algo-
rithms”, MIT Press, third edition, 2009.

[20] R. Drechsler and B. Becker, ”Binary Decision Diagrams: Theory and
Implementation”, Springer, 1998.

[21] J. Leeuwen, ”Handbook of Theoretical Computer Science”, Elsevier,
1998.

[22] Panagiotis D. Michailidis, ”A Preliminary Performance Study on
Nonlinear Regression Models using the Jaya Optimisation Algorithm”,
IAENG International Journal of Applied Mathematics, vol. 48, n. 4, pp.
424–428, 2018.

[23] Lili Wang, and Limin Wang, ”Global Exponential Stabilization for
Some Impulsive T-S Fuzzy Systems with Uncertainties”, IAENG Inter-

national Journal of Applied Mathematics, vol. 47, n. 4, pp. 425–430,
2017.

[24] T. Takaoka, ”Efficient algorithms for the maximum subarray problem
by distance matrix multiplication”, Electronic Notes in Theoretical

Computer Science, pp. 191–200, 2002.
[25] K. Challita, ”Generalized Meeting Businessmen Problem”, Engineer-

ing Letters, vol. 27, no. 3, pp. 403–410, 2019.
[26] R. Canetti, O. Goldreich, S. Halevi, ”The random oracle methodology,

revisited”, Journal of the ACM (JACM), pp. 557–594, 2004.
[27] F. Bengtsson, J. Chen, ”Efficient Algorithms for k Maximum Sums”,

In: R. Fleischer, G. Trippen, (eds.). LNCS, pp. 137–148, 2004.
[28] Bryan E. Martinez, Monserrat A. Castro-Coria, Jaime Cerda, and

Alberto Avalos, ”An Efficient Method to Obtain Bifurcation Diagrams
based on PSO Algorithms”, Proceedings of The World Congress on

Engineering and Computer Science, pp. 73–78, 2018.
[29] Mohammed S. Alzaidi, Walid K. M. Ahmed, and Victor B.

Lawrence, ”Achieving Very Low Un-Coded BER via A Novel Reduced-
Complexity Fast-Detection for Diffusion-Based Molecular Communi-
cations”, Proceedings of The World Congress on Engineering and

Computer Science, pp. 24–29, 2018.
[30] J. Talbot, D. Welsh, ”Complexity and Cryptography: An Introduction”,

Cambridge University Press, 2006.
[31] Fatemeh Keshavarz-Kohjerdi, and Ruo-Wei Hung, ”The Hamiltonicity,

Hamiltonian Connectivity, and Longest (s, t)-path of L-shaped Supergrid
Graphs,” IAENG International Journal of Computer Science, vol. 47,
no.3, pp. 378–391, 2020.

[32] Chunfeng Wang, Yaping Deng, and Peiping Shen, ”A Global Opti-
mization Algorithm for Solving Indefinite Quadratic Programming”,
Engineering Letters, vol. 28, n. 4, pp. 1058–1062, 2020.

[33] Oleg V. Chernoyarov, Alexey N. Glushkov, Vladimir P. Litvinenko,
Boris V. Matveev, and Alexander A. Makarov, ”Algorithms and Devices
for Noncoherent Digital Radio Signal Processing”, Engineering Letters,
vol. 28, n. 4, pp. 1238–1248, 2020.

IAENG International Journal of Computer Science, 48:2, IJCS_48_2_25

Volume 48, Issue 2: June 2021

__

