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Abstract—Continuous learning from streaming data is one of
the contemporary most challenging topics. Learning algorithms
not only need to handle fast-moving big data but should also
be able to adapt to future evolving changes. The evolving
structure of data streams is the phenomenon referred to as
concept drift. Two types of concept drift handling based on
ensemble approaches are online ensemble and chunk-based
ensemble (window-based ensemble). The main disadvantage of
the chunk-based ensembles is the difficulty of tuning the block
size to provide a trade-off between fast reactions to drifts. In this
paper, we propose Accuracy Updated Ensemble-2 (AUE2) based
on the adaptive windowing approach (denoted as A-AUE2) by
using Brier Skill Score as sudden and gradual changes detector.
Moreover, K-Nearest Neighbors (KNN) based noise filtering
method is applied to eliminate the noisy samples from each
of the adaptive windows to improve the effectiveness of the
ensemble learning approach. This paper’s proposed approach
has been evaluated on six artificial data sets and four real
benchmark data sets by using two base learners. Specially, we
illustrate that the proposed approach has outperformed the
other state-of-the-art drift detection and handling approaches
by using performance metrics and statistical analysis.

Index Terms—Concept Drift, Data Stream, Adaptive Win-
dow, Ensemble Learning, Drift Detection, Noise.

I. INTRODUCTION

THE three main challenges of data stream mining are
speed, size and variability [14], [37]-[38]. Speed and

size depend on time and limited memory, and they cause
the algorithms to temporarily store the incoming data and to
process them only once. Variability in the data stream refers
to the changing data stream over time, which in unpredictable
ways influences the underlying concept of the data stream
over time, and it is the most important challenge in the
real-world application. The phenomenon of the evolving
data stream over time is called concept drift. The real-life
application areas of concept drifts are spam mail detection,
customer preferences, weather forecasting, financial trans-
actions and credit card fraud detection [2], [11], [16]. For
example, weather prediction rules can change radically with
the season [30]. Moreover, customer preferences may change
over time, depending on current weekdays, availability of
alternatives, inflation, etc. The cause of change is often
hidden that is not known a priori. It makes the learning
task more complicated. So, the concept drift is an important
challenge if the incoming data streams are not stationary.
The underlying changes in the distribution may be sudden
or abrupt drift, gradual drift, incremental drift and recurrent
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drift [1], [11], [16]. Fig. 1 presents the nature of different
types of concept drift.

(1) Sudden or abrupt drift: Sudden or abrupt drift is a
quick replacement from one concept to another. Sudden drift
can degrade the performance of the model directly and can
be easily detected by the detection methods.

(2) Gradual drift: The gradual drift refers to a phase of
transition in which instances of two different distributions
are mixed.

(3) Incremental drift: Incremental drift is a unique case
of gradual drift when the concept is derived from more
than two sources and the possibility that each concept will
evolve. Moreover, the gradual and incremental drifts are more
challenging to detect than sudden drift due to their small
change rates and overlapping data distributions.

(4) Recurrent drift: The recurring context is the re-
presentation of a concept after the passage of time.

The problem of concept drift has been considered to
mine data with optimal accuracy level. Data stream learning
is rapidly attracted to research due to many difficulties in
the streaming of the real-world. Concept drift detection is
a problem in these difficulties of data steam where the
distribution of data changes and the current prediction model
becomes inaccurate or ineffective. Learners of the data
stream are generally classified into single and ensemble
classifiers. Ensemble learning is the combination of single
classifiers whose decisions are aggregated by a voting rule.
The prediction of ensemble learning is more accurate than a
single classifier because it combines the decision of many
single classifiers. Ensemble learning is a popular method
for improving the accuracy of static analysis classification
problems but they need to be generalized for changing
environments. The generalization of ensemble learning may
include the changing of ensemble structure, updating the
technique of integration, or introducing direct online learning
from a single incoming sample [12], [18], [33].

For detecting the concept drifts, many heuristic approaches
have been proposed based on the two approaches of the
ensembles: (1) online ensemble and (2) chunk-based en-
semble. The online ensemble approach can react quickly
to abrupt drifts through one-by-one processing. But, the
online ensemble approach incurs high computational costs
due to frequent updating of the model. The chunk-based
ensemble approach adapts the concept drifts by creating
new component classifiers from new chunks of training
samples. The main drawback of the chunk-based ensemble
is the difficultly of tuning the chunk sizes or window sizes.
Accuracy Updated Ensemble-2 (AUE2) is proposed by inte-
grating the accuracy-based weighting mechanisms with the
incremental nature of Hoeffding Trees as a base learner [18].
AUE2 is the fixed-size chunk-based ensembles approach and
AUE2 incrementally updates every previous member of the
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Fig. 1. Types of Concept Drift

ensemble with observations in the most recent blocks. AUE2
intends to respond equally well to different concept drifts.

In this paper, the proposed A-AUE2 approach focuses on
the adaptive ensembles that sequentially create the compo-
nent classifiers from the adaptive windows. In handling the
different types of concept drift, A-AUE2 is less dependent on
chunk sizes than AUE2 because it uses the adaptive windows
based on Brier Skill Score method. Furthermore, a difficult
issue in the handling of concept drifts is to discriminate
the concept drifts and noise. The processing of noisy data
in the data streams is one of the most critical areas. In
this paper, A-AUE2 handles the problem of distinguishing
between concept drift and noise because of filtering the
noisy samples from each of the adaptive windows or chunks
by using the K-Nearest Neighbors (KNN). Our proposed
A-AUE2 approach is better than AUE2 for different types
of concept drift in artificial and real data streams with
Hoeffding Tree (HT) and Hoeffding Adaptive Tree that has
a classifier at the leaves (denoted as HATCL), respectively,
as base learner. And, the effectiveness of our proposed
approach is validated with Precision, Recall, F-Measure (F1),
Matthews Correlation Coefficient (MCC) and Area Under
the (Receiver Operating Characteristics (ROC)) Curve (AUC)
and statistically significant tests.

The main contributions of this paper are as follows:

1) First, the different windows are specified for each
ensemble member by using the adaptive windowing
method, as sudden and gradual changes detector in the
data stream to support the tackling of four types of
concept drift.

2) Second, we handle the noisy samples over each of the
adaptive sliding windows to improve the effectiveness
of the ensemble learning approach.

The remainder of this paper is arranged accordingly:
Section 2 includes related work on concept drift and the
concept drifts’ handling mechanisms. The detail of the

proposed methodology is described in section 3. Section 4
includes the experimental setup of the proposed approach.
Section 5 illustrates the results, discussions and comparisons
of the proposed approach with other methods. Finally, the
conclusion and future work are presented in Section 6.

II. RELATED WORKS

A. Concept Drift

Concept drift refers to the change in the relation of input
and output data over time in the underlying problem. Concept
drift takes place when the concept in which data are collected
changes from time to time after a minimum period of stability
[2]. At each point in time t, every instance is created by
a source with a joint probability distribution pt(x+y). If
all instances are generated by the same distribution, data
concepts are stable or stationary. If there exists x such that
two distinct points pt(x+y) 6= pt+4(x+y) in time t and t+4,
concept drift has occurred. Different components of pt(x+y)
may change [36]. Concept drift detection methods have two
categories:

1) Single Classifier for Concept Drift Detection and Han-
dling

2) Ensemble Classifiers for Concept Drift Detection and
Handling

1) Single Classifier for Concept Drift Detection and
Handling: In data stream environments, the concept drift
methods analyze the predictions from the basic classifier
and apply a decision model to detect changes in the data
distribution. Concept drift detection methods monitor the
performance of the base classifier and decide when the
concept drifts have occurred. In detection methods, a lower
confidence level is used for indicating the warning and
signaling the drift.

Drift Detection Method (DDM) detects concept drifts
from a set of samples by analyzing the probability of error
and standard deviation [4]. DDM’s parameters include the
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minimum number of instances, the value of warning and
drift. DDM detects sudden and significant changes well
but is unable to detect gradual and small changes. Early
Drift Detection Method (EDDM) is like DDM, which uses
the difference between two errors in classification [5]. The
parameters of EDDM include the value of warning, the
value of drift and the minimum number of errors before the
drift detects. EDDM is effective on gradual drift but noise
sensitive.

Statistical Test of Equal Proportions (STEPD) is similar
to DDM and EDDM but STEPD uses the accuracy of
the base classifier over two windows [6]. STEPD method
tracks an online classifier’s predictive accuracy. The core
idea of STEPD is to consider two online classified predictive
accuracy: (1) the recent accuracy and (2) the overall accuracy.
STEPD suggests a statistical significance after the concept
drift has occurred between the accuracy for recent samples
and the overall accuracy from the beginning of the learning.
When detecting sudden changes, STEPD is much faster and
more efficient than DDM.

Error Distance Approach for Drift Detection and Moni-
toring (EDIST2) detects concept drifts through two windows
[7]. EDIST2 uses the number of errors over two windows and
the distance between the errors. Concept-Adapting Very Fast
Decision Tree (CVFDT) extends Very Fast Decision Tree
(VFDT) to illustrate the concept drifts with a fixed sliding
window [8]. Fast-DBSCAN (FDBSCAN) can filter noise and
detect concept drifts [9]. FDBSCAN algorithm handles noise
data and classification algorithm (FDBCA) detects concept
drifting with Mean Square Error (MSE). Fisher Proportions
Drift Detector (FPDD), Fisher Square Drift Detector (FSDD)
and Fisher Test Drift Detector (FTDD) detect drifts with
Fisher’s Exact Test by monitoring the number of errors or
correct predictions in each of the two windows [10].

Wilcoxon Rank Sum Test Drift Detector (WSTD) monitors
the predictions of the base learner using two windows.
WSTD calculates the ranks and Pvalue using the predictions
of two windows to detect sudden and gradual drifts [44].

2) Ensemble Classifiers for Concept Drift Detection and
Handling: Knowledge-Maximized Ensemble (KME) is in-
tegrated the chunk-based and online ensembles methods for
dealing with various forms of concept drift [11]. KME can
be treated as a model of a hybrid ensemble. In KME, abrupt
drifts are observed in the drift detection method and KME
is an efficient approach based on the component evaluation
and the weighting methods for the three different drifts.

Accuracy Weighted Ensemble (AWE) is a powerful
chunks-based ensemble by training classification elements on
consecutive data pieces and incorporating the current chunks
to evaluate all other components [12]. In the final vote of
AWE, several of the best members are selected. The weight
of each component from AWE focuses on the mean square
error (MSE) based on the latest chunk observations.

Moreover, Krawczyk [13] proposed a lightweight improve-
ment that can be used to improve their strength to drifts
and noise on any online ensemble method. This method
focuses on uncertain classifiers to abstain from making a
prediction that is especially useful for noisy data streams.
Moreover, Entropy-Based Ensemble (EBE) is proposed the
incorporation of information entropy to detect concept drifts
in the evolving ensemble [14]. EBE compared the entropies

of two blocks for detecting concept changes.
Besides, Jadhav [15] proposed the single ensemble by

combining the online and block-based classifiers for sudden
and gradual drift . This method handles the missing value
of attributes. In this method, the class label is predicted and
updated instantaneously when the data instance is accessible.
Then, the instance is stored in the buffer. When the buffer
is complete, block-based classifiers use blocks of buffer for
class predictions and block-based classifiers that are modified
for these block instances.

Number and Distance of Errors (NDE) is introduced as a
novel explicit approach for detecting concept drifts based on
ensemble learners [16]. NDE method processes sample one
by one and monitors the error distribution of the ensemble to
detect probable drifts. The new concept of the NDE method
is trained to keep the model up to date when the drift is
detected.

Multi-Label Ensemble with Adaptive Windowing
(MLAW) demonstrates a new identification of changes
based on Jensen-Shannon divergences to identify different
types of concept drift in data streams [17]. MLAW measures
the distribution between two sequential windows using
Jensen-Shannon divergence algorithm. MLAW defines
a change when the measure of dissimilarity exceeds a
specified limit between two windows.

Weighted Majority Algorithm (WMA) leverages a
weighted vote on predictive algorithm performance from the
pool [19]. Dynamic Weighted Majority (DWM) is another
ensemble that complies with the rule of pure learning mistake
and a user-defined factor reduces its weight [20]. When the
DWM method requires, a new member of the ensemble is
added to the ensemble.

Adaptive Windowing Based Online Ensemble (AWOE)
[39] is proposed a hybrid approach by combining the online
processing and the best components of the block-based
ensemble. AWOE algorithm is applied to determine each
ensemble member with an adaptive window as a sudden
drift detector. In AWOE algorithm, the relative entropy
(Kullback-Leibler distance) is used to detect the sudden drift
by comparing the difference between two sub-windows.

III. PROPOSED METHODOLOGY

The main purpose of this research work is to study the
adaptation of classification on the four different types of
concept drift. Fig. 2 shows the architecture overview of the
proposed framework. In Fig. 2, the proposed preprocessing
stage has been combined with the following three steps:

1) Defining the Adaptive Windows
2) Filtering the Noisy Samples from Each Window
3) Handling the Types of Concept Drift with Ensemble

Learning Based on the Adaptive Windows
Algorithm (1), (2), and (3) provide a brief description

of proposed KNN embedded in each adaptive window of
A-AUE2. After A-AUE2 approach has been established, a
new ensemble model can be created by tackling noise and
concept drifts.

1) Defining the Adaptive Windows: In this paper, the
adaptive windows based on detecting sudden and gradual
drifts are determined by using Brier Skill Score (BSS)
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Fig. 2. Framework of Proposed Approach

method from the data stream. Brier Score (BS) and Brier
Skill Score (BSS) are commonly used verification measures
of forecast accuracy and skill [21], [35]. BSS is used for the
skill assessment of probabilistic forecasts. BSS is based on
BS, an index for the validation of probability forecasts. BSS
has a range of -∝ to 1. In BSS, the best value for a perfect
forecast is 1. When BSS is 0, the prediction skill is equal to
the reference prediction.

BSS = 1− BS

BSrf
(1)

In this Eq. (1), BS is Brier Score and BSrf is Brier
Score for the reference forecast. In BSS, negative values
mean that the forecast is less accurate than a standard
forecast. The value 0 is no skill compared to the reference
forecast and the value 1 is a perfect skill compared to
the reference forecast. BS measures the mean squared error
between expected and forecast probability [21]-[23], [35],
[46]. The score summarizes the magnitude of the error in
the probability forecasts. The best possible BS is 0 for total
accuracy. The lowest BS is 1, meaning that the forecast is
completely incorrect.

BS =
1

N

R∑
i=1

N∑
t=1

(pti − oti)2 (2)

In Eq. (2), R is the number of classes, N is the number
of instances, pti is the forecasted probability and oti is the
outcome happened 1 or 0.

In Algorithm (1), Brier Skill Score (BSS) and Brier Score
(BS) methods are used to define adaptive windows based
on the detecting sudden drift and gradual drift from the
data stream. This paper uses the two windows (older and
recent) and the recent window size is 50. The recent window
(nr) includes the probability predictions of instances. The
base classifiers of BS (Brier Score) are Hoeffding Tree
classifier (HT) and Hoeffding Adaptive Tree that has a

Algorithm 1 : Adaptive Windows Based on Brier Skill Score
Input: s : data stream, w : recent window, Bi : an adaptive

window from data steam, BSo : Brier Score of older
window, BSrf : Brier Score of recent window

Output: A new data set or An adaptive window.
1: storedPreds ← new byte[w];
2: storedPreds1 ← new byte[w1];
3: no ← 0, nr ← 0, BSo ← 0, BSrf ← 0;
4: w ← 50;
5: changeDetected ← false;
6: procedure ADAPTIVEWINDOW(s, Bi)
7: for each xi ∈ s do
8: if changeDetected then
9: reset storedPreds, storedPreds2 ;

10: Bi ← instances from two windows;
11: call Algorithm (2);
12: changeDetected ← false;
13: no ← 0, nr ← 0, BSo ← 0, BSrf ← 0;
14: end if
15: Updates probability predictions in older and re-

cent windows;
16: Updates statistics of both windows: no, nr, BSo,

BSrf ;
17: if no ≥ w then
18: if BSo ≥ BSrf then
19: BSS = 1- BSrf

BSo
;

20: else
21: BSS = 1- BSo

BSrf
;

22: end if
23: if BSS ≥ Threshold then
24: changeDetected ← true;
25: end if
26: end if
27: end for
28: end procedure

classifier at the leaves (denoted as HATCL). If the recent
window is full, the probability predictions of instances slide
to insert to the older window (no). no includes the overall
probability predictions of instances except the recent window
of probability predictions of instances. If the recent window
and the older window are 50, the BS of each window is
calculated by using the probability prediction of the classifier.
BSrf is the BS for the recent window and BSo is the BS
for the older window. After Brier Scores of the two windows
are calculated, the Brier Skill Score (BSS) is calculated. The
percentage of BSS is matched with the predefined threshold
to define whether or not drift. If the percentage of BSS is
greater than or equal predefined threshold, a drift (sudden or
gradual drift) has occurred.

When the drift is detected, the instances are combining
from the two windows to define an adaptive window or chunk
(Bi). When the drift is not encountered, each of the two
windows slides instance by instance from the data stream.
But, if a sudden or gradual drift is not detected in 1000
instances, 1000 instances are used to recognize a window
from the data stream. After defining each window, Algorithm
(2) is called to filter noise from this window.

Algorithm (1) reduces the difficultly of determining the
appropriate windows for the chunk-based ensemble. This
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Algorithm 2 : Handling the Noisy Samples over Each
Window Based on KNN
Input: k : number of nearest neighbors, nk : number of

nearest neighbors instances, Bi : instances of a window
from Algorithm (1), B′i : new chunk.

Output: A new data set (a new window) after filtering noise.
1: k ← 6;
2: procedure NEWDATASET(Bi, B′i)
3: for each xj ∈ Bi do
4: nk(xj) = KNN(xj ,Bi, k);
5: for each yj ∈ nk do
6: if class(xj) = class(yj) then
7: count = count+1;
8: end if
9: end for

10: if count > 1 then
11: B′i = xj ;
12: end if
13: end for
14: call Algorithm (3);
15: end procedure

algorithm incorporates to aid the handling of the four types
of concept drift based on ensemble learning.

2) Filtering the Noisy Samples from Each Window: K-
Nearest Neighbors (KNN) [47]-[48] is used to filter the
noisy samples from data streams. Noisy samples in real
environments are inevitable because of inaccuracy in data
collection, device weaknesses, data transmission and man-
made disruptions. Therefore, concept drifts and noisy sam-
ples are the two majors in the challenges of data streams.
The problem of noisy sample handling in concept-drifting
data streams has been increasingly concerned. Noisy sample
processing is one of the most important fields in mining
data streams. Noise can be interpreted as fluctuations in time
or space that confuse drift detectors. A difficult problem in
handling the concept drifts is to distinguish between true
concept drift and noise.

In Algorithm (2), KNN filters any samples whose class
label is equal one or below from the class of its six nearest
neighbors (k = 6) over each window from Algorithm (1).
After defining a new window, Algorithm (3) is used. This
algorithm is a more effective approach for ensemble learning
by combining in an adaptive window.

3) Handling the Types of Concept Drift with Ensemble
Learning Based on the Adaptive Windows: Different four
types of concept drift are handled by using ensemble learn-
ing dependent on the adaptive windows. Accuracy Updated
Ensemble-2 (AUE2) depends on the fixed chunk-based en-
semble approach. After creating a new classifier from the
incoming new window and calculating weight from each
fixed-size data chunk, this classifier is added to the ensemble.
If the number of component classifiers in the ensemble is full,
the poorest classifier is substituted with the new classifier.
After the weakest classifier has been substituted with a new
classifier, the weights of the remaining classifiers in the
ensemble are adjusted by using the instances of the incoming
window. By using the prediction errors of the incoming
window, the weights of each component classifier in the
ensemble are evaluated. The remaining classifiers of the

ensemble are incrementally trained with the new incoming
window. AUE2 retains a weighted component classifier pool
and predicts the incoming instance class by incorporating the
component predictions with a weighted voting rule.

MSEr =
∑

p(y)(1− p(y))2 (3)

MSEij =
1

|B′i|
∑

x,y∈B′
i

(1− f jy (x))2 (4)

wc′ =
1

MSEr + ε
(5)

wij =
1

MSEr +MSEij + ε
(6)

In this paper, let B′1, B′2, . . . , B′i be an adaptive window
that contains instances from Algorithm (2). MSEr from Eq.
(3) is the mean square error of the current class distribu-
tion from current the adaptive window from Algorithm (2).
MSEij from Eq. (4) is the prediction error of classifier from
the ensemble by using the adaptive incoming window B′i.
Function fyj(x) from Eq. (4) denotes the probability given by
component classifier Cj ∈ ε (j = 1, 2, . . . , k) from ensemble
that x is an instance of class y. wc′ from Eq. (5) is the weight
of classifier of new window from Algorithm (2) and wij

from Eq. (6) is the weight of component classifiers from the
ensemble by using the incoming window. In addition, a very
small positive value (ε) is added to the equation in order to
avoid the division by zero problems.

In Algorithm (3), C ′ is created the classifier from the
instances of the incoming window. Then, new weight wc′

is calculated with the incoming window B′i and C ′ is added
to the ensemble. If the ensemble is full, the least accuracy is
substituted with C ′ in the ensemble. After substituting, the
remaining component classifiers Cj ∈ ε in the ensemble are
incrementally trained with the incoming window B′i. In this
algorithm, the ensemble size (en) is used 10. If the memory
boundary is exceeded, the least active leaves from Hoeffding
are pruned to match the memory restriction.

In Algorithm (3), A-AUE2 approach based on the adaptive
windows is proposed by creating the new learners and cal-
culating the weights of learners from the incoming windows
of Algorithm (2). This Algorithm (3) is a more effective
approach for handling the four types of concept drift because
this paper uses A-AUE2 (AUE2 approach based on the
adaptive windows).

IV. EXPERIMENTAL SETUP

This section presents the related information for the
analysis of experiments. All of the tested algorithms are
implemented in Java programming language by extending the
MOA software [24]. All evaluation measures are determined
periodically using the prequential evaluation method with
the basic classification performance evaluator. The ensemble
size for AWE, Anticipative Dynamic Adaptation to Con-
cept Change (ADACC), Adaptable Diversity-based Online
Boosting (ADOB), Dynamic Adaptation to Concept Changes
(DACC) and AUE2 is 10. VFDT or HT and HATCL are used
for the base classifiers of all the single and ensemble drift
detection and handling methods. The experiment analysis
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Algorithm 3 A-AUE2 (AUE2 Based on Adaptive Windows)
Input: en : number of ensemble members, m : memory limit,

B′i : instances of the incoming window from Algorithm
(2).

Output: ε : ensemble of en weighted incremental classifiers.
1: ε ← φ;
2: C ′ ← new component classifier built on B′i ;
3: procedure ENSEMBLECLASSIFIERS(B′i, ε)
4: calculate wc′ based on Eq. (5);
5: for each Cj ∈ ε do
6: apply Cj on B′i to derive MSEij ;
7: compute weight wij based on Eq. (6);
8: end for
9: if | ε | < en then

10: ε ← ε ∪ C ′;
11: else
12: substitute least accurate classifier in ε with C ′ ;
13: end if
14: for each Cj ∈ ε \C ′ do
15: incrementally train classifier Cj with B′i;
16: end for
17: if memory-usage (ε) > m then
18: prune (decrease size of) component classifiers;
19: end if
20: end procedure

uses the default parameters for the base classifier of single
and ensemble drift detection approaches in the MOA tool.
The window size of all ensemble algorithms is 1000. In this
paper, the predefined threshold (72) is used to determine a
drift by comparing two windows (recent and older).

A. Data Sets

This paper uses 10 concept drift data sets. Table I provides
the main characteristics of these data sets. This paper utilizes
two kinds of data sets.

There are:
1) Real Data Sets or Data Streams
2) Synthesize Data Sets or Data Streams
1) Real Data Sets or Data Streams: The real benchmarks

data sets are gathered from the UCI Repository 1. The first
real data set is Usenet data set related to medicine, baseball,
and space domains. Usenet data set contains 1500 instances,
99 attributes, and two classes.

The second real benchmark data set is the Shuttle data set
and it contains 9 attributes all of which are numerical. This
data set consists of 3 classes and 100000 instances.

The third real data set is Weather data set and it contains
eight different features such as temperature, pressure and
wind speed, etc. from 1949 to 1999 were measured at the
Offutt Air Force Base in Bellevue, Nebraska. The aim of
Weather data set is to forecast whether or not it will rain on
a certain day. This data set has 18159 instances.

The final real data set is Airlines [10], [27] and it is a
binary data set consisting of 539,383 samples. The aim is to
estimate whether flights are delayed or not, based on a set
of flight information: name of the company, departure time,

1htt, http://rchive.ics.uci.edu/ml

flight number, duration, airports of origin and destination and
day of the week.

2) Synthesize Data Sets or Data Streams: The synthesis
data sets are generated using MOA framework.

The SEA generator is used to create three data sets.
These three data sets are SEAS with sudden concept drifts,
SEASR with sudden recurrent drifts, and SEAG with grad-
ual drifts. The three data sets contain 1000000 instances,
10% noise, and 2 classes. The three data sets consist of three
attributes and the first two attributes are relevant. SEAS data
set has three concept drift and SEASR data set has four
concept drifts with a sudden drift every 250000 instances.
SEAG produces 9 concept drifts.

The random radius basis function generator (RanRBF)
creates a fixed number of random centroids, class labels,
position, weight, and standard deviation. We use this gen-
erator to generate gradual drift (RanRBFGR) which has
1000000 instances, 20 features and no noise. RanRBFGR

is designed to contain four gradual recurring drifts with each
concept containing four decision classes.

Hyperplane (Hyper) is mainly used to simulate incremen-
tal drift. We use this generator with 1000000 samples and
10 attributes. The incremental drift can be generated by
changing weight by 0.1 for each sample and by adding 5%
noise to the data.

This paper uses the Random Tree generator to create
RanTreeSRF with 10 numerical attributes, 6 classes, and
no noise. The RanTreeSRF data set comprises only 100000
samples, but 15 sudden drifts with a sudden drift every 2790
observations, it is the fastest evolving data set.

B. Compared Methods

The proposed approach can be compared to the other
algorithms such as VFDT or HT, HATCL, NB, Adaptive
Sliding Window (ADWIN), ADOB, ADACC, AWE, DACC
and AUE2 in many experiments. ADWIN is concept drifts
detecting approach based on a single classifier. ADOB,
ADACC, AWE, DACC and AUE2 are ensemble models to
be used for adapting the types of concept drift.

Naive Bayes (NB) [26] is a simple classifier without
ignoring mechanisms that are useful for handling stationary
data streams. VFDT or HT [25] is a well-established tree
decision model which is specialized in high-speed data
streams. HATCL can be used to enhance prediction accuracy
when they are applied feature drifting data streams [40].
ADWIN approach [3] observes the changes and maintains a
data stream with the modified statistics. ADOB [41] approach
designed to resolve frequent and sudden concept drifts more
effectively in online learning environments. ADACC method
[32] may use for the recurring concepts and build on an
ensemble-based adaptive online learner. DACC approach
[42] tackles the difficulty of finding the appropriate threshold
and the concept drifts with many levels of severity and speed.

C. Performance Metrics

Precision from Eq. (7) is the percentage of the expected
drifts that occur. Recall from Eq. (8) is the percentage of
drifts that each method has correctly detected. F1 from Eq.
(9) is the harmonic mean of Precision and Recall. The

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_03

Volume 48, Issue 3: September 2021

 
______________________________________________________________________________________ 



TABLE I
CHARACTERISTICS OF EXPERIMENTAL DATA SETS

Data Sets # Inst # Att # Classes Noise # Drift Drift Type
SEAG 1000000 3 2 10% 9 gradual

SEAS 1000000 3 2 10% 3 sudden

HyperI 1000000 10 2 5% 1 incremental

SEASR 1000000 3 2 10% 4 sudden recurrent

RanRBFGR 1000000 20 4 0% 4 gradual recurrent

RanTreeSRF 100000 10 6 0% 15 sudden recurrent

Usenet2 1500 99 2 - - -

Shuttle 100000 9 3 - - -

Weather 18159 8 2 - - -

Airlines 539,383 7 2 - - -

TABLE II
AVERAGE ACCURACY RESULTS FROM 10 DATA SETS USING DRIFT DETECTION AND HANDLING METHODS BASED ON HT

Data Sets HT NB ADWIN ADOB ADACC AWE DACC AUE2 A-AUE2
SEAG 85.68 84.71 48.73 50.26 83.15 86.09 83.12 88.40 88.91
SEAS 84.89 83.87 51.88 56.74 84.20 85.64 84.17 88.94 89.29
HyperI 87.53 78.79 50.04 50.45 87.02 92.19 86.81 93.12 93.14
SEASR 87.25 86.56 42.19 47.29 84.22 85.48 84.26 88.97 89.34
RanRBFGR 91.52 60.39 24.01 29.69 62.76 78.41 62.70 97.24 96.61

RanTreeSRF 46.28 43.41 28.36 28.39 57.18 54.36 57.18 51.19 51.35

Usenet2 72.00 72.13 72.00 64.87 76.33 67.07 76.27 67.07 67.47

Shuttle 62.58 44.44 34.94 44.78 94.80 93.42 94.48 95.03 95.22
Weather 73.43 69.22 68.80 72.54 73.28 69.81 73.32 74.19 74.59
Airlines 63.89 58.48 55.45 54.35 59.99 60.66 60.01 64.51 63.96

TABLE III
AVERAGE ACCURACY RESULTS FROM 10 DATA SETS USING DRIFT DETECTION AND HANDLING METHODS BASED ON HATCL

Data Sets HATCL NB ADWIN ADOB ADACC AWE DACC AUE2 A-AUE2
SEAG 85.98 84.71 52.49 58.98 84.67 84.62 84.72 86.53 86.95
SEAS 86.66 83.87 51.37 76.54 83.91 83.78 83.83 87.66 87.67
HyperI 88.22 78.79 50.02 50.47 80.78 78.81 79.12 92.03 92.06
SEASR 86.28 86.56 42.40 51.58 86.56 86.49 86.56 87.63 87.79
RanRBFGR 84.51 60.39 28.69 29.68 62.11 59.20 60.49 90.16 90.33
RanTreeSRF 42.91 43.41 28.34 28.39 49.29 43.72 43.43 46.01 46.33

Usenet2 72.53 72.13 43.93 72.33 73.40 70.00 72.53 70.00 66.47

Shuttle 46.75 44.44 35.05 44.29 55.47 45.49 54.34 80.37 87.48
Weather 71.10 69.22 68.70 72.31 71.36 68.35 69.46 68.80 70.66

Airlines 58.36 58.48 55.45 54.05 59.14 58.42 58.77 62.15 61.95

imbalance ratio between the numbers of positive and negative
samples is extremely impact of Matthews Correlation Coef-
ficient (MCC) criteria from Eq. (10) [43]-[45]. The value in
the [-1, 1] interval is returned for MCC and is based upon the
values True Positive (TP), False Positive (FP), True Negative
(TN) and False Negative (FN) ) in the confusion matrix.
Area Under the ROC Curve (AUC) Eq. (11) [22], [49]-
[50] represents a trade-off measure between TP rates and
FP rates. It estimates the area under the receiver operating
characteristics (ROC) curves. ROC is obtained by plotting a
set of TP rates versus FP rates related to various classification
thresholds.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(9)

MCC = TP∗TN−FP∗FN√
(TP+FP )∗(TP+FN)∗(TN+FP )∗(TN+FN)

(10)

AUC =
1 + TPrate− FPrate

2
(11)

Additionally, Wilcoxon Signed Rank Test and Friedman
Test are used for comparing A-AUE2 and the comparative
methods. Wilcoxon Signed Rank Test is a hypothetical
test of non-parametric statistics that used to compare two
related samples from the same population and assessed for
significant differences (i.e. It is a paired difference test)
[22], [29], [31], [34]. Wilcoxon Signed Rank Test is also
used with SPSS software to help the statistical analysis
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Fig. 3. Classification accuracy of drift detection and handling methods
using HT as base classifier for SEAG data set

Fig. 4. Classification accuracy drift detection and handling methods using
HT as base classifier for SEAS data set

of comparative results. Friedman Test is evaluated on the
statistical significance of the differences in the algorithms
accuracies [11], [18], [29].

V. RESULTS AND DISCUSSIONS

This section illustrates the results analysis arrangements
for evaluating A-AUE2 according to the results of per-
formance analysis and statistical analysis using two base
learners: HT and HATCL. The best case for each data set is
highlighted in bold.

A. Performance Analysis

Table II and III illustrate the average prediction results for
the different approaches using HT and HATCL, respectively,
as base learner. Additionally, the two graphical plots are

Fig. 5. Classification accuracy of detection and handling methods using
HT as base classifier for HyperI data set

Fig. 6. Classification accuracy of drift detection and handling methods
using HT as base classifier for SEASR data set

generated for each data set to show the performance curves
of all tested algorithms. Figs. 3-8 report the best performance
of A-AUE2 in Table II. Figs. 9-14 indicate the highest
performance of A-AUE2 in Table III. In Figs. 3-8 and Figs.
9-14, the x-axis represents the number of observes processed
and the y-axis depicts the Average accuracy. Figs. 3-14 show
the prequential Average accuracy of the tested algorithms on
data sets with the four types of concept drift.

According to Table II, Fig. 3 indicates the performance
of the algorithms in the SEAG data set. The very worst-
performing algorithm for gradually drifted data streams is
ADWIN, followed by ADOB, ADACC and DACC. Fig. 4
illustrates the Average accuracy of the SEAS data set, which
involves three sudden concept drifts. In Fig. 4, the most
severely malfunctioning algorithm is ADWIN, followed by
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TABLE IV
EVALUATION RESULTS OF DRIFT DETECTION AND HANDLING METHODS USING HT AND HATCL AS BASE CLASSIFIER

DataSets
Hoeffding Tree(HT) Hoeffding Adaptive Tree Classifier Leaves (HATCL)

Methods Precision Recall F1 MCC AUC Methods Precision Recall F1 MCC AUC

SEAG

HT 0.85704 0.85725 0.85715 0.71429 0.85725 HATCL 0.85965 0.85988 0.85976 0.71953 0.85988

NB 0.84706 0.84733 0.84719 0.69438 0.84733 NB 0.84706 0.84733 0.84719 0.69438 0.84733

ADWIN 0.67658 0.50124 0.57586 0.02957 0.50124 ADWIN 0.69107 0.53742 0.60464 0.16912 0.53742

ADOB 0.55884 0.51470 0.53586 0.05882 0.51470 ADOB 0.63712 0.59744 0.61664 0.23118 0.59744

ADACC 0.83144 0.83169 0.83156 0.66312 0.83169 ADACC 0.84659 0.84683 0.84671 0.69342 0.84683

AWE 0.86076 0.86096 0.86086 0.72173 0.86096 AWE 0.84623 0.84650 0.84637 0.69273 0.84650

DACC 0.83119 0.83144 0.83131 0.66262 0.83144 DACC 0.84716 0.84743 0.84730 0.69459 0.84743

AUE2 0.88388 0.88398 0.88393 0.76786 0.88398 AUE2 0.86529 0.86557 0.86543 0.73087 0.86557

A-AUE2 0.88900 0.88906 0.88903 0.77806 0.88906 A-AUE2 0.86936 0.86963 0.86949 0.73899 0.86963

SEAS

HT 0.84687 0.83067 0.83869 0.67734 0.83067 HATCL 0.86600 0.84983 0.85784 0.71565 0.84983

NB 0.84228 0.81367 0.82773 0.65533 0.81367 NB 0.84228 0.81367 0.82773 0.65533 0.81367

ADWIN 0.66700 0.59944 0.63142 0.25774 0.59944 ADWIN 0.66024 0.59454 0.62567 0.24616 0.59454

ADOB 0.61911 0.61156 0.61531 0.23054 0.61156 ADOB 0.75906 0.77220 0.76557 0.53110 0.77220

ADACC 0.83953 0.82301 0.83119 0.66233 0.82301 ADACC 0.84506 0.81233 0.82837 0.65658 0.81233

AWE 0.85648 0.83734 0.84680 0.69356 0.83734 AWE 0.84113 0.81273 0.82669 0.65324 0.81273

DACC 0.83884 0.82310 0.83089 0.66175 0.82310 DACC 0.84185 0.81318 0.82727 0.65440 0.81318

AUE2 0.88992 0.87501 0.88240 0.76478 0.87501 AUE2 0.87600 0.86142 0.86865 0.73728 0.86142

A-AUE2 0.89305 0.87931 0.88613 0.77224 0.87931 A-AUE2 0.87595 0.86160 0.86872 0.73741 0.86160

HyperI

HT 0.87534 0.87534 0.87534 0.75068 0.87534 HATCL 0.88306 0.88217 0.88262 0.76523 0.88217

NB 0.78791 0.78791 0.78791 0.57582 0.78791 NB 0.78791 0.78791 0.78791 0.57582 0.78791

ADWIN 0.62120 0.50041 0.55430 0.01403 0.50041 ADWIN 0.60394 0.50026 0.54723 0.01032 0.50026

ADOB 0.50458 0.50458 0.54335 0.04028 0.50458 ADOB 0.64373 0.50469 0.56579 0.05192 0.50469

ADACC 0.87025 0.87022 0.87023 0.74046 0.87022 ADACC 0.80776 0.80775 0.80776 0.61551 0.80775

AWE 0.92190 0.92190 0.92190 0.84380 0.92190 AWE 0.78813 0.78813 0.78813 0.57626 0.78813

DACC 0.86817 0.86812 0.86815 0.73629 0.86812 DACC 0.79118 0.79118 0.79118 0.58236 0.79118

AUE2 0.93121 0.93121 0.93121 0.86242 0.93121 AUE2 0.92027 0.92027 0.92027 0.84053 0.92027

A-AUE2 0.93139 0.93139 0.93139 0.86278 0.93139 A-AUE2 0.92064 0.92063 0.92064 0.84127 0.92063

SEASR

HT 0.86870 0.85441 0.86150 0.72297 0.85441 HATCL 0.86014 0.84126 0.85060 0.70115 0.84126

NB 0.86559 0.84211 0.85369 0.70732 0.84211 NB 0.86559 0.84211 0.85369 0.70732 0.84211

ADWIN 0.63681 0.53767 0.58305 0.14357 0.53767 ADWIN 0.62749 0.53813 0.57938 0.13944 0.53813

ADOB 0.58995 0.55892 0.57402 0.14560 0.55892 ADOB 0.62938 0.59565 0.61205 0.22249 0.59565

ADACC 0.83777 0.81795 0.82774 0.65542 0.81795 ADACC 0.86643 0.84127 0.85366 0.70725 0.84127

AWE 0.85645 0.82748 0.84171 0.68331 0.82748 AWE 0.86464 0.84135 0.85284 0.70561 0.84135

DACC 0.83862 0.81796 0.82816 0.65626 0.81796 DACC 0.86564 0.84202 0.85367 0.70727 0.84202

AUE2 0.88874 0.87207 0.88033 0.76063 0.87207 AUE2 0.87413 0.85711 0.86554 0.73105 0.85711

A-AUE2 0.89324 0.87571 0.88439 0.76875 0.87571 A-AUE2 0.87701 0.85784 0.86732 0.73460 0.85784

RanRBFGR

HT 0.91464 0.91526 0.91495 0.88656 0.94346 HATCL 0.84537 0.84192 0.84364 0.79181 0.89505

NB 0.60065 0.59616 0.59840 0.4660 0.73199 NB 0.60065 0.59616 0.59840 0.46601 0.73199

ADWIN 0.60283 0.25511 0.35851 0.04500 0.50340 ADWIN 0.69628 0.30136 0.42065 0.18095 0.53411

ADOB 0.75172 0.31156 0.44053 0.21064 0.54088 ADOB 0.75810 0.31144 0.44150 0.21176 0.54081

ADACC 0.63770 0.62553 0.63156 0.50569 0.74985 ADACC 0.61940 0.61290 0.61613 0.48939 0.74324

AWE 0.78654 0.78461 0.78558 0.71298 0.85595 AWE 0.59220 0.58463 0.58839 0.45190 0.72428

DACC 0.63714 0.62496 0.63099 0.50493 0.74947 DACC 0.60268 0.59724 0.59995 0.46786 0.73272

AUE2 0.97285 0.97205 0.97245 0.96319 0.98137 AUE2 0.90225 0.90058 0.90142 0.86843 0.93376

A-AUE2 0.96645 0.96556 0.96600 0.95463 0.97707 A-AUE2 0.90419 0.90206 0.90312 0.87071 0.93478

RanTreeSRF

HT 0.40645 0.32416 0.36067 0.24846 0.60341 HATCL 0.37044 0.28239 0.32048 0.20358 0.57888

NB 0.38559 0.28159 0.32548 0.20624 0.57834 NB 0.38558 0.28159 0.32548 0.32548 0.57834

ADWIN 0.58951 0.17688 0.27211 0.06204 0.50619 ADWIN 0.55375 0.17647 0.26765 0.05836 0.50596

ADOB 0.55579 0.17751 0.26908 0.06320 0.50655 ADOB 0.56125 0.17725 0.26941 0.06342 0.50642

ADACC 0.50621 0.41892 0.45845 0.36950 0.66297 ADACC 0.48127 0.37001 0.41837 0.32362 0.62849
AWE 0.50378 0.42283 0.45977 0.36998 0.66211 AWE 0.38885 0.28819 0.33104 0.21755 0.58167

DACC 0.50618 0.41889 0.45841 0.36948 0.66295 DACC 0.38355 0.28190 0.32496 0.20624 0.57855

AUE2 0.46104 0.37501 0.41360 0.3160 0.63436 AUE2 0.42328 0.32252 0.36609 0.25360 0.60257

A-AUE2 0.48999 0.35614 0.41248 0.30144 0.62472 A-AUE2 0.43398 0.31841 0.36732 0.24885 0.60083
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Usenet2

HT 0.70231 0.61650 0.65661 0.30705 0.61650 HATCL 0.69159 0.65050 0.67042 0.33962 0.65050

NB 0.68546 0.64750 0.66594 0.33079 0.64750 NB 0.68546 0.64750 0.66594 0.33079 0.64750

ADWIN 0.70231 0.61650 0.65661 0.30705 0.61650 ADWIN 0.38048 0.37700 0.37873 -0.24250 0.37700

ADOB 0.62469 0.63650 0.63054 0.26092 0.63650 ADOB 0.70710 0.73000 0.71837 0.43650 0.73000
ADACC 0.73694 0.70950 0.72296 0.44560 0.70950 ADACC 0.70289 0.66300 0.68236 0.36371 0.66300

AWE 0.69227 0.50800 0.58599 0.07844 0.50800 AWE 0.76990 0.55550 0.64536 0.24478 0.55550

DACC 0.73601 0.70900 0.72225 0.44419 0.70900 DACC 0.69068 0.65350 0.67158 0.34217 0.65350

AUE2 0.69227 0.50800 0.58599 0.07844 0.50800 AUE2 0.76990 0.55550 0.64536 0.24478 0.55550

A-AUE2 0.63740 0.52450 0.57547 0.11604 0.52450 A-AUE2 0.57963 0.52000 0.54820 0.07982 0.52000

Shuttle

HT 0.62728 0.62235 0.62480 0.43822 0.71710 HATCL 0.48381 0.47226 0.47797 0.21608 0.60410

NB 0.45731 0.44173 0.44938 0.16881 0.58063 NB 0.45731 0.44173 0.44938 0.16881 0.58063

ADWIN 0.75636 0.36522 0.49259 0.15560 0.52398 ADWIN 0.75630 0.36637 0.49361 0.15844 0.52484

ADOB 0.78395 0.46061 0.58027 0.32934 0.59569 ADOB 0.77795 0.45589 0.57489 0.32087 0.59213

ADACC 0.94797 0.94843 0.94820 0.92218 0.96123 ADACC 0.54840 0.55017 0.54928 0.32950 0.66289

AWE 0.93400 0.93418 0.93409 0.90118 0.95065 AWE 0.47815 0.44773 0.46244 0.18829 0.58586

DACC 0.94475 0.94508 0.94492 0.91724 0.95872 DACC 0.54229 0.54088 0.54158 0.31464 0.65565

AUE2 0.95016 0.95050 0.95033 0.92549 0.96286 AUE2 0.80622 0.80516 0.80569 0.70757 0.85354

A-AUE2 0.95202 0.95227 0.95214 0.92821 0.96419 A-AUE2 0.87566 0.87583 0.87575 0.81319 0.90672

Weather

HT 0.68840 0.66123 0.67454 0.34857 0.66123 HATCL 0.65924 0.64664 0.65288 0.30563 0.64664

NB 0.65206 0.66277 0.65738 0.31466 0.66277 NB 0.65206 0.66277 0.65738 0.31466 0.66277

ADWIN 0.61032 0.51666 0.55960 0.08574 0.51666 ADWIN 0.60219 0.51604 0.55580 0.08097 0.51604

ADOB 0.70504 0.73422 0.71933 0.43829 0.73422 ADOB 0.68197 0.68939 0.68566 0.37129 0.68939
ADACC 0.68715 0.67563 0.68134 0.36260 0.67563 ADACC 0.67243 0.68096 0.67667 0.35329 0.68096

AWE 0.63923 0.55172 0.59226 0.16972 0.55172 AWE 0.64020 0.64805 0.64410 0.28814 0.64805

DACC 0.68774 0.67647 0.68206 0.36404 0.67647 DACC 0.65587 0.66798 0.66187 0.32362 0.66798

AUE2 0.70497 0.64763 0.67508 0.34790 0.64763 AUE2 0.65556 0.67254 0.66394 0.32767 0.67254

A-AUE2 0.70400 0.67466 0.68902 0.37752 0.67466 A-AUE2 0.66692 0.67787 0.67235 0.34461 0.67787

Airlines

HT 0.63967 0.61818 0.62874 0.25695 0.61818 HATCL 0.59017 0.54560 0.56701 0.12825 0.54560

NB 0.59109 0.54736 0.56839 0.13136 0.54736 NB 0.59109 0.54736 0.56839 0.13136 0.54736

ADWIN 0.46959 0.49999 0.48431 -0.00085 0.49999 ADWIN 0.51041 0.50001 0.50516 0.00073 0.50001

ADOB 0.47704 0.49503 0.48587 -0.02136 0.49503 ADOB 0.46902 0.49267 0.48055 -0.03014 0.49267

ADACC 0.59202 0.58741 0.58971 0.17937 0.58741 ADACC 0.59684 0.55661 0.57603 0.14809 0.55661

AWE 0.59911 0.59394 0.59651 0.19298 0.59394 AWE 0.59028 0.54655 0.56757 0.12965 0.54655

DACC 0.59227 0.58766 0.58995 0.17987 0.58766 DACC 0.59465 0.55106 0.57203 0.13904 0.55106

AUE2 0.64352 0.62765 0.63549 0.27070 0.62765 AUE2 0.61552 0.60660 0.61103 0.22194 0.60660
A-AUE2 0.63635 0.62317 0.62969 0.62969 0.62317 A-AUE2 0.61350 0.60377 0.60856 0.21698 0.60377

TABLE V
AVERAGE ACCURACY RANKS USING HT AS BASE CLASSIIFER IN THE FRIEDMAN TEST

Data Sets HT NB ADWIN ADOB ADACC AWE DACC AUE2 A-AUE2
SEAG 4 5 9 8 6 3 7 2 1
SEAS 4 7 9 8 5 3 6 2 1
HyperI 4 7 9 8 5 3 6 2 1
SEASR 3 4 9 8 7 5 6 2 1
RanRBFGR 3 7 9 8 5 4 6 1 2

RanTreeSRF 6 7 9 8 1.5 3 1.5 5 4

Usenet2 4.5 3 4.5 9 1 7.5 2 7.5 6

Shuttle 6 8 9 7 3 5 4 2 1
Weather 3 8 9 6 5 7 4 2 1
Airlines 3 7 8 9 6 4 5 1 2

Average Rank 4.1 6.3 8.5 7.9 4.5 4.5 4.8 2.7 2.0

ADOB. The subsequent declines in the accuracy of ADWIN
and ADOB algorithms suggest that classifiers with sudden
drifts do not learn from the data without any drift reaction
mechanism. Additionally, AUE2 is developed with sudden
changes to perform the second-best in this figure.

Fig. 5 reports on the HyperI data set of the accuracy
of the analyzed algorithms that involves incremental concept

drifts. There is no drift reaction mechanism for ADWIN and
ADOB classifiers resulting in the worst performance on the
HyperI data set.

Fig. 6 illustrates the analyzed prequential accuracy which
includes four sudden recurring concept drifts. In this figure,
ADWIN and ADOB cannot respond to sudden recurrent
changes immediately and perform the worst.
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TABLE VI
AVERAGE RANKS OF AVERAGE ACCURACY, PRECISION, RECALL, F1, MCC AND AUC USING HT AS BASE CLASSIFIER IN THE FRIEDMAN TEST

HT NB ADWIN ADOB ADACC AWE DACC AUE2 A-AUE2
Average accuracy 4.1 6.3 8.5 7.9 4.5 4.5 4.8 2.7 2.0
Precision 4.4 6.9 7.0 6.7 4.9 4.6 5.3 2.7 2.7
Recall 4.5 6.0 8.6 6.9 4.4 4.5 4.6 3.2 2.5
F1 4.4 6.3 8.0 7.5 4.4 4.4 4.8 2.9 2.5
MCC 4.3 6.2 8.4 7.2 4.4 4.5 4.8 3.2 2.2
AUC 4.5 6.0 8.6 6.9 4.3 4.7 4.5 3.2 2.5

TABLE VII
AVERAGE RANKS OF AVERAGE ACCURACY, PRECISION, RECALL, F1, MCC AND AUC USING HATCL AS BASE CLASSIFIER IN THE FRIEDMAN

TEST

HATCL NB ADWIN ADOB ADACC AWE DACC AUE2 A-AUE2
Average accuracy 4.4 5.6 8.8 7.0 3.2 6.5 4.5 3.0 2.2
Precision 5.1 6.3 7.2 5.4 4.0 6.5 5.5 2.5 2.4
Recall 4.8 5.5 8.8 6.5 3.8 6.2 4.5 2.6 2.2
F1 5.1 5.6 8.5 6.2 3.5 6.6 4.7 2.7 2.1
MCC 5.0 5.1 8.9 6.3 3.5 6.6 4.7 2.8 2.3
AUC 4.8 5.6 8.9 6.5 3.8 6.2 4.5 2.6 2.2

Fig. 7. Classification accuracy of drift detection and handling methods
using HT as base classifier for Weather data set

Fig. 7 displays the performance of the evaluated algorithms
for Weather data set. NB, ADWIN and AWE are the poorest
performance on Weather data set. Fig. 8 shows the Average
accuracy of the algorithms evaluated on Shuttle data set.
NB, ADWIN, ADOB and HT are the worst-performing
algorithms in this figure.

According to the detailed results from Table III using
HATCL base classifier, Fig. 9 reports the accuracy of the
analyzed algorithms on the SEAG data set. For the data
stream with gradual drifts, the best performance is A-AUE2,
followed by AUE2 and HATCL. ADWIN is the worst-
performing algorithm.

Fig. 10 shows the prequential accuracy of the algorithms
on the SEAS data set and Fig. 11 displays the performance
on the HyperI . Fig. 12 illustrates on the SEASR data set

Fig. 8. Classification accuracy of drift detection and handling methods
using HT as base classifier for Shuttle data set

of the accuracy of tested algorithms and Fig. 13 reports the
performance on the RanRBFGR data set which contains
the four gradual recurring drifts. In these four figures, the
subsequent drops in the accuracy of ADWIN algorithm. The
Average accuracy of the Shuttle data set is shown Fig.
14. NB, ADWIN, ADOB and AWE are the more severely
malfunctioning algorithms in this figure.

According to the detailed results from Figs. 3-8 and Figs.
9-14, ADWIN is more poor accuracy than other algorithms.
Besides, ADWIN drift detector may not be as good as the
performance of ensemble approaches. AUE2 is the overall
second-best performance on the data set because of reacting
equally well to different types of drift. A-AUE2 approach is
the best performing method using HT and HATCL, respec-
tively, as base learner because A-AUE2 reduces the window
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Fig. 9. Classification accuracy of drift detection and handling methods
using HATCL as base classifier for SEAG data set

Fig. 10. Classification accuracy of drift detection and handling methods
using HATCL as base classifier for SEAS data set

size problem and handles the noisy samples in data streams.
Table IV presents the results regarding the evaluation of

the methods using Precision, Recall, F-Measure (F1) [28],
MCC and AUC of drift detection and handling based on HT
and HATCL classifiers.

In Table IV, considering the Precision results for HT
as base classifier, A-AUE2 obtained better on 5 out of
10 data sets except RanRBFGR, RanTreeSRF , Usenet2,
Weather and Airlines. For Precision results for HATCL as
base learner, our proposed A-AUE2 approach obtained the
highest results on 5 out of 10 data sets: SEAG, HyperI ,
SEASR, RanRBFGR and Shuttle. Regarding the Preci-
sion results in this table, we can conclude that A-AUE2 can
improve the Precision results using two base learners for 5
data sets while yields no obvious improvement for 5 data

Fig. 11. Classification accuracy of drift detection and handling methods
using HATCL as base classifier for HyperI data set

Fig. 12. Classification accuracy of drift detection and handling methods
using HATCL as base classifier for SEASR data set

sets.
Similarly, For Recall values of HT as the base classifier,

A-AUE2 obtained higher values on 5 out of 10 data sets
except RanRBFGR, RanTreeSRF , Usenet2, Weather
and Airlines in this table. AUE2 outperformed on 2 data
sets: RanRBFGR and Airlines. For HATCL classifier in
this table, our proposed approach achieved better Recall
results on 6 out of 10 data sets while ADOB performed
better on the other 2 data sets and AUE2 method obtained
better on the other one data sets.

In F1 result for HT base classifier, A-AUE2 can perform
better on 5 data sets and improve the F1 results of SEAG,
SEAS , HyperI , SEASR and Shuttle data sets in this table.
For HATCL base classifier of F1 result, A-AUE2 proposed
approach achieved the highest results on 6 out of 10 data sets
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Fig. 13. Classification accuracy of drift detection and handling methods
using HATCL as base classifier for RanRBFGR data set

Fig. 14. Classification accuracy drift detection and handling methods using
HATCL as base classifier for Shuttle data set

except RanTreeSRF , Usenet2, Weather and Airlines.
According to the MCC results for HT as the base classifier,

our proposed A-AUE2 approach is more successful on 6 out
of 10 data sets than the other drift detection and handling
methods. In MCC results for HATCL as base classifier,
our proposed approach is outperformed 6 data sets: SEAG,
SEAS , HyperI , SEASR, RanRBFGR and Shuttle.

In AUC results of all representative methods by using
HT as base learner, our proposed approach obtained the
highest results on 5 out of 10 data sets than the other
eight comparative methods. For the AUC results of HATCL
as base learner, the proposed A-AUE2 approach achieved
better results on 6 out of 10 data sets except RanTreeSRF ,
Usenet2, Weather and Airlines.

In order to the above results, we conclude that A-AUE2

TABLE VIII
RESULTS OF FRIEDMAN TEST USING HT AND HATCL BASE

CLASSIFIERS

HT HATCL
Evaluation Methods FF Evaluation Methods FF

Average accuracy 15.65 Average accuracy 14.39

Precision 5.15 Precision 4.96

Recall 7.88 Recall 10.17

F1 8.29 F1 10.10

MCC 9.02 MCC 12.60

AUC 8.62 AUC 12.36

can increase the average Precision, Recall, F1, MCC and
AUC for most of the data sets. In this paper, our proposed
approach (A-AUE2) of Average accuracy, Precision, Recall,
F1, MCC and AUC is better than AUE2 using HT and
HATCL, respectively, as base learner because our proposed
approach uses the noise filtering method (KNN) over each
window and the adaptive windowing method (BSS).

B. Statistical Analysis
In Table V, the Average accuracy using HT as base

classifier is ranked the ascending order in the computation
of Friedman Test over all data sets. A rank of 1 is assigned
to the highest accuracy, a rank of 2 is assigned to the next
highest accuracy, and so on. When the accuracy values of
two or more are the same, the position ranks of these same
values are aggregated as the sum value, then this sum value
is divided by the count of the same accuracy value. For
example, if the fifth and sixth ranks are equal in accuracy
values, each is assigned a rank of 5.5. In Table VI and Table
VII, the average ranks of Precision, Recall, F1, MCC and
AUC are calculated such as Table V.

Fig. 15 and Fig. 16 present the graphical representation
of the average ranks of Friedman Test obtained by the pre-
quential classification Average accuracy, Precision, Recall,
F1, MCC and AUC using two base learners. For the clear
representation of the graphs, the notations used in figures are
presented in Table VI and Table VII. As a result of Table VI,
the proposed A-AUE2 approach is the best rank in Average
accuracy, Recall, F1, MCC and AUC except Precision. In
this table, the average rank of Precision for A-AUE2 and
AUE2 are equal. According to the results of Table VII,
our proposed approach is the best average rank in Average
accuracy, Precision, Recall, F1, MCC and AUC.

Table VIII illustrates the value of FF from the Friedman
Test for Average accuracy, Precision, Recall, F1, MCC and
AUC. The null hypothesis is rejected for all evaluation
methods, respectively because the critical value for ∝ =0.05
is 2.07. As a result, there are significant differences in these
evaluation methods of the tested algorithms.

The statistical significance tests of our proposed A-AUE2
approach are presented using Wilcoxon’s Signed Rank Test
and the detailed results are shown in Table IX. In this table,
the Win−Tie−Loss statistics by summarizing the results,
all positive-sum ranks (W+), all negative-sum ranks (W−)
and Pvalue of Wilcoxon’s Signed Rank Test between the
pairs of A-AUE2 and comparative drift detection methods
based on Table II and Table III. The performance of the two
methods is significantly different if Pvalue is less than 0.05.

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_03

Volume 48, Issue 3: September 2021

 
______________________________________________________________________________________ 



Fig. 15. Average ranks for evaluation methods using drift detection and handling methods based on HT

Fig. 16. Average ranks for evaluation methods using drift detection and handling methods based on HATCL

In this Table IX, all positive-sum ranks (W+) are higher
than all negative-sum ranks (W−) in every pair with both
base classifiers. For the Pvalue of Wilcoxon’s Signed Rank
Test using drift detection and handling based on HT classifier,
A-AUE2 method is significantly different in HT, NB, AD-
WIN, ADOB and AWE but it does not differ with ADACC,
DACC and AUE2. For the base classifier of HATCL, our
proposed approach performs significantly better than the
other compared methods: NB, ADWIN, ADOB, AWE and
DACC while HATCL, ADACC and AUE2 are not different
with our proposed approach. These results tables show that
A-AUE2 is more accurate than all the compared methods

with two base learners.

VI. CONCLUSION AND FUTURE WORK

An ensemble classifiers algorithm A-AUE2 is proposed in
this paper to effectively tackle four types of concept drift.
The performance of this research improved by handling the
influence of the sizes of the data windows on the performance
of the ensemble classifiers. The proposed approach of this
paper reduces the window size problem and handles the noisy
samples from the data stream using the adaptive windowing
method based on Brier Skill Score (BSS) and K-Nearest
Neighbors (KNN) based on the noise filtering method.
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TABLE IX
WILCOXON’S SIGNED RANK TEST OF AVERAGE ACCURACY FOR DRIFT DETECTION AND HANDLING METHODS USING HT AND HATCL BASE

CLASSIFIERS

Hoeffding Tree(HT) Hoeffding Adaptive Tree Classifier Leaves (HATCL)
Methods W+ W− Win− T ie− Loss Pvalue Methods W+ W− Win− T ie− Loss Pvalue

A-AUE2 vs HT 49 6 9-0-1 0.028 A-AUE2 vs HATCL 45 10 8-0-2 0.074

A-AUE2 vs NB 52 3 9-0-1 0.013 A-AUE2 vs NB 48 7 9-0-1 0.037
A-AUE2 vs ADWIN 54 1 9-0-1 0.007 A-AUE2 vs ADWIN 55 0 10-0-0 0.005
A-AUE2 vs ADOB 55 0 10-0-0 0.005 A-AUE2 vs ADOB 52 3 8-0-2 0.013
A-AUE2 vs ADACC 39 16 8-0-2 0.241 A-AUE2 vs ADACC 42 13 7-0-3 0.139

A-AUE2 vs AWE 50 5 9-0-1 0.022 A-AUE2 vs AWE 49.5 5.5 9-0-1 0.025
A-AUE2 vs DACC 39 16 8-0-2 0.241 A-AUE2 vs DACC 48 7 9-0-1 0.037
A-AUE2 vs AUE2 36 19 8-0-2 0.386 A-AUE2 vs AUE2 41 14 8-0-2 0.169

The performance of our proposed approach is validated
with the five-class label predictive metrics (such as F1,
Precision, Recall, MCC and AUC criteria). Our results show
that A-AUE2 outperformed among the eight state-of-the-art
concept drift detection and handling methods with both base
learners. The null hypothesis of all evaluation methods is re-
jected by comparing the average ranks with the critical value
in Friedman Test. Moreover, the performance of A-AUE2
approach is significantly improved among the representative
methods according to the Pvalue of Wilcoxon Signed Rank
Test.

In the future, we intend to expand A-AUE2 approach for
the use of the nominal data sets and explore the possibility of
adapting the proposed algorithm to work in partially labeled
data.

REFERENCES

[1] I. Zliobaite, “Learning under concept drift: An overview,” arXiv preprint
arXiv:1010.4784, 2010.

[2] I. Zliobaite, “Adaptive training set formation,” Doctoral dissertation,
Vilnius University, 2010.

[3] A. Bifet, “Adaptive learning and mining for data streams and frequent
patterns,” ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp55-
56, 2009.

[4] J. Gama, P. Medas, G. Castillo and P. Rodrigues, “Learning with drift
detection,” In Brazilian symposium on artificial intelligence, Springer,
Berlin, Heidelberg, pp286-295, 2004.
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