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Abstract—In this paper, the problem of fixed-time stabiliza-
tion is addressed for a unicycle-type wheeled mobile robot
with actuator dead-zones. A novel switching control strategy
is given to overcome the obstacle that the presence of actuator
dead-zones renders the traditional feedback control technique
inapplicable to such mobile robot. Then, by employing the
adding a power integrator(API) technique, a state feedback
controller is successfully developed to regulate all states of
closed-loop system (CLS) to zero in a given fixed time. Finally,
simulation results are given to confirm the efficacy of the
proposed method.

Index Terms—wheeled mobile robot, actuator dead-zones,
adding a power integrator (API), fixed-time stabilization.

I. INTRODUCTION

THE wheeled mobile robot (WMR) has attracted much

attention in the past years because it wide applica-

tions in entertainment, security, war, rescue missions, spa-

cial missions, assistant health-care, etc [1-3]. An important

feature of WMR that the number of control inputs is fewer

than the number of freedom degrees, leads to the control

of WMR challenging. As pointed out by Brockett in [4],

there is not any continuous time-invariant state feedback

to stabilize such category of nonlinear systems. To address

this difficulty, a number of control approaches have been

proposed, mainly including time-varying feedback [5-7] and

discontinuous time-invariant feedback [8,9]. Thanks to these

valid approaches, many significant results have been made,

e.g., [10-16] and the references therein.

Noted that majority existing results mainly centre around

the asymptotic behavior of system trajectories as time verges

to infinity. However, in practical applications, the CLS is

desired to have the property that trajectories converge to the

equilibrium in finite time. Moreover finite-time stable system

possesses the superior properties of fast response, good

robustness and disturbance rejection [17]. Motivated by these

facts, the research on finite-time control has become popular

recently [18-20]. Especially, as the preliminary research, the

work [21] addressed the problem of finite-time stabilization

by state feedback for a family of nonholonomic systems

with some weak drifts. Whereafter, the problems of adaptive
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finite-time stabilization with linear/nonlinear parameteriza-

tion were studied in [22] and [23]. By relaxing the limitation

on system growth, the authors in [24] extended the work

of [21] to a general category of nonholonomic systems.

An output feedback controller was developed in [25] to

finite-time stabilize a category of nonholonomic systems in

feedforward-like form. Later, this result is further extended to

the high order case in [26] and [27]. But a common drawback

of the aforementioned studies is that the convergence time

depends on initial system conditions, which renders that

the desired performance in an exact preset time cannot

be achieved. Recently, to remove the limitation of finite-

time algorithm, a novel finite-time stability concept that

requires the convergence time of a global finite-time stable

system being bounded independent of initial conditions, was

introduced in [28]. Such stability, usually called fixed-time

stability, offers a new perspective to study the finite-time

control problems and has stimulated some interesting results

[29-32]. However, the effect of the actuator dead-zone is

ignored in the aforementioned results.

In reality, owing to physical limitations of device, in-

put dead-zone nonlinearity inevitably are suffered during

operation in many real systems. Such unexpected property

could seriously degrade the system’s performance [33-35].

Therefore, the interesting question naturally arises: For a

WMR with actuator dead-zones, is it possible to devise a

controller to achieve the fixed-time stabilization? If possible,

how can one design it?

Motivated by the above observations, this paper focuses on

solving the problem of fixed-time stabilization of nonholo-

nomic WMR with actuator dead-zones. The contributions

are highlighted as follows. (i) The fixed-time stabilization

problem of nonholonomic WMR with actuator dead-zones

is studied. (ii) A novel switching control strategy is given

to overcome the obstacle that the presence of actuator dead-

zones renders the traditional discontinuous feedback control

technique inapplicable to nonholonomic systems. (iii) By

employing the API technique, a systematic state feedback

control design procedure is proposed to ensure all states of

the CLS to zero for any given fixed time.

Notations. In this paper, the notations used are fairly

standard. Specifically, for any c > 0 and η ∈ R, the function

[η]c is defined as [η]c = sign(η)|η|c with the standard signum

function sign(·).

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a tricycle-type WMR shown in Fig.1. The kine-

matic equations of this robot are represented by

ẋc = v cos θ,
ẏc = v sin θ,

θ̇ = ω,
(1)
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Fig. 1. The planar graph of a mobile robot.

where (xc, yc) denotes the position of the center of mass of

the robot, θ is the heading angle of the robot, v is the forward

velocity while ω is the angular velocity of the robot.

Introducing






















x0 = θ,
x1 = xc sin θ − yc cos θ,
x2 = xc cos θ + yc sin θ,
u0 = w,
u1 = v,

(2)

and taking into the inevitably presence of the actuator dead-

zones in reality, the dynamics of (1) can be modelled as






ẋ0 = D0(u0),
ẋ1 = x2D0(u0),
ẋ2 = D1(u1)− x1D0(u0),

(3)

where Dj (j = 0, 1) is the dead-zone input nonlinearities

described by

Dj(uj) =







mj(uj − bj), uj ≥ bj ,
0, −bj < uj < bj,

mj(uj + bj), uj ≤ −bj,
(4)

with mj and bj being the slopes and the breakpoints of the

dead-zone characteristic, respectively.

Remark 1. Consider the system (3) with free of actuator

dead-zones. With the traditional discontinuous feedback con-

trol technique, one can design u0 = −x0 to ensure x0(t) 6= 0
(or equivalently, u0(t) 6= 0) for all t ≥ 0 provided x0(0) 6= 0.

Then, by introducing the discontinuous change of coordinates

z1 = x1/u0 and z2 = x2 to overcome the obstacle that the

x-subsystem is uncontrollable in the case of u0 = 0, one can

change the x-subsystem into a strict-feedback-like form
{

ż1 = z2 + z1,
ż2 = u1 − x2

0z1,
(5)

and solve the stabilization problem by the well-known

‘backstepping’ technique or its variations. However, when

the actuator dead-zones are involved, it is clear that such

transformation fails to work. That is, the traditional discontin-

uous feedback control technique is inapplicable to the dead-

zone constrained nonholonomic systems. Consequently, new

control techniques are wanted for solving the problem of

global stabilization of the dead-zone constrained system (3).

The following, assumption, definitions and lemmas will

serve as the basis of the coming control design and perfor-

mance analysis.

Assumption 1. There are positive constants m, m, b and b
such that for j = 0, 1, one has m ≤ mj ≤ m and b ≤ bj ≤ b.

Definition 1[17]. Consider the nonlinear system

ẋ = f(t, x) with f(t, 0) = 0, x ∈ Rn, (6)

where f : R+ × Rn → Rn is continuous with respect to x.

The equilibrium x = 0 of the system is globally finite-time

stable if it is Lyapunov stable and for any initial condition

x(t0) ∈ Rn at any given initial time t0 ≥ 0, there is a

settling time T > 0 , such that every x(t, t0, x(t0)) of system

(6) satisfies limt→T x(t, t0, x(t0)) = 0 for t ∈ [t0, T ) and

x(t, t0, x(t0)) = 0 for any t ≥ T .

Lemma 1[17]. Consider the nonlinear system described in

(6). Suppose there is a C1 function V (t, x) defined on Rn,

class K functions π1 and π2, real numbers c > 0 and 0 <
α < 1, for t ∈ [t0, T ) and x ∈ Rn such that

π1(|x|) ≤ V (t, x) ≤ π2(|x|), ∀t ≥ t0, ∀x ∈ Rn,

and

V̇ (t, x) + cV α(t, x) ≤ 0, ∀t ≥ t0 , ∀x ∈ Rn.

Then, the origin of (6) is globally finite-time stable with

T ≤
V 1−α(t0, x(t0))

c(1− α)
.

Definition 2[28]. The origin of system (6) is referred to be

globally fixed-time stable if it is globally finite-time stable

and the settling time function T (x0) is bounded, that is, there

exists a positive constant Tmax such that T (x0) ≤ Tmax,

∀x0 ∈ R
n.

Lemma 2[28]. Consider the nonlinear system (6). Suppose

there exist a C1, positive definite and radially unbounded

function V (x) : Rn → R and real numbers c > 0, d > 0,

0 < α < 1, γ > 1, such that

V̇ (x) ≤ −cV α(x)− dV γ(x), ∀x ∈ Rn.

Then, the origin of system (6) is globally fixed-time stable

and the settling time T (x0) satisfies

T (x0) ≤ Tmax :=
1

c(1− α)
+

1

d(γ − 1)
, ∀x0 ∈ Rn.

Lemma 3[36]. For any x, y ∈ R, and a constant a ≥ 1,

one has

|x+ y|a ≤ 2a−1|xa + ya|;

(|x|+ |y|)1/a ≤ |x|1/q + |y|1/a ≤ 2(a−1)/a(|x|+ |y|)1/a.

Lemma 4[36]. If c, d are positive constants, then for any

real-valued function δ(u, v) > 0, one has

|u|c|v|d ≤
c

c+ d
δ(u, v)|u|c+d +

d

c+ d
δ−c/d(u, v)|v|c+d.

III. FIXED-TIME CONTROL

In this section,a constructive procedure for the finite-time

stabilizer design of system (3) is given for any given settling

time T > 0.
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A. Fixed-time stabilization of the x-subsystem

For the x0-subsystem, take

u0 = u∗

0, (7)

where u∗

0 is a constant satisfying u∗

0 > b̄. Then, the x-

subsystem in this case is described as

{

ẋ1 = h1x2,
ẋ2 = h2u1 +Φ2(x̄2),

(8)

with h1 = D0(c
∗

0), h2 = 1 and Φ2 = −x1D0(c
∗

0). As a

result, it is easily checked from Assumption 1 that

Proposition 1. Under (7), the solution of the x0-

subsystem x0(t) is well-defined on [0,+∞) and there are

positive constants C, hi1 and hi2, i = 1, 2 such that

hi1 ≤ hi ≤ hi2 and |Φ2| ≤ C|x1|.

Next, the system (8) will be stabilized within the settling

time θT by employing API technique. Before proceeding,

we take r1 = 1 and ri+1 = ri + τ > 0, i = 1, 2, 3 with

τ ∈ (− 1
n , 0) being a negative number, and introduce the

following coordinate transformation:

ξi = [xi]
1
ri − [αi−1]

1
ri ,

αi = −g
ri+1

i (x̄i)[ξi]
ri+1 , i = 1, 2,

(9)

where α0 = 0, α2 = u1 and gi(x̄i) > 0 is a C1 function to

be specified later.

We further define Wi : R
i → R as follows:

Wi(x̄i) =

∫ xi

αi−1

[

[s]
1
ri − [αi−1]

1
ri

]2−ri+1

ds. (10)

The detailed design procedure is elaborated as follows.

Step 1. For the x1-subsystem of (8), take x2 as the virtual

control input. Choose V1 = W1 and g1 = ((1 + l1 +

l2|ξ1|
p)/h11)

1
r2 with design parameters l1 > 0, l2 > 0 and

p > −τ to be determined later, one has

V̇1 ≤ −(1 + l1)|ξ1|
2 − l2|ξ1|

2+p + h1[ξ1]
2−r2(x2 − α1).

(11)

Step 2 . Consider the second Lyapunov function V2 =
V1 +W2. It can be deduced from (15) that

V̇2 ≤ −(1 + l1)|ξ1|
2 − l2|ξ1|

2+p

+h1[ξ1]
2−r2(z2 − α1) + [ξ2]

2−r3Φ2

+h2[ξ2]
2−r3D1(u1) +

∂W2

∂z1
h1z2.

(12)

First, we observe from Lemmas 3 and 4 that

h1[ξ1]
2−r2(z2 − α1) ≤ 2h1|ξ1|

2−r2 |ξ2|
r2

≤
1

2
|ξ1|

2 + ϕ21|ξ2|
2,

(13)

where ϕ21 ≥ 0 is a C1 function.

Then, by using Lemmas 3 and 4, we have

[ξ2]
2−r3Φ2 +

∂W2

∂z1
h1z2 ≤

1

2
|ξ1|

2 + ϕ22|ξ2|
2, (14)

where ϕ22 ≥ 0 is a C1 function.

Choosing

g2 =
( l1 + ϕ21 + ϕ22 + l2|ξ2|

p

h21

)
1
r3
, (15)

and substituting (13), (14 and (15) into (12), we have

V̇2 ≤ −l1

2
∑

j=1

|ξj |
2 − l2

2
∑

j=1

|ξj |
2+p

+h2[ξ2]
2−r3 (D1(u1)− α2) .

(16)

Thus, from Assumption 2, the control u1 is designed as

u1 =















α2

m
+ b, α2 > 0,

0, α2 = 0,
α2

m
− b, α2 < 0,

(17)

which renders

D1(u1)− α2

=























m1

(

ζ∗n+1

m
+ b − b1

)

− α2, α2 > 0,

0, α2 = 0,

m1

(

ζ∗n+1

m
− b + b1

)

+ (−α2), α2 < 0.

=



















1

m
(m1 −m)α2 +m1(b − b1) > 0, α2 > 0,

0, α2 = 0,
1

m
(m1 −m)α2 −m1(b − b1) < 0, α2 < 0.

(18)

By noting −[ξ2]
2−r3α2 ≥ 0, one gets

such that

V̇2 ≤ −l1

2
∑

j=1

|ξj |
2 − l2

2
∑

j=1

|ξj |
2+p, (19)

where V2 =
∑2

j=1 Wj .

Consequently, the following result is obtained.

Proposition 2. If the controller u1 of system (8) is

specified by (17) with design parameters l1 > 0, l2 > 0
and p > −τ satisfying

2(τ − 2)

θl1τ
+

(2 − τ)2
2+2p+τ

2−τ

θl2(p+ τ)
< T, (20)

then the equilibrium x = 0 of CLS is globally fixed-time

stable and all the trajectories converge to zero before a fixed

time θT .

Proof. According to (xi −αi−1)([zi]
1
ri − [αi−1]

1
ri ) ≥ 0,

we easily verify that V2 =
∑2

j=1 Wj is positive definite

and radially unbounded. Moreover, we have the following

estimation for V2.

V2 =
2

∑

j=1

Wj ≤ 2
2

∑

j=1

|ξj |
2−τ . (21)

Letting α = 2/(2− τ), it is not difficult to obtain that

−
2

∑

j=1

|ξj |
2 ≤ −

1

2
V α
2 . (22)

On the other hand, taking (21) into account, it can be

deduced that

−

2
∑

j=1

|ξj |
2+p = −

2
∑

j=1

(

|ξj |
2−τ

)

2+p

2−τ

≤ −21−
2+p

2−τ

(

n
∑

j=1

|ξj |
2−τ

)

2+p

2−τ

≤ −2−γ21−γV γ
2 ,

(23)
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where γ = (2 + p)/(2− τ).
Therefore, by considering (19), (22) and (23), it follows

that

V̇2 ≤ −
1

2
l1V

α
2 − l22

−γ21−γV γ
2 . (24)

Since α < 1 and γ > 1, from Lemma 2, we conclude that

the equilibrium z = 0 of the closed-loop system is globally

fixed-time stable and the settling time function T1 satisfies

T1 ≤
2

l1(1− α)
+

2γnγ−1

l2(γ − 1)

=
2(τ − 2)

l1τ
+

(2 − τ)2
2+p

2−τ n
p+τ

2−τ

l2(p+ τ)
< θT.

(25)
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Fig. 2. x0.

B. Fixed-time stabilization of the x0-subsystem

From Proposition 2, it si known that x(t) ≡ 0 when t ≥
θT . Since ẋ(t) = 0, x(t) = 0 holds for t ≥ θT in spite

that a new controller will be designed for u0 when t ≥ θT .

Hence, it is just needed to stabilize the x0-subsystem in a

fixed time θT . In this case, for the x0-subsystem, the control

α0 is taken as

α0 = −(m0 +m1|x0|
q)[x0]

σ, (26)

where

u0 =















α0

m
+ b, α0 > 0,

0, α0 = 0,
α0

m
− b, α0 < 0,

(27)

and 0 < σ < 1, m0 > 0, m1 > 0 and q > 1 − σ are the

design parameters to be determined later.

Proposition 3. If design parameters 0 < σ < 1, m0 > 0,

m1 > 0 and q > 1− σ in (27) satisfy

2

m0(1− σ)(1 − θ)
+

2

m1(σ + q − 1)(1− θ)
< T, (28)

then the state x0 is regulated to zero within a fixed settling

time (1− θ)T .

Proof. The proof of Proposition 3 follows the same line

of the proofs of Proposition 2.

Consequently, the following theorem is obtained to sum-

marize the main result of the paper.

Theorem 1. If the following switching control strategy

with the appropriate chosen design parameters is applied to

system (3), then the states of the CLS are regulated to zero

within any given settling time T .

0 1 2 3 4 5 6 7 8 9 10
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−0.5

0

0.5
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x
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x
2

Fig. 3. x1 and x2.

IV. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the pro-

posed approach by taking the dead-zone input nonlinearities

Dj , j = 0, 1 described by (4) with mj = 1 + 0.2 sin t,
bj = 0.3 + 0.1 cos t respectively. In this situation, it is clear

that Assumptions 1 holds with m = 0.8, m = 1.2, b = 0.2
and b = 0.4. Furthermore, by setting u0 = c∗0 with c∗0 > b
being a positive constant, it is easily verified that Assumption

2.1 is satisfied with ν = 0, λ1 = λ2 = λ3 = 1 and

ϕ2 = m(c∗0 − b).
Taking τ = −1/3 and following the design procedure

given in Section III, a state feedback controller of from (17)

is constructed such that the states of the x-subsystem of (3)

are globally regulated to zero within a fixed settling time θT .

Then, when t ≥ θT , for the x0-subsystem, switch the

control input u0 to (26) such that the state x0 is regulated to

zero within a fixed settling time (1− θ)T .

In the simulation, by choosing the fixed time T = 10
and the gains for the control laws as u∗

0 = 1, l1 = 4,

l2 = 5, p = 2, θ = 0.8, q1 = q2 = 1, p = 0.8,

p = 1.2, σ = 0.5 and m0 = m1 = q = 2, Figs. 2 and

3 is obtained to exhibit the responses of the closed-loop

system with (x0(0), x1(0), x2(0)) = (−0.5,−1, 1). From

the figures, it can be seen that the states of the closed-

loop switched system converge to zero in a given fixed time,

which demonstrates the effectiveness of the control method

proposed in this paper.

V. CONCLUSION

This paper has studied the problem of fixed-time stabiliza-

tion by state feedback for nonholonomic WMR with actuator

dead-zones. By employing the API technique, a constructive

state feedback design procedure is given, which together with

a novel switching control strategy, ensures that the states of

the CLS are regulated to zero for any given fixed time.
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