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Abstract—This paper introduces a novel solution method for
solving symmetric tridiagonal systems. The main idea behind
it is to construct a specific electric circuit with the same node-
voltage equations as the original system. This circuit has a
specific ”ladder” structure that is efficiently solved using a
methodology known as admittance summation method.

The proposed method avoids possible zero divisions by
exploiting a specific circuit structure. This specific property
is an equivalent to a pivoting strategy used in other methods.

Performance tests show that the proposed method is compa-
rable to Thomas algorithm, Gaussian elimination adapted for
tridiagonal systems and Matlab backslash operator.

The procedure executes O(N) times meaning that compu-
tation time is linearly proportional to system size. The whole
method is coded very concisely.

Index Terms—Electric circuits, admittance summation, tri-
diagonal systems, linear algebra.

I. INTRODUCTION

ANon-singular tridiagonal linear system of equations
A · u = r is often solved using matrix factorization.

One of the most efficient approaches is to a use diagonal
pivoting method with LBLT decomposition of A, where L
is unit lower triangular and B is a block diagonal matrix
with 1×1 and 2×2 blocks. Diagonal pivoting methods have
been developed for symmetric tridiagonal matrices that do
not require row or column interchanges [1].

It is usually simpler to solve these systems using tailor-
made algorithms that exploit the special structure of A [2].
Very often, in these simple algorithms there is no pivoting
and for this reason they can fail even when the underlying
matrix is non-singular. In practice, this does not frequently
occur [3], but it is desirable to have an algorithm that can
handle such cases.

This paper presents an algorithm that solves tridiagonal
symmetric system of equations, representing it with an
electric circuit whose node-voltage equations are the same
as the original system. The equivalent circuit is solved using
a specially tailored method for this type of circuits which
has a ladder-like structure comprised of series of vertical
and horizontal elements [4]. The solution method does not
require pivoting. Additionally, it only accounts for possible
zero divisions that are avoided by exploiting the circuits
specific structure.
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II. TRIDIAGONAL SYSTEM OF EQUATIONS CIRCUIT
REPRESENTATION

For a circuit comprised of resistors and independent cur-
rent sources with n nodes, a node-voltage equations can be
written in terms of conductances as follows [5]:

G · u = i, (1)

where G is a n×n symmetric matrix called the conductance
matrix, while u and i are vectors of length n.

The unknown voltage at node k is uk and ik is independent
current source known current directly connected to node k.
Currents entering the node are treated as positive while those
exiting as negative. For elements of G, the following rules
apply (2):

Gkj =



k = j : sum of conductances connected
to node k,

k 6= j : negative sum of
conductances directly
connecting nodes k and j,

0 if there is no direct connection
between nodes k and j.

(2)

Let’s consider a simple electric circuit given in Figure 1.
This circuit has a special structure called ”ladder”, because
it resembles a ladder with series of vertical and horizontal
elements.

All vertical elements are connected between a cir-
cuit node and ground. Vertical resistors are labeled with
R1, R2, . . . , Rn, while independent current sources are la-
beled with i1, i2, . . . , in. In this case, an element index
corresponds to a node number.

All horizontal elements are connected between two con-
secutive circuit nodes. These elements are resistors labeled
Z1, Z2, . . . , Zn−1, with indices corresponding to the node
number on their left-hand side.

According to (2), it can be seen that matrix G is tridiago-
nal since each node has at most two connections with other
nodes. For example, the first row of G is comprised of the
following elements:

G11 =
1

R1
+

1

Z1
, G12 = − 1

Z1
, G13 = 0, G14 = 0.

If, for the sake of simplicity all resistors assume a resis-
tance value of 1 Ω and independent current sources are i1 = 0
A, i2 = 2 A, i3 = 3 A and i4 = 5 A respectively, then
the circuit from Figure 1 is completely described with the
following system of equations which is clearly tridiagonal.

2 −1 0 0
−1 3 −1 0

0 −1 3 −1
0 0 −1 2

 ·


u1

u2

u3

u4

 =


0
2
3
5

 , (3)

The set of equations subject to solution possesses the

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_24

Volume 48, Issue 3: September 2021

 
______________________________________________________________________________________ 



Z1 Z2 Z3
1 2 3 4

R1 i1 R2 i2 R3 i3 R4 i4

Fig. 1. Simple Electric Circuit

general form given with (4).



a1 b1
b1 a2 b2

b2 a3 b3
. . . . . . . . .

. . . . . . . . .
bn−2 an−1 bn−1

bn−1 an


·



u1

u2

u3

...

...
un−1
un


=



r1
r2
r3
...
...

rn−1
rn


. (4)

It goes without saying that not the full n × n matrix is
stored but only its nonzero elements as two row vectors a
and b for the main diagonal and diagonals below and above
the main diagonal.

At this point the following question arises: given the sys-
tem of equations (4), could an electric circuit be constructed
whose node-voltage equations are the same? The answer is an
obvious one and the procedure to form such a circuit comes
from the rule of formation for conductance matrix G (2) and
by introducing a conductance Yk = 1/Rk, k = 1, 2, . . . , n,
with the following parameters:

Zk = − 1

bk
, k = 1, 2, . . . , n, (5a)

Y1 = a1 + b1, (5b)
Yk = ak + bk−1 + bk, k = 2, 3, . . . , n− 1, (5c)
Yn = an + bn−1, (5d)
ik = rk, k = 1, 2, . . . , n. (5e)

Equation (5a) is self explanatory since off-diagonal ele-
ments in G are negatives of branch conductance, which in
turn is a reciprocal of branch resistance, hence bk = −1/Zk

and the derivation of equation (5a).
The diagonal term for node k is a sum of conductances

of three elements: 1/Rk, 1/Zk and 1/Zk−1. Bear in mind
that Yk = 1/Rk is introduced and considering (5a), equation
(5c) is derived. The other two equations (5b) and (5d) are
practically the same, with the exception that at nodes 1 and
n there are only two connected elements instead of three.

III. ADMITTANCE SUMMATION METHOD

Circuits with structure as in Figure 1 are very often
encountered in power distribution networks and there are
suitable solving methods that do not require solving any
set of simultaneous equations. The most suitable method for
solving such circuits is admittance summation method [4].

The method basically employs the rules for serial/parallel
element connection that enables circuit reduction to a single

Z3
3 4

Y e
3

ie3 Y3 i3 Y4 i4

Fig. 2. Definition of Y e and ie for node 3

resistance. Circuit nodes are eliminated one by one during
the process, until a single node remains. This is equivalent to
a variable elimination until a single variable remains, which
is a trivial problem to solve. At the end, all other variables
are obtained with a procedure equivalent to back-substitution
used in LU decomposition methods [6].

A. Backward sweep

For each node k, besides the known conductance Yk,
a driving point conductance Y e

k is introduced as part of
the circuit fed by node k, including Yk. Additionally, an
equivalent current generator iek is introduced for the part
of the circuit fed by node k. The current of this generator
consists of all generator currents from nodes fed by node
k. The following is presented in Figure 2 for node 3 of the
circuit from Figure 1. From the definition of Y e

k and iek, it
is obvious that for the last node n, Y e

n = Yn and ien = in.
Therefore the circuit reduction starts from the last node n.

At the beginning, the following equations are set:

Y e
k = Yk, k = 1, 2, . . . , n, (6a)
iek = ik, k = 1, 2, . . . , n, (6b)

and proceed with backward-sweep node elimination going
from node n towards node 1.

Let’s assume that we are at node k which is connected
through a branch with resistance Zk−1 to node k − 1. In
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Zk−1 Y e
kk − 1 k

Y e
k−1

iek−1 Y e
k−1 iek−1 −

+iek
Y e
k

Fig. 3. Backward sweep: processing node k — step 1

k − 1

Y e
k−1

iek−1 Y e
k−1 iek−1 Yb ib

Fig. 4. Backward sweep: processing node k — step 2

addition, the parallel combination of conductance Y e
k and

current generator iek is converted into a serial combination of
the same conductance and voltage generator whose voltage,
following the principle of source transformation [7], is iek/Y

e
k

(Figure 3).
The two resistors with resistance Zk−1 and conductance

Y e
k are connected in series and they can be replaced with a

single resistor with conductance Yb calculated as follows:

Yb =
1

Zk−1 + 1/Y e
k

=
Y e
k

1 + Zk−1Y e
k

= DkY
e
k ,

and accounting for (5a), the following applies:

Dk =
1

1 + Zk−1Y e
k

=
bk−1

bk−1 − Y e
k

. (7)

Afterwards, the voltage generator connected in series with
Yb can be transformed into a current generator whose current
is:

ib = Yb
iek
Y e
k

= Dki
e
k,

as presented in Figure 4.
Finally, the parallel connection of Y e

k−1 and Yb, as well as
iek−1 and ib can be replaced with a single conductance and
current generator as follows:

Y e ′
k−1 = Y e

k−1 + DkY
e
k , k = n, n− 1, . . . , 2, (8a)

ie ′k−1 = iek−1 + Dki
e
k, k = n, n− 1, . . . , 2, (8b)

providing the desired driving point conductance Y e ′
k−1 for the

part of the circuit fed by node k − 1 and the corresponding
driving point equivalent current generator ie ′k−1.

When calculating Dk with (7), due consideration should
be given for cases where 1 + Zk−1Y

e
k = 0. This is possible

when Zk−1 = −1/Y e
k , meaning that serial connection of

Zk−1 and −1/Y e
k has zero resistance and the circuit from

Figure 3 takes on the form as that from Figure 5. Condition
Zk−1 = −1/Y e

k can also be written as bk−1 − Y e
k = 0.

Figure 5 suggests that there is an ideal voltage generator
connected to node k−1, so that its voltage is uk−1 = iek/Y

e
k .

This implies that elements Y e
k−1 and iek−1 can be ignored

since they do not change anything, because the voltage at

node k− 1 is fixed via the ideal voltage generator. Next, the
serial connection of Zk−2 and iek/Y

e
k can be converted into

a parallel connection of Zk−2 and an ideal current generator
with current equal to (iek/Y

e
k )/Zk−2, both connected at node

k − 2. As a conclusion, conductance 1/Zk−2 = −bk−2 and
a current generator −bk−2iek/Y e

k are added to node k− 2 as
follows:

Y e ′
k−2 = Y e

k−2 − bk−2, (8c)

ie ′k−2 = iek−2 − bk−2
iek
Y e
k

, (8d)

afterwards proceeding with node k − 3.
From Fig. 5 it can be seen that the voltage at node k − 1

is known as well:

uk−1 = iek/Y
e
k . (9)

However, in this case it’s not possible to calculate the
voltage at node k using the circuits from Fig. 3 and 5.
Therefore, row k− 1 from matrix A is used, which leads to

uk =
rk−1 − bk−2uk−2 − ak−1uk−1

bk−1
. (10)

B. Forward sweep

After performing a backward sweep, the circuit is reduced
to a single conductance Y e

1 and current generator ie1, hence
the calculation of voltage at node 1 is as follows:

u1 =
ie1
Y e
1

. (11a)

From Fig. 6, the voltage at node k can be calculated as:

uk = uk−1 − Zk−1ik−1 = uk−1 − Zk−1(Y e
k uk − iek),

from where:
uk =

uk−1 + Zk−1i
e
k

1 + Zk−1Y e
k

.

Finally, when substituting (7) and (5a) the voltage at node
k is

uk = Dk

(
uk−1 −

iek
bk−1

)
. (11b)

Due consideration should be given when applying (11b)
for cases where bk = 0. Since Zk connects nodes k and k+1,
having bk = 0 implies that these two nodes are connected
via infinite resistance Zk = ∞, i.e. they are disconnected.
As a consequence, node k + 1 is a starting node for another
circuit going right from it. For this circuit, driving point
conductance Y e

k+1 and equivalent current generator iek+1 is
already calculated, so its voltage is:

uk+1 =
iek+1

Y e
k+1

if bk = 0. (12)

When coding the above procedure which is done in Matlab
for the purposes of this paper, there’s no need of separate
vectors for Ye and Y, nor for ie and i. Single vectors Y
and i can be used and overwrite their elements as needed.

IV. SOLUTION METHOD

The admittance summation is performed in-place with
overwriting elements in both vectors Y and r going from
the last node n to node 1. Please note that a vector i is not
introduced. Instead, operations are performed in the original
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Zk−2
k − 2 k − 1

Y e
k−2

iek−2 Y e
k−2 iek−2 Y e

k−1 iek−1 −
+ iek

Y e
k

Fig. 5. Backward sweep: processing node — special case

Zk−1 ik−1k − 1 k
+

−

uk−1
Y e
k iek

Fig. 6. Calculation of uk

vector r since they are the same. The procedure developed
in the previous section can be summarized into three simple
steps: Initialization, Backward sweep and Forward sweep.

Initial values for elements in Y are obtained from (5b) —
(5d). It can be seen that they are defined as sums of nonzero
elements in each row of the tridiagonal matrix. Since its
nonzero elements are stored in two row vectors a and b, the
following vector equation can be written:

Y = a + [0 b] + [b 0], (13a)

where [0 b] is a concatenation of 0 and row vector b, while
[b 0] is another concatenation where 0 is added after b. In
the initial phase, the original right-hand side of vector r is
also saved:

ro = r. (13b)

The next two steps are given as algorithms in Algorithm 1
and Algorithm 2. The approach is used for more concise
presentation of the admittance summation procedure pre-
sented in Section III-A and the voltage calculation procedure
presented in Section III-B. Both algorithms account for
possible special cases and avoid zero divisions that in a way
is a replacement for pivot strategy which is not needed in the
proposed method. Although in Algorithm 2 there are three
”if” statements, in practice, only the first one will be checked
since the other two may appear in special circumstances
when equations (10) or (12) have to be applied as explained
in the previous sections.

The following section covers time performance of a ”raw”
version of the method where zero division check is omitted.
Practically this version only executes lines 5–7 from Algo-
rithm 2 and line 4 from Algorithm 1, which is a bit faster
since all ”if” statements are avoided. The ”raw” version of
the method is given in Algorithm 3.

V. TRIDIAGONAL SYSTEMS — GAUSSIAN ELIMINATION

Very often a system of equations has the properties that
allow for safe usage of Gaussian elimination without pivot-
ing. The class of matrices for which this is true are called

Algorithm 1 Backward sweep
1: Initialize:

ui ← 0, Di ← 0, si ← False

i = 1, 2, . . . , n
2: k = n

3: while k ≥ 2 do

4: if bk−1 − Yk 6= 0 then

5: Dk ←
bk−1

bk−1 − Yk

6: Yk−1 ← Yk−1 + DkYk

7: rk−1 ← rk−1 + Dkrk

8: else

9: Yk−2 ← Yk−2 − bk−2

10: rk−2 ← rk−2 − bk−2
rk
Yk

11: uk−1 ← rk/Yk

12: sk ← True

13: k ← k − 1

14: end if

15: k ← k − 1

16: end while

diagonally dominant matrices with properties expressed by
the inequality:

|aii| >
n∑

j=1
j 6=i

|aij |. (14)

These matrices arise naturally in applications involving
the discretization by finite differences of partial differential
equations, in the study of splines and other areas [8]. If
the coefficient matrix has this property, then in the steps
of Gaussian elimination rows can be used consecutively as
pivot rows since the pivot elements are not zero (14). After
one step is completed, we would like to know that next row
2 can be used as the next pivot row, which is governed by
the next theorem.

Theorem 1. Gaussian elimination without pivoting preserves
the diagonal dominance of a matrix.

Proof: It is enough to consider the first step in Gaussian
elimination, in which zeros are created in column 1, since
subsequent steps are exactly the same as the first, except for
being applied to matrices of smaller size.
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Algorithm 2 Forward sweep

1: u1 ←
r1
Y1

2: for k = 2 to n do

3: if Dk 6= 0 then

4: uk = Dk

(
uk−1 −

rk
bk−1

)
5: go to 15

6: end if

7: if bk−1 = 0 then

8: uk =
rk
Yk

9: go to 15

10: end if

11: if sk = True then

12: uk =
rok−1 − bk−2uk−2 − ak−1uk−1

bk−1
13: go to 15

14: end if

15: end for

Algorithm 3 The Admittance Summation — ”raw” version
1: for k = n to 2 do

2: Dk ←
bk−1

bk−1 − Yk

3: Yk−1 ← Yk−1 + DkYk

4: rk−1 ← rk−1 + Dkrk

5: end for

6: u1 ←
r1
Y1

7: for k = 2 to n do

8: uk = Dk

(
uk−1 −

rk
bk−1

)
9: end for

Let A be an n × n matrix that is diagonally dominant.
Accounting for zeros created in column 1 and having in mind
that row 1 is unchanged, we have to prove that∣∣∣a(2)ii

∣∣∣ > n∑
j=2
j 6=i

∣∣∣a(2)ij

∣∣∣ , i = 2, 3, . . . , n,

where superscript (2) denotes step 2.
Taking into account the operations included in the Gaus-

sian elimination the above can be written as:

|aii − (ai1/a11)a1i| >
n∑

j=2
j 6=i

|aij − (ai1/a11)a1j | ,

for i = 2, 3, . . . , n.
It is sufficient to prove the stronger inequality:

|aii| − |(ai1/a11)a1i| >
n∑

j=2
j 6=i

|aij |+ |(ai1/a11)a1j | ,

which may be rewritten as:

|aii| −
n∑

j=2
j 6=i

|aij | >
n∑

j=2

|(ai1/a11)a1j | .

From the diagonal dominance, for row i the following
applies:

|aii| −
n∑

j=2
j 6=i

|aij | > |ai1| ,

hence, it’s suffice to prove that:

|ai1| ≥
n∑

j=2

|(ai1/a11)a1j | .

This is true because of diagonal dominance in row 1, that
is:

|a11| >
n∑

j=2

|a1j | ⇒ 1 >
n∑

j=2

|a1j/a11| .

In its simplest form, Gaussian elimination is applied
assuming that the coefficient matrix is such that pivoting is
not necessary when solving the system. This is true if the
matrix is symmetric and positive definite [2].

This paper uses simple Gaussian elimination where the
right-hand side vector r is processed simultaneously with
the left-hand side matrix A. In Step 1, a multiple of row 1
is subtracted from row 2 to obtain 0 in the position where b1
was placed originally. Please note that a2 and r2 are altered
but b2 is not. The multiple used is b1/a1, therefore Step 1
consists of these replacements:

a2 ← a2 −
b1
a1

b1,

r2 ← r2 −
b1
a1

r1.

All remaining steps producing zeros in the other rows during
the forward elimination phase are exactly the same as the first
one, only with different indices.

In the backward substitution phase, the first step is:

un ←
rn
an

,

then the next step is as follows:

un−1 ←
rn−1 − bn−1rn

an−1
,

and the whole procedure is presented in Algorithm 4.
Gaussian elimination with full pivoting, treats both rows

and columns in an order different from the natural order. In
each step, the pivot element aij is chosen so that |aij | is the
largest in the entire matrix. This determines that row i will be
the pivot row and column j will be the pivot column. Zeros
are created in column j by subtracting multiples of row i
from the other rows. During the process of Gaussian elim-
ination with pivoting, two permutation vectors are required
to keep track of possible row/column permutations.

VI. RESULTS

The proposed method is compared to two other methods
specially developed for tridiagonal systems, as well as with
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Algorithm 4 Tridiagonal Gaussian Elimination
1: for i = 2 to n do

2: m← bi−1
ai−1

3: ai ← ai −m · bi−1
4: ri ← ri −m · ri−1
5: end for

6: un ←
rn
an

7: for i = n− 1 to 1 step −1 do

8: ui ←
ri − biri+1

ai
9: end for

the Matlab backslash operator. The first method is a simple
Gaussian elimination tailored for tridiagonal systems [2],
while the second one is the Thomas algorithm [3].

Both methods assume that the tridiagonal matrix is such
that pivoting is not necessary for solving the system. This is
the case for matrices that are diagonally dominant, which is
expressed by the following inequalities:

|a1| > |b1|,
|ak| > |bk|+ |bk−1|, k = 2, 3, . . . , n− 1,

|an| > |bn−1|,

and it is known that Gaussian elimination without pivoting
preserves the diagonal dominance of a matrix [2].

On the other hand, Matlab backslash operator solves a
system of linear equations (A\r) with sparse matrices using
LU decomposition with pivoting strategy, so it can solve any
system with non-singular matrix regardless of its diagonal
dominance.

For example, one system with diagonally dominant matrix
is (3) and all methods easily calculate the solution u1 = 1,
u2 = 2, u3 = 3 and u4 = 4.

Since there is no pivoting in the methods from [2] and
[3], they both fail due to zero pivot when the matrix is
not diagonally dominant even when it is non-singular. An
example of such system of equations is given with (15):

2 2 0 0
2 2 3 0
0 3 4 5
0 0 5 1

 ·


u1

u2

u3

u4

 =


4
7
16
8

 . (15)

This system has a solution u1 = 3, u2 = −1, u3 = 1 and
u4 = 3 and the solution is obtained only with the Matlab
backslash operator and with the proposed method. Therefore,
the main feature of the proposed method is the capability to
solve systems with matrices that are not diagonally dominant
even though it does not use pivoting. At the same time, it is
as simple as the other two methods.

Two additional systems of equations were constructed to
check whether the proposed method solves cases with special
conditions. They are the following:

2 −1 0 0
−1 3 −1 0

0 −1 3 −1
0 0 −1 0

 ·


u1

u2

u3

u4

 =


0
2
3
5

 , (16)

and 
2 −1 0 0
−1 3 0 0

0 0 3 −1
0 0 −1 2

 ·


u1

u2

u3

u4

 =


0
2
3
5

 . (17)

In (16), the special case is encountered at node 4 where
Z3 = 1 Ω and Y4 = −1 S which gives a serial combination
of 2 elements with total resistance equal to 0. Such a situation
is detected in line 4 of Algorithm 2 and in line 11 voltage
at node 3 is calculated as ie4/Y

e
4 and flag variable s4 set to

”True”, which signals to Algorithm 2 in line 11 that equation
(10) has to be used to calculate u4.

The special case in (17) is at node 3 where Z2 = ∞,
meaning that nodes 2 and 3 are not connected. This is
detected in line 7 of Algorithm 2 and then voltage at node 3
is calculated using (12). In the next step, voltage calculation
continues normally using line 4 since node 3 is a root node
for another ”regular ladder” circuit.

Before exploring the proposed method performance, let’s
illustrate the steps in solving the system (16). In the following
paragraphs, symbols T and F are used as True and False
flags respectively.

Initial step: a = [2 3 3 0], b = [−1 − 1 − 1], r = [0 2 3 5],
Y = [1 1 1 1], D = [0 0 0 0], s = [F F F F ] and
u = [0 0 0 0].

Backward sweep:
k = 4, b3 − Y4 = 0
Y2 = Y2 − b2 = 1− (−1) = 2
r2 = r2 − b2 · r4/Y4 = 2− (−1) · 5/(−1) = −3
u3 = r4/Y4 = 5/(−1) = −5
s4 = T
k = k − 2 = 2

k = 2, b1 − Y2 6= 0
D2 = b1/(b1 − Y2) = −1/(−1− 2) = 0.333333
Y1 = Y1 + D2 · Y2 = 1 + 0.333333 · 2 = 1.66667
r1 = r1 + D2 · r2 = 0 + 0.333333 · (−3) = −1

Forward sweep:
u1 = r1/Y1 = −1/1.66667 = −0.6

k = 2, D2 6= 0
u2 = D2 · (u1− r2/b1) = 0.333333 · [−0.6− (−3)/(−1)] =
−1.2

k = 3, u3 already known
k = 4, s4 = T
u4 = (ro3 − b2 · u2 − a3 · u3)/b3 = [3− (−1) · (−1.2)− 3 ·
(−5)]/(−1) = −16.8

Solution: u = [−0.6 − 1.2 − 5 − 16.8]
In order to investigate the proposed method performance,

circuit from Figure 1 is multiplied to several million nodes
with same resistors of 1 Ω, so that we have tried to solve
tridiagonal system with several million unknowns. Compu-
tation time comparison for all 4 methods is given in Figure 7.
Computation time of the “raw” version of the proposed
method is also given in the same figure. It’s observable
that for systems with size from 1 to 10 million unknowns,
the proposed method solves the systems with practically the
same time as methods from [2] and [3], while the Matlab
backslash operator performs about 1.5 times faster. Full
version of the proposed method is about 10 − 15% slower
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TABLE I
MATRIX TYPES USED IN THE NUMERICAL EXPERIMENTS

Matrix
type

Description

1 Randomly generated matrix from a uniform distribution on [−1, 1].

2 gallery(’dorr’, n, 1e-4) — Ill-conditioned, diagonally dominant matrix.

3 Randomly generated matrix from a uniform distribution on [−1, 1].
The 50th sub-diagonal element is then multiplied by 1× 10−50.

4 Main diagonal elements randomly generated from a uniform distribution on [−1, 1].
Off-diagonal elements each chosen with 50% probability as either zero
or generated randomly from a uniform distribution on [−1, 1].

5 Toeplitz matrix with diagonal elements equal to 1× 108.
Off-diagonal elements are randomly generated from a uniform on [−1, 1].

6 Toeplitz matrix with diagonal elements equal to 1× 10−8.
Off-diagonal elements are randomly generated from a uniform on [−1, 1].

7 inv(gallery(’kms’, n, 0.5))

Inverse of a Kac-Murdock-Szegő Toeplitz matrix (Aij = 0.5|i−j|).

8 A = gallery(’lesp’, n)

A matrix whose eigenvalues are real and smoothly distributed in the interval [−2n− 3.5,−4.5].

9 A = gallery(’randsvd’, n, 1e15, 1, 1, 1)

Randomly generated matrix with condition number 1× 1015 and one large singular value.

10 A = gallery(’randsvd’, n, 1e15, 2, 1, 1)

Randomly generated matrix with condition number 1× 1015 and one small singular value.

11 A = gallery(’randsvd’, n, 1e15, 3, 1, 1)

Randomly generated matrix with condition number 1× 1015 and geometrically distributed singular values.

12 A = gallery(’randsvd’, n, 1e15, 4, 1, 1)

Randomly generated matrix with condition number 1× 1015 and arithmetically distributed singular values.

than the “raw” version due to numerous checks within if
statements.

Computation time is measured in 64-bit Matlab ver.
R2016b on Intel R© CoreTM i5–8500 CPU @ 3.00GHz under
Linux operating system. A timeit function is used which
calls the specified method multiple times and returns the
median of measurements considering the first-time run costs.

VII. NUMERICAL EXPERIMENTS

Numerical tests were performed using 12 types of non-
singular tridiagonal linear systems containing a wide range
of difficulty. Several ill-conditioned matrices were chosen as
part of a test set in order to compare algorithm robustness.
Very roughly it can be expected that for ill-conditioned
matrices with large condition number, the rate at which the
solution will change with respect to a change in right-hand
side vector is large. Thus, the solution is very sensitive even
to a small change in the right-hand side vector. The test
matrices were taken from the literature [1]. Table I contains
a description of each tridiagonal matrix type from the test
set.

For cases where test matrices from Matlab matrix gallery
were non-symmetric, a symmetrization procedure is applied
as in [9]. In a non-symmetric tridiagonal matrix, subdiagonal

and superdiagonal vectors are not the same. Denoting them
with c and d respectively and using a symmetrization pro-
cedure, a single vector b is generated that replaces both of
them using the following equation:

bi =
√
cidi, i = 1, 2, . . . , n− 1,

This ensures that original and symmetrized matrix both have
the same eigenvalues and approximately the same condition
number. The latter is important for the algorithm robustness
test.

A system of equations with n = 100 was generated for
each matrix type where the right-hand side vector consists of
ones. The same system of the form A ·u = r was solved by
each algorithm. Table II shows the relative errors associated
for each method calculated as

E =
‖A · û− r‖2
‖r‖2

,

where û is the solution obtained by each solver. Relative
errors are given in columns marked 1-4 for the following
algorithms: Matlab solver, Thomas algorithm, Gaussian elim-
ination and Proposed method. The last column gives the
condition number of matrix A. Figure 8 presents a visual
representation of relative errors for all methods.
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TABLE II
RELATIVE ERRORS FOR SOLVING TRIDIAGONAL SYSTEMS

Method

Matrix
type

1 2 3 4
Condition
number

1 6.35×10−16 1.16×10−15 5.85×10−15 1.01×10−14 5.23×102

2 8.95×10−17 7.45×10−17 8.23×10−17 1.07×10−16 7.84×1017

3 2.72×10−16 7.69×10−16 7.60×10−16 1.30×10−14 2.59×102

4 1.39×10−16 2.36×10−16 1.50×10−16 1.67×10−15 1.57×102

5 9.99×10−17 1.17×10−16 9.99×10−17 1.37×10−16 1.00

6 8.17×10−15 1.60×10−9 9.30×10−10 1.24×10−9 5.02×105

7 1.65×10−16 1.66×10−16 1.65×10−16 3.47×10−16 8.98

8 1.46×10−16 1.46×10−16 1.46×10−16 1.50×10−16 4.47×101

9 1.41×10−4 8.19×10−5 6.57×10−5 6.32×10−4 1.03×1015

10 2.48×10−5 1.95×10−4 1.56×10−3 1.56×10−3 9.46×1014

11 2.19×10−5 3.21×10−5 4.16×10−5 3.44×10−5 7.77×1014

12 1.68×10−3 2.14×10−3 2.56×10−3 3.00×10−3 9.03×1014

1. Matlab solver, 2. Thomas algorithm, 3. Gaussian elimination, 4. Proposed method

From Table II it can be seen that all algorithms are
comparable on a wide range of linear systems. When the
matrix A is well-conditioned (types: 1, 3, 4, 5, 6, 7 and 8),
all algorithms present solutions that are obtained with relative
errors close to machine precision and they are comparable
to each other. On the contrary, significant differences occur
when the matrix A is ill-conditioned (types: 2, 9, 10, 11 and
12), when relative errors are 10 or more magnitudes higher.
But even in these cases the proposed algorithm performs no
worse than the others.

For example, on types 9-12 all methods perform particu-
larly poorly, including the Matlab backslash command, with
an error near 10−3. Actually, due to the ill-conditioning
of matrix A, all methods deteriorate in performance nearly
failing to solve the tridiagonal linear system. However, their
relative errors are within an order of magnitude from each
other.

VIII. CONCLUSION

In this paper a novel solution method for symmetric
tridiagonal systems is presented. The method converts the
system of equations into an equivalent circuit with node-
voltage equations being the same as in the original system.
Afterwards, the circuit is efficiently solved using a procedure
tailored for such circuits. The method avoids possible zero
divisions exploiting the specific structure of the circuit, which
is an equivalent to a pivoting strategy used in other methods.

Tests have shown that the performance of the proposed
method is comparable to the Thomas algorithm and Gaussian
elimination adapted for tridiagonal systems, as well as the
Matlab backslash operator both in speed and robustness.
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Fig. 7. Time Comparison – All Methods for Different System Size n

Procedures of forward and backward sweeps both take
only O(N) operations meaning that computation time is
linearly proportional to system size. The whole method can
be coded very concisely and the possible ill conditions are
overcomed without pivoting (equation reordering). Instead
of pivoting, a special technique is used, emerged from
the solution procedure tailored for circuits with “ladder”
structure that are used as an equivalent representation of
tridiagonal systems.
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Fig. 8. Relative errors for solving tridiagonal systems

IX. THE CODE

The code for the proposed method developed in this paper
is written in Matlab. It is given as an open-source in a GitHub
repository along with all input data in [10]. https://github.c
om/todorovski-m/tridiagonal
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