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Abstract—Convolutional neural networks have received ex-
tensive attention and been applied to regular data like image
processing recently. This paper applied the convolutional neural
network to calculate the ontology similarity, and proposed an
ontology learning algorithm based on CNN. Meanwhile, a sports
ontology covering most sports concepts was constructed, and
the detection of the new ontology learning algorithm is proved
to be effective for P.E. ontology.

Index Terms—ontology, PE, sport data, similarity measuring.

I. INTRODUCTION

ONTOLOGY is a structured data model, and its con-
ceptual structure can be represented by graphs. It has

powerful conceptual semantic expression function and get
theoretical support from the mathematical logic, so it is wide-
ly used in common application fields in artificial intelligence
and pattern recognition such as graphics, semantic networks,
information retrieval, and extended query. Moreover, ontol-
ogy is widely used in interdisciplinary research, such as
medicine, pharmacy, genetics, botany, chemistry, GIS, etc.
For the application of ontology in interdisciplinary subjects,
one can refer to Huitzil et al. [1] and [2], Benitez-Andrades et
al. [3], Garcia-Diaz et al. [4], Nembaware et al. [5], Trappey
et al. [6], Ong et al. [7], Liu et al. [8], Hafeez et al. [9], and
Azevedo et al. [10].

In recent years, as the amount of data processed by on-
tology increases, more and more machine learning methods
have been applied to ontology similarity calculation and on-
tology mapping. Qiu [11] proposed a new ontology mapping
constructing by using low rank distance matrix optimization
trick. Gao and Chen [12] gave an approximation analysis of
ontology learning algorithm in linear combination setting.
Gao et al. [13] presented a discrete dynamics approach
for sparse calculation and applied it in ontology similarity
measuring. Wu et al. [14] determined a disequilibrium multi
dividing ontology learning algorithm which considers differ-
ent statuses of ontology data. Margin based ontology sparse
vector learning algorithm was considered in Gao et al. [15]
and was applied in “GO” ontology. Chen et al. [16] raised an
ontology-driven framework for similarity measuring in terms
of vector learning techniques. Lan et al. [17] suggested a
new ontology similarity computation and ontology mapping
in light of distance matrix learning trick. He et al. [18]
determined an ontology similarity measurement algorithm
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using kernel principal component analysis and spectral cut-
off regression, and applied it in “GO” ontology. Wu et
al. [19] presented new algorithms for ontology similarity
measure and ontology mapping by determining the similarity
matrix of ontology, and the optimisation strategy and iterative
procedures are designed in terms of metric distance learning
tricks. Zhu et al. [20] proposed a boosting based ontology
sparse vector computation algorithm. More researchers on
ontology can be referred to [21], [22] and [23].

This work aims to introduce the CNN based ontology
learning algorithm and construct a PE ontology. In the
following parts, we first describe the convolutional neural
network and new ontology learning algorithm. Then, we
state the PE ontology and the corresponding experiment data,
finally some future ongoing works are raised.

II. CNN BASED ONTOLOGY LEARNING ALGORITHM

A. Setting of convolution neural network

Early neural networks can’t be used to perform non-
linear calculations. However, the BP neural networks enabled
neural networks to perform them. Before the BP neural
network, the network was not too deep, generally 3 or 4
layers, because the gradient calculation of the underlying
neurons would be very complicated, and the training of the
network would be more difficult. The BP neural network
shows that the errors of the network can be passed back
layer by layer, and the errors collected by the neurons of
the previous layer can be used by the next layer. However,
there are some disadvantages of BP algorithm which are (1)
Network over-fitting problem. After the network has gone
through many layers, its parameters will become more, but
the amount of data will become smaller. (2) The problem
of gradient disappearance or gradient explosion. The so-
called gradient disappearance results from the existence of
nonlinear fitting function in the network. If its derivative is
less than 1, the error will be continuously multiplied by a
number less than 1 after being passed layer by layer. Hence,
the error of the underlying neuron will be particularly small.
Its parameters cannot be updated. On the contrary, if the
derivative of the nonlinear fitting function is greater than
1, the error is multiplied by a number greater than 1. It will
form a diffusion, which is the gradient explosion problem. (3)
The BP algorithm still has theoretical problems: the solution
obtained through error back propagation will fall into the
local optimal solution, and the global optimal solution cannot
be obtained. (4) The interpretability is relatively poor. We
don’t know why some neurons have very large weights and
some others have very small weights. After changing these
weights, what impact will the network output have? In this
context, convolutional neural networks are slowly introduced
and quickly promoted.
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Let f(x) and g(x) be two integrable functions on R, and
the continuous form convolution is defined as follows:∫ ∞

−∞
f(τ)g(x− τ)dτ.

Discrete spatial convolution is expressed as

yn = x ∗w =
K∑
k=1

wkxn−k,

where x is the signal and w is the convolution kernel. For
example, the convolution kernel on a two-dimensional plane
image is generally a 3× 3 sliding frame.

Some basic concepts about convolutional neural networks
are listed below:
Kernel size: also known as the convolution operation recep-
tive field. In two-dimensional convolution, it is usually set
to 3, that is, the size of the convolution kernel is 3 × 3.
Generally it is an odd number. The advantage is that the
center of the convolution kernel corresponds to the center of
the convolution result.
Stride: The stride size when the convolution kernel traverses
the image, the default setting is 1.
Padding: A trick to deal with sample boundaries. There are
two advantages: (1) The image size of the convolution result
can be made the same as the image size of the input result.
(2) The area on the image boundary is relatively fair, and the
number of convolutions is increased.
Input and output channels: When constructing a convolution-
al layer, the number of input channels I and the number of
output channels O need to be defined. The parameter amount
of each network layer is I × O × K (K is the number of
parameters of the convolution kernel). The color image has 3
channels. The output channel is the thickness of the image.
Pooling layer: It can be said that it is a special form of
convolution.
Fully connected layer: The upper neuron and the lower
neuron are all connected, and the amount of calculation
parameters is relatively large, so it is used in the connection
output layer.
Dropout: The neurons in the fully connected layer are
inactivated with a certain probability, and the inactivated
neurons no longer participate in training. The reference to
Dropout effectively alleviates the overfitting of the model.
Generally, it is only used in a complex structure such as a
fully connected layer.
Pre-Training: First train a part of the small network to ensure
stability, and then gradually deepen the network on this basis.
Because the number of layers is very large, it may not be
very effective to directly train a large network. You can
train a small network by layer-by-layer pre-training, and then
deepen it layer by layer.

The convolutional layer includes two parts: convolution
calculation and nonlinear activation function. Among them,
the role of nonlinear activation function in neural network
is irreplaceable. Convolution calculation itself is a linear
operation, and multiple consecutive linear convolutions are
equivalent to one linear convolution. In this way, the comput-
ing power of the network will not be improved. Moreover,
multiple convolutions will additionally introduce learnable
parameters, which makes the network more prone to overfit-
ting, for example: ReLU nonlinear activation function. When

the input is greater than 0, the output value is equal to the
input value; when it is less than 0, the input is 0; when
it is greater than 0, the gradient value is equal to 1, so
the gradient will not increase or decrease in the error back
propagation. Therefore, the problems of disappearance and
gradient explosion can be solved; when the input value is less
than 0, the output value is also less than 0. At this time, the
neuron is not involved in training, so the trainable parameters
in the entire network are reduced. In this way, the overfitting
problem can be alleviated. Due to its reduced calculation,
alleviation of gradient disappearance, and overfitting, the
ReLU activation function has now become the most common
activation function in neural networks.

The function of the hidden layer is to perform linear con-
version and nonlinear activation of the transferred value, and
then transfer it to the next layer. Its essence is to transform
the output data of the previous layer into another vector
space. The features of traditional CNN can be concluded
as follows:
• the neural layer adopts a three-dimensional form

(width×height×depth).
• neuron local area connection (local perception), non-

global connection Neurons share parameters (the same char-
acteristics of different spatial locations can share the same
sensory neuron, which greatly reduces the parameters that
need to be trained), not completely independent.
• the dimensions of the output end can be adapted and

changed according to the needs of the task (increasing the
application range and capabilities of convolutional neural
networks).

B. Connected to ontology setting

In ontology setting, all concepts (vertices) are structurally
expressed by an ontology graph. In other words, the ontology
graph structure is a kind of structured data, and traditional
convolutional neural networks cannot handle structured data
like ontology graphs. In order to apply the convolutional
neural network to the ontology graph structure, we need to
use graph convolution to replace the traditional convolution.

The classic Fourier transform can be expressed as

x(t) =
1

n

n−1∑
w=0

e
2πi
n twX(w)

and the corresponding formula in the ontology graph setting
becomes

x(i) =
n∑
l=1

x̂(λl)ul(i).

We only consider undirected ontology graphs, W ∈ Rn×n
is the adjacency matrix (Wij = 0 indicating that the vertices
corresponding to i and j are not adjacent, otherwise Wij is
the weight of the edges), D ∈ Rn×n is the degree matrix
(diagonal matrix), Dii =

∑
jWij . The Laplacian matrix

L = D −W is a symmetric positive semi-definite matrix
with n linearly independent characteristic vectors (they are
a set of orthogonal basis in n-dimensional space with a
modulus of 1). The characteristic vectors corresponding to
different eigenvalues are orthogonal to each other. The matrix
formed by these orthogonal eigenvectors is an orthogonal
matrix, and the eigenvectors are non-negative real numbers.
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The normalized form of the graph Laplacian matrix is stated
by L = I−D−

1
2 WD−

1
2 .

The Eigen decomposition of Laplace matrix, also known
as Spectral decomposition, is a method of decomposing a
matrix into the product of its eigenvalues and eigenvectors:

L = UΛU−1 = U

λ1

. . .
λn

U−1,

where n is the number of ontology vertices, U =
(u1, u2, · · · , un) ∈ Rn×n is an orthogonal matrix satisfying
UU−1 = I (hence L = UΛUT ), ui ∈ Rn is the eigenvector
corresponding to eigenvalue λi (here i ∈ {1, , n}).

The Laplacian operator ∆ on the ontology graph is defined
as the divergence of the gradient, i.e.,

∆f = div(grad(f)).

From this point of view, the Laplacian matrix is a class
of Laplacian on the ontology graph. More generally, the
Laplacian operator on the graph can be defined as follows:

∆fi =
∑

ij∈E(G)

(fi − fj),

where f = (f1, · · · , fn) represents the signal of each vertex
on n vertices.

In most cases, the ontology graph is a weighted graph, and
domain experts will define the edge types and weights ac-
cording to the characteristics of the ontology in the particular
application domain. In weighted graph setting, we have

∆fi =
∑

ij∈E(G)

Wij(fi − fj)

= Diifi −
n∑
j=1

Wjfj ,

where it can be understood as the central vertex minus the
surrounding vertices in turn, multiplied by the weight, and
then summed up together. Hence, we infer

∆f =

∆f1

...
∆fn


=

D11f1 −
∑n
j=1W1jfj

...
Dnnfn −

∑n
j=1Wnjfj


=

D11

. . .
Dnn

 f −Wf

= Df −Wf = Lf .

Here, f is considered as the ontology graph value, and the
above derivation can be understood as follows: the result of
Laplacian on the value f on the ontology graph is equivalent
to the ontology graph value f multiplied by the Laplacian
matrix.

For the value x ∈ Rn on the ontology graph, if we need
to perform a Fourier transform, we need to find a set of
orthogonal bases, where x ∈ Rn is expressed by linear
combinations of these orthogonal bases. The graph Fourier

transform actually uses the eigenvector of the Laplacian
matrix U = (u1, · · · , un) as the basis function of the graph
Fourier transform. Using Laplace’s eigenvector as the basis
function, any value on ontology graph can be expressed by

x = x̂(λ1)u1 + x̂(λ2)u2 + · · ·+ x̂(λn)un.

Hence, ontology graph inverse Fourier transform is stated as

x = x̂(λ1)u1 + x̂(λ2)u2 + · · ·+ x̂(λn)un

and its summation form is

x(i) =
n∑
l=1

x̂(λl)ul(i).

Moreover, its matrix form can be denoted by
x(1)
x(2)

...
x(n)

 =


u1(1) u2(1) · · ·un(1)
u1(2) u2(2) · · ·un(2)

...
...

. . .
...

u1(n) u2(n) · · ·un(n)



x̂(λ1)
x̂(λ2)

...
x̂(λn)



= (u1, u2, · · · , un)


x̂(λ1)
x̂(λ2)

...
x̂(λn)

 .
Written in matrix form as x = Ux̂, where x̂(λi) (1 ≤ i ≤ n)
represents the Fourier coefficient before the basis function
(i.e., the amplitude of the basis function), x(i) (1 ≤ i ≤ n) on
the left side of the matrix form denotes the signal of the i-th

vertex, matrix column vector ui =


ui(1)
ui(2)

...
ui(n)

 for 1 ≤ i ≤ n.

In expression x = Ux̂, x is the original signal, U is the
matrix formed by the eigenvectors of the graph Laplacian,
x̂ the signal in the spectral domain in which each element
corresponds to the amplitude of the basis function.

The Fourier transform of the ontology graph can be
expressed as

x̂(λl) =< x, ul >=
n∑
i=1

x(i)ul(i),

which implies
x̂(λ1)
x̂(λ2)

...
x̂(λn)

 =


u1(1) u2(1) · · ·un(1)
u1(2) u2(2) · · ·un(2)

...
...

. . .
...

u1(n) u2(n) · · ·un(n)



x(1)
x(2)

...
x(n)


and equals to

x̂ = UTx.

The classic Fourier transform and the Fourier transform on
the ontology graph can be compared as follows. In classic
Fourier transform, we have

f(t) =
1

n

n∑
w=1

F (w)ei
2π
n wt

F (w) =

n∑
t=1

f(t)e−i
2π
n wt.
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When it comes to Fourier transform on the ontology graph,
we deduce

x(i) =
n∑
l=1

x̂(λl)ul(i)

x̂(λl) =
n∑
i=1

x(i)ul(i).

The two are very similar. The classical Fourier transform
uses ei

2π
n wt as the base, while the ontology graph Fourier

transform applies the Laplacian matrix eigenvector as its
base. In the classical Fourier transform, the basis used by
the original transform and the inverse transform is a conju-
gate relationship, namely ei

2π
n wt and e−i

2π
n wt; while in the

ontology graph Laplace transform, since the eigenvector of
the real Laplacian matrix must be a real number. Therefore,
after conjugation, it remains itself.

Here, we also want to specifically explain that the essence
of the inverse Fourier transform is to express the original
function as a linear combination of basis functions, but why
does the graph Fourier transform use the Laplacian matrix
eigenvectors as the basis? In theory, is there an array basis
for n-dimensional space? Why not use other basis functions
on ontology graph?

We simply answer these questions. The classic Fourier
transform has the following law: the basis function of the
Fourier transform is the eigenfunction of the Laplacian opera-
tor (eigenfunctions, also known as the characteristic function,
for operators). Since the Laplacian matrix is the Laplacian on
the graph, similarly, the basis function of the graph Fourier
transform is the eigenvector of the graph Laplacian matrix.
The eigenvalues of the Laplacian matrix assume a position
similar to the frequency. The eigenvalues of Laplace are all
non-negative. And the minimum characteristic value is 0. It is
similar to the constant value in the classical Fourier transform
(which can be regarded as frequency 0). The eigenvector of
the Laplacian matrix takes the position of the basis function.
The 0 eigenvalue corresponds to a constant eigenvector,
which is similar to the constant term in the classical Fourier
transform. The eigenvectors corresponding to low eigenval-
ues are relatively smooth, and the eigenvectors corresponding
to high eigenvalues are transformed more intensely. The
two correspond to the low-frequency basis function and
the high-frequency basis function (in the classical Fourier
transform, the low-frequency sine wave signal transformation
is relatively flat, while the high-frequency sine wave signal
transformation is more intense).

The eigenvector basis can be described by the zero cross-
ing function:

ZG(x) = |{e = (i, j) ∈ E(G) : x(i)x(j) < 0}|, (1)

where x in the left hand denotes the graph structure data of
G. It records the number of the edges which have reversed
signal values at the vertices at both ends. The more such
edges, the stronger the signal oscillation and the more intense
the transformation. The figure on the right also shows that
as the feature value increases, the value of the zero crossing
function increases. Hence, small eigenvalues correspond to
low-frequency signals, and large eigenvalues correspond to
high-frequency signals.

Define the smoothness of the signal by defining the
graph Laplacian quadratic form. It represents the sum of the
squared difference of the two node signals connected by the
edge multiplied by the weight of the edge. The smaller the
value, the smoother the signal:

xTLx =
1

2

n∑
i,j=1

Wij(x(i)− x(j))2. (2)

In (2), if x takes eigenvector, the smooth value of the
quadratic form obtained is the eigenvalue corresponding to
the eigenvector:

uTl Lul = λl, (3)

which is exactly in line with the frequency setting in the
classic Fourier transform: the higher the frequency, the
steeper the basis function (cosine function) changes.

Let’s discuss the specific implementation of the algorithm
below. Regarding the two signals as the input signal and
the convolution kernel respectively, the convolution operation
can be defined in this way:
1) It converts the spatial domain signal to the frequency
domain and then multiplies;
2) It converts the result of the multiplication to spatial
domain.
It can be expressed by

x ∗G g = F−1(F(x)�F(g))

= U(UTx�UTg),

where � denotes harmand product. Set

x̂ = UTx =


x̂(λ1)
x̂(λ2)

...
x̂(λn)


and

ĝ = UTg) =


ĝ(λ1)
ĝ(λ2)

...
ĝ(λn)

 .
If this formula is expressed in the form of matrix multiplica-
tion, removing the harmand product. At the same time, we
usually neglect what the filter signal g looks like in the spatial
domain, but only care about its condition in the frequency
domain. Let gθ = diag(UTg), the equation equivalently
transforms into the following formula:

x ∗G gθ = UgθU
Tx

= U

ĝ(λ1)
. . .

ĝ(λn)



x̂(λ1)
x̂(λ2)

...
x̂(λn)


= U

ĝ(λ1)
. . .

ĝ(λn)

UTx.

That is: the product of the diagonal matrix and the column
vector x̂ = UTx are equal to the harmonic product of
the two column vectors x̂ = UTx and ĝ = UTg. The
meaning of the above formula: the form of the filter signal
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(convolution kernel signal) ĝ = UTg in the spectral domain
is also an n-dimensional vector. Its function is to enlarge or
reduce the components of the original signal, and the value
on the component.

Another express:

L = UΛUT ,

y = gθ(L)x = Ugθ(Λ)UTx

= gθ ∗ x = Uŷ.

Disadvantages: (1) Computational complexity, parameter
complexity O(n3) (mainly reflected in the filter gθ, it is
a diagonal matrix, the number of learnable parameters is
the same as the number of vertices) (2) Spatial convolution
locality cannot be guaranteed (Convolution should convolve
the local first-order domain of vertices, but spectral do-
main graph convolution cannot be done, because the fea-
ture transformation matrix U performs matrix multiplication
(x̂ = UTx) on all vertices, so when convolution is performed
on a vertex, the vertices far away are also taken into
account, which is an undesirable result at this time. Its local
computation cannot be guaranteed).

C. Ontology algorithm description

The signal of the input layer can be expressed as a n×C
matrix, where n is the number of vertices in the graph, and
C is the number of channels. The signal on the ontology
graph can be decomposed into the signal on each vertex,
X ∈ Rn×C represents the signal of the entire ontology
graph, where the vector Xi ∈ R1×C represents the signal
corresponding to the i-th vertex. In the output layer, you
can see that the graph structure is unchanged, the number
of channels or the signal value of each vertex is changed.
For example, the first vertex in the input layer corresponds
to 1 × C, and the output layer corresponds to the vector of
1×F , and both the value and the number of channels change.

A learnable diagonal matrix can be used to replace the
convolution kernel of the spectral domain to realize the graph
convolution operation:

gθ = diag(UT g) −→ gθ = diag(θ),

gθ =

ĝ(λ1)
. . .

ĝ(λn)

 −→
θ1

. . .
θn)

 .
That is, the original diagonal matrix gθ only has n values on
the diagonal, and the other n values are learned to form a
new diagonal matrix to replace the original gθ. The specific
formula is defined as follows:

xk+1,j = h(U
k−1∑
i=1

Fk,i,jU
Txk,i) (4)

where j = 1, · · · , Ck, xk ∈ Rn×Ck , xk+1 ∈ Rn×Ck+1 ,

Fk,i,j =

θ1

. . .
θn

 ,
where Ck represents the number of channels in the k-th layer,
xk,i ∈ Rn represents the feature map of the i-th channel in

the k-th layer, and Fk,i,j ∈ Rn×n represents the convolution
kernel matrix of the parameterized spectral domain (it is a
diagonal matrix containing n learnable parameters), h(·) is
the activation function.

The above formula can be understood in this way, assum-
ing that the input and output channels are 1, the simplified
version of the ontology graph convolution formula is as
follows

xk+1 = h(UFkU
Txk),

where xk ∈ Rn, xk+1 ∈ Rn, UTxk is the Fourier transform
of the ontology graph, which transforms the spatial domain
into the spectral domain; Fk replacing the convolution kernel
of the original spectral domain, each θi of the matrix Fk
is to enlarge or reduce each frequency component, that
is, to adjust the entire amplitude; Multiply U the adjusted
signal FkUTxk to convert the spectral domain to the spatial
domain. The core idea is to turn the original convolution
kernel into a learnable convolution kernel Fk in the spectral
domain.

Clearly, this trick has its disadvantages: (1) It is very time-
consuming to calculate the eigenvalue decomposition of the
Laplacian matrix. The computational complexity is O(n3),
where n is the number of vertices. When dealing with large-
scale graph data (such as social network data, which usually
has millions of vertices), it will face great challenges. (2)
The parameter complexity of the model is relatively large.
The computational complexity is O(n), and it is easy to
overfit when there are many nodes. (3) Local links cannot
be guaranteed (traditional convolutional networks of 3×3 or
5× 5 can guarantee local links, but the trick is a global link
form, not a local link form, which is contrary to the nature
of classic convolution).

In order to solve the shortcomings of the above trick,
Chebyshev polynomial can be applied instead of the convo-
lution kernel in the spectral domain (Chebyshev polynomials
play an important role in approximation theory and can be
used for polynomial interpolation. The corresponding inter-
polation polynomial can minimize the Runge phenomenon
and provide the best uniform approximation of the polyno-
mial on the continuous function):

gθ = diag(UT g)
Λ̂= 2

λmax
−In

−→ gθ(Λ) =
K∑
k=0

βkTk(Λ̂),

gθ =

ĝ(λ1)
. . .

ĝ(λn)

 −→

∑K
k=1 βkTk(λ̂1)

. . . ∑K
k=1 βkTk(λ̂n)

 .
Here, the traditional Chebyshev polynomial can be formu-
lated by

Tn+1(x) = 2xTn(x)− Tn−1(x),

where n = 1, 2, · · · , T0(x) = 1 and T1(x) = x. Hence, it
can be computed that

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,
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T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

T6(x) = 32x6 − 48x4 + 18x2 − 1,

· · ·

Obviously, the coefficient of the highest term of Tn(x) is
2n+1, and its matrix expression is denoted by

Tn+1(L) = 2LTn(L)− Tn−1(L),

where n = 1, 2, · · · , T0(L) = I and T1(L) = L. That is to
say,

p(x) = β0 + β1x+ β2x
2 + · · ·+ βKx

K

−→

p(x) = β0T0(x) + β1T1(x) + β2T2(x) + · · ·+ βKTK(x).

We need to learn the coefficients β0, β1, · · · , when using
Chebyshev polynomials to approximate the function, re-
place the basis 1, x, x2, · · · with T0(x), T1(x), T2(x), · · · .
This trick considers that the value of the spectral domain
convolution kernel is a function related to the eigenvalue, and
then the Chebyshev polynomial can be used to approximate
this function.

Specifically, gθ is the convolution kernel of the spectral
domain. A Chebyshev polynomial

∑K
k=0 βkTk(Λ̂) interpo-

lation is used to approximate it. We only need to learn to
get each βk. The advantage of this is that U can be put into
the polynomial summation part in the derivation process, and
the above derivation can be carried out by using the spectral
decomposition of the Laplacian matrix L̂ = UΛ̂UT to get∑K
k=0 βkTk(L̂)x. This shows that we no longer need to solve

U, but can directly use the Laplace matrix. Therefore, the
complexity of spectral decomposition is avoided by O(n3),
and the computational complexity is reduced.

The expression can be concluded by

x ?G gθ = UgθU
Tx =

K∑
k=1

βkTk(L̂)x,

where βk is the coefficient in front of the Chebyshev
polynomial and is a learnable parameter. We summarize its
characteristics are:
1) The convolution kernel has only K + 1 learnable pa-
rameters. Generally, K is much smaller than n, and the
complexity of the parameters is greatly reduced. (In the
specific experiment, K takes a number less than 10; and
n in the social network data set is millions, on the order of
tens of millions);
2) After using the Chebyshev polynomial to replace the con-
volution kernel in the spectral domain, after public deduction,
ChebNet does not need to perform eigendecomposition on
the Laplacian matrix. The most time-consuming steps are
omitted;
3) The convolution kernel has strict spatial locality. At
the same time, K is the “receptive field radius” of the
convolution kernel. The K-order neighbor vertices of the
central vertex are regarded as neighbor vertices.

Usually the pooling layer is connected to the back end
of the convolutional layer, and the fully connected layer is
connected to the last end of the entire neural network. The

role of the pooling layer is to reduce model parameters, re-
duce training burden, and control the over-fitting process. The
pooling operation runs independently on the feature map of
each depth, and the resolution is reduced in space. There are
multiple reduction methods, such as max, average, L2-norm,
etc. The choice of pooling method is also a hyperparameter
of the convolutional neural network. There are two more
hyperparameters about the pooling layer: spatial extent and
stride. Spatial coverage indicates how large a neighborhood
is to pool local image data, and the step size determines the
moving distance of the previous neighborhood and the next
neighborhood.

The weight connection method of the fully connected layer
is the same as that of the traditional neural network. Each
neuron in this layer is connected to all the neurons in the
previous layer. The reason why the fully connected layer is
the last segment of the entire convolutional neural network
is to map the feature data extracted by the front end to a
fixed dimension. At the same time, it can also prevent over-
smoothing.

III. EXPERIMENT ON PE ONTOLOGY

We build the PE ontology called “Sports Item Ontology”,
which can be represented as a tree-like structure, and the top
vertex is the virtual vertex “sports item”. The following is
divided into several branches as follows:
• dangerous sports: Parachuting, powered parachutes,

towed parachutes, gliding (paragliders, gliders, hang gliding),
hot air balloons, light aircraft; swimming (fin swimming),
sailing (windsurfing), rafting, surfing, diving, airships, sports
yachts, motor boats, ect.
• badminton, baseball, basketball, football, handball, hock-

ey, softball, table tennis, tennis (including soft tennis), vol-
leyball (including beach volleyball), bocce, sepak takraw,
croquet, shuttlecock, squash, billiards, golf Ball, bowling,
potball, rugby; gymnastics (including rhythmic gymnastics),
trampoline, technique, fitness, aerobics, sports dance, Mulan
boxing (including Mulan sword, Mulan fan, etc.), Shapin
exercise, sports health massage; figure skating, Ice dance, ice
hockey, speed skating, skiing; track and field, cross-country,
skateboarding, roller skating, bicycles (including mountain
bikes, unicycles, etc.), water skiing, boating, kayaking, life-
saving (water-saving); horse racing, Weightlifting, fencing,
boxing, judo, wrestling, martial arts (including Sanda), taek-
wondo, karate, health qigong; chess, Chinese chess, go,
bridge; fishing, pigeon, dragon dance, lion dance, dragon
boat, kite, tug of war, Swing, cockfighting, bullfighting;
nautical model, aviation model, vehicle model, aerospace
model, radio, orienteering, ect.
• petanque, sepak takraw, croquet, shuttlecock, squash,

billiards, golf Ball, bowling, potball, rugby; gymnastic-
s (including rhythmic gymnastics), trampoline, technique,
aerobics, aerobics, sports dance, Mulan boxing (including
Mulan sword, Mulan fan, etc.), Shapin archery, boxing, fenc-
ing, skin sliding Boat, trampoline, judo, rowing, swimming
(fin swimming), life-saving (life-saving on water), shoot-
ing, wrestling, sailing (windsurfing), parachuting, powered
parachuting, towing parachute, gliding (paraglider, glider,
hang gliding), Hot air balloon, mountaineering, rock climb-
ing, bungee jumping, adventure, car, motorcycle, motorboat,
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crossbow, water skiing, martial arts (including Sanda), taek-
wondo, bodybuilding, aerobics, sports dance, rafting, surfing,
diving, airship, Light aircraft, sports yachts, karate, Shapin,
horse racing, adventure, golf, ect.
• competitive events: acrobatic gymnastics, athletics/track

& field, beach, boat race, bobsleigh, bobsled, boxing, canoe
slalom, chess, cricket, cycling, diving, downhill race, dragon-
boat racing, dressage, equestrian, fencing, figure skating,
football/soccer, freestyle, gliding, sailplaning, golf, Greece-
Roman wrestling, gymnastic apparatus, gymnastics, hand-
ball, hockey, hold, lock, horizontal bar, hurdles/hurdle race,
shuttlecock kicking, ice skating, item Archery, judo, jumping,
kayak, mat exercises, modern pentathlon, mountain bike,
parallel bars, polo, relative work, relay race/relay, rings,
roller skating, rowing, rugby, sailing, shooting, side horse,
pommelled horse, ski jump, ski jumping competition, skiing,
slalom, softball, surfing, swimming, table tennis, taekwondo,
tennis, toxophily, trampoline, trapeze, triathlon, tug-of-war,
volleyball, badminton, baseball, basketball, walking/walking
race, wall bars, water polo, weightlifting, winter sports,
wrestling, yacht, vault,
Men’s 10m Platform
Women’s Taekwondo Over 67kg
Women’s Athletics 20km Walk
Men’s Diving Synchronized 3m Springboard
Women’s Diving 3m Springboard
Women’s Diving Synchronized 10m Platform
Men’s Wrestling Greco-Roman 58kg
Men’s Diving 3m Springboard
Men’s Artistic Gymnastics Parallel Bars
Women’s Artistic Gymnastics Beam
Men’s Table Tennis Singles
Women’s Diving 10m Platform
Women’s Artistic Gymnastics Uneven Bars
Women’s Table Tennis Singles
Men’s Badminton Singles
Women’s Badminton Doubles
Men’s Diving Synchronized 10m Platform
Women’s Diving Synchronized 3m Springboard
Men’s Table Tennis Doubles
Women’s Badminton Singles
Men’s Fencing Team Foil
Women’s Judo Heavyweight +78kg
Men’s Shooting 10m Running Target
Women’s Shooting 25m Pistol
Women’s Table Tennis Doubles
Men’s Weightlifting 77kg
Women’s Weightlifting 75+ kg
Mixed Badminton Doubles
Women’s Artistic Gymnastics All-Around Finals
Women’s Judo Half-Heavywt 78kg
Men’s Artistic Gymnastics All-Around Finals
Women’s Fencing Team Epee
Women’s Artistic Gymnastics Team Finals
Women’s Judo Half-Middlewt 63kg
Women’s Weightlifting 63kg
Women’s Weightlifting 69kg
Men’s Artistic Gymnastics Team Finals
Men’s Shooting 10m Air Rifle
Women’s Shooting Trap
Women’s Weightlifting 53kg

Women’s Judo Half-Lightwt 52kg
Women’s Shooting 10m Air Pistol
Women’s Cycling Track 500m Time Trial
Men’s Shooting 10m Air Pistol
Women’s Shooting 10m Air Rifle
Men’s Weightlifting 56kg
etc.

One thing to note is that the structure of ontology graph is
not a tree, only tree-like graphs and their branches have the
common vertices. We use the ontology learning algorithm to
get the dimensional signal (a real number) to each vertex, and
compute the similarity of ontology vertices by calculating the
distance between their corresponding real numbers. Then,
we compare the results with the standard answer given
by experts, and the compared conclusions are measured
by P@N average precision ratio. In order to reflect the
efficiency of the algorithm, we use the same P@N standard,
apply the ontology learning algorithm in Gao et al. [24],
[25] [26] to the “Sports Item Ontology”, and compare the
corresponding accuracy. Some results are shown in Table I.

It can be seen that the efficiency of the algorithm in this
paper is significantly higher than that of Gao et al. [24], [25]
[26]. Especially when N increases, this advantage is more
obvious.

IV. CONCLUSION

The purpose of this article is to create a PE ontology,
and use graph convolutional neural network to calculate the
similarity between the concepts of the ontology, so as to find
out the sports items that are highly related to each other.
Through the analysis of experimental data, we can see that
the algorithm in this paper is feasible and effective for PE
data.

The ontology is a real-time transforming database. The
concepts in the ontology will be continuously added and
deleted, so the corresponding ontology graph structure will
also change accordingly. This requires the graph convolu-
tional neural network algorithm to adapt the changes in the
ontology graph structure. Such problems can be used as
topics for future research.
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