
EEBA: Energy-Efficient and Bandwidth-

Aware Workload Allocation Method for

Data-intensive Applications in Cloud Data

Centers

Soha Rawas and Ahmed Zekri

Abstract— Cloud computing is a promising technology for

providing efficient virtualized compute and storage resources

to users on a pay-per-usage model. Large-scale geographically

distributed data centers have been established to support the

increasing demand for cloud services. Execution of data-

intensive workloads is a challenging problem especially when

objectives such as load balancing and energy reduction are

essential to reduce cloud providers operational cost while

providing high quality-of-service to users. Meantime, the high

rates of data transfers result in network congestion that

increases the makespan of workloads. This paper presents a

novel Energy-Efficient and Bandwidth-Aware workload

allocation method to run data-intensive applications on geo-

distributed cloud DCs. We formulated the workload allocation

problem as a multi-objective optimization problem to minimize

the workload makespan, data centers energy consumption, and

communication network congestion overhead. We designed a

meta-heuristic genetic algorithm to find a near-optimal

workload allocation. Extensive simulations using synthetic and

real traces showed a 32% average reduction of workload

makespan and 35% average reduction in network traffic

compared to benchmark allocation methods.

Index Terms— Green Computing, Energy Efficiency, Geo-

Distributed Data Centers, Task Scheduling, Deadline, Data-

intensive.

I. INTRODUCTION

loud computing provides virtualized compute, storage,

and network resources with cheaper prices in a pay-as-

you-go model [1, 2, 27]. The growing demand for cloud

services has led to the establishment of Data Centers (DCs)

worldwide to cover users’ requests. Currently, large

providers, such as Google, Amazon, and Microsoft, operate

tens of DCs around the globe to ensure higher availability

and disaster recovery [3, 26]. The Wide Area Network

(WAN) that connects the users’ and the geo-distributed DCs

plays an important role in satisfying user’s satisfaction and

providers’ profit. Therefore, the network delay incurred in

transferring data back and forth between the initial residence

location and the virtual machines hosting the users’

applications must be optimized for delivering excellent

Quality of Service (QoS).

It is worth noting that fully replicating data across all

DCs exhaust the storage space and the network bandwidth

due to the overhead of updating all distributed copies.

Besides, the Service-Level-Agreements (SLA) may enforce

restrictions of replication due to security and privacy

constraints. Therefore, managing data movement between

the storage nodes and computing nodes have recently

attracted researchers’ attention.

Data-intensive applications manipulate and process large

volumes of data resulting in higher network transfer cost

than computational cost. Consequently, the allocation of

users’ tasks to virtual machines should optimize the WAN

network delay and hence avoid link congestion. Therefore,

workload allocation methods should exploit the available

bandwidths of the network links to efficiently distribute the

workload tasks among the available virtual machines.

Currently, cloud providers established geo-distributed

DCs with thousands of computing, network, and storage

resources leading to massive consumption of energy that

pollute the environment with CO2 produce higher carbon

emission. (3% of the global electricity production is due to

server clusters in DCs [2, 25] with3.5% of the global carbon

emission in 2018, to become 14% by 2040 [4].) Hence,

cloud providers need to employ efficient workload

allocation methods that lead to minimizing energy

consumption for the sake of reducing operational cost and

keeping the environment clean by reducing carbon dioxide

emissions.

This paper proposes an Energy-Efficient and Bandwidth-

Aware (EEBA) workload allocation method to help

providers reduce operational cost while offering good QoS

to users. The contributions of this paper are summarized as

follows:

We formulate the problem of allocating data-intensive

workload tasks to running VMs in geo-distributed cloud

DCs as a multi-objective optimization problem that targets

the minimization of energy consumption, network links

congestion and workload makespan.

C

Manuscript received January 22, 2021; revised May 14, 2021
Soha Rawas, is a lecturer, supervisor and program coordinator at the

Center for Continuing and Professional Education (CCPE), Beirut Arab

University, Lebanon, e-mail: soha.rawas2@bau.edu.lb.
Ahmed Zekri, is an Assistant Professor in: the department of

Mathematics & Computer Science, Faculty of Science, Beirut Arab

University, Lebanon, e-mail: a.zekri@bau.edu.lb; the department of
Mathematics & Computer Science, Faculty of Science, Alexandria

University, Egypt, e-mail: ahmed.zekri@alexu.edu.eg

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

We design a meta-heuristic genetic algorithm that solved

the formulated optimization problem efficiently.

We conduct extensive simulations using CloudSim

toolkit to validate the efficiency of the proposed EEBA

method using both synthetic and real workload traces. The

results are compared with benchmark workload allocation

algorithms showed the efficiency of our method in reducing

power consumption and data transfer cost, and hence

providing better QoS and fulfilling user satisfaction.

The rest of the paper is organized as follows. Section II

presents the works related to the workload allocation

problem in cloud systems. Section III presents a description

of our proposed cloud model. Section IV shows our

formulation to the workload allocation problem as a multi-

objective optimization problem. Section V presents our

proposed meta-heuristic genetic algorithm to solve the

optimization problem. Section VI presents the evaluation of

the proposed EEBA method using CloudSim simulation

toolkit. Section VII concludes the paper.

II. RELATED WORK

Banerjee et al. targeted the minimization of load

balancing in solving the workload allocation problem [5].

They proposed a greedy task allocation method that

minimized the makespan of the VMs and hosts as well as

the tasks/cloudlets completion times, which lead to

improving the hosts load balancing. Dong et al studied the

minimization of DC energy consumption during tasks

allocation [6]. They proposed the Most-Efficient-Server-

First (MESF) method that schedules tasks to most energy-

efficient servers. Chatterjee et al. proposed the Conductance

cloudlets allocation policy calculated through the ratio of

each VM processing speed to the sum of all available VMs

processing speed [7]. Although the authors used the

conductance of each VM to calculate the VMs capacity,

however, the proposed algorithm missed the importance of

the cloudlets length as well as the cloudlets distribution,

which lead to load imbalance. Huai et al addressed the

problem of energy reduction in heterogeneous cloud

environments [8]. They proposed the Benefit-driven

Scheduling (BS) method that maps tasks to the most energy-

efficient server. Also, they proposed two different heuristic

algorithms, Power Best First (PBF) and Load Balancing

(LB), for tasks scheduling on homogenous servers.

However, they didn’t consider the network delay in

selecting the computing resources for workload execution.

Klizavoivh et al. considered the network delay and

bandwidth congestion on resource allocation [9]. The

authors proposed an energy-efficient task scheduler with

traffic load balancing, e-STAB, which consolidates jobs to a

minimum number of activating servers to minimize

congestion and network delay. However, the method targets

environments with a single DC. Alizadeh et al. studied the

problem of inter-DC network traffic generated by

MapReduce jobs when allocating them to geo-distributed

DCs [10]. Their proposed optimization problem jointly

optimizes input data movement and task placement.

Although their experiments showed promising results in

reducing the inter-DC network traffic, however, the applied

method does not address the problem of energy

consumption.

Toosi et al. [11] proposed a provisioning algorithm for

scheduling deadline-constrained data-intensive applications

while taking into account aspects such as data transfer time,

the location of data, and the network bandwidth. However,

the proposed algorithm does not target the minimization of

DCs’ energy. Abdi et al. proposed a model for deadline-

constrained bag-of-tasks applications in federated hybrid

clouds that minimized providers cost. However, they

ignored the cost incurred due to energy consumption and

data transmission [12].

Most of the proposed task allocation methods discussed

above tackle the problem of minimizing the workload

makespan while trying to reduce the energy consumption of

the cloud resources. However, none studied the collective

optimization among the makespan, load balancing, energy

consumption, network links congestion, which is the goal of

the current paper.

III. MODEL DESCRIPTION

The placement of users’ data on storage nodes, such as

Amazon S3 cloud, could raise the overhead of moving data

to/from the compute nodes if the user’s task is not allocated

to a proper virtual machine, and hence physical machine

[13]. Insufficient bandwidths of network links lead to

network congestion and longer transfer delays resulting in

data packet loss and connection blocking [14]. Therefore,

efficient workload allocation has to take into consideration

the network delay cost, which significantly could degrade

performance severely and hence reduce QoS as well as

providers’ profit. Besides, incorporating energy cost in the

mapping process will further reduce the operational cost in

addition to obtaining sustainable environment due to

reducing the Carbon dioxide footprint.

This section introduces the cloud system model

components and the target application model.

A. Cloud system components

The target cloud computing system employed in this

paper consists of four components as depicted in Fig. 1:

1. Provider Data Centers: The cloud provider has a set of

geographically distributed DCs. Each DC has a set of

heterogeneous physical machines (compute nodes) that

host a set of running virtual machines ready for running

workload tasks.

2. Cloud Broker: A cloud broker is an intermediary

between the compute resources on DCs and the users. It

accepts the users’ workload tasks and allocates them to

a set of preconfigured and running virtual machines

distributed among the providers’ DCs. The users’

requests require the movement of data files to the

virtual machines where their tasks run. It is assumed the

data files associated with the workload tasks are in one

Storage Node (SN) that could be on the S3 cloud server.

To move data faster between the SN and the physical

machines hosting the workload VMs, we assume

network links are configured and set prior to the

workload allocation, and the bandwidth of the available

links are known.

3. Cloud Users: Cloud users send their services’ requests

to a cloud provider broker that assigns them to the

currently running VMs at different provider DCs.

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

Fig. 1. The target cloud computing system model for running data intensive workloads.

B. Workload Model

There are a variety of cloud service provisioning models

depending on the users’ requirements. Cloud providers and

their brokers need to employ efficient allocation strategies to

provide enhanced QoS while increasing their profits. One

provisioning situation arises from offering a reservation

model where independent users have their own tasks and

associated data that are required to execute during a specific

period of time (such as virtual classrooms.). In such

situations, the workload is static and require a fixed number

of virtual machines. We target workloads consisting of tasks

characterized by long data transfer times compared to their

shorter processing times. For example, a collection of users

need to process a set of independent large files, such as

video clips, in a short period of time. Therefore, cloud

brokers should employ allocation algorithms that schedule a

collection of independent tasks (Bag-of-Tasks BoTs) so that

the overall makespan of the BoT is minimal while

employing a number of preconfigured VMs placed on

geographically distributed DCs owned by a provider.

Our proposed EEBA allocation method considers

heterogeneous VMs which are pre-configured and ready to

use during a specific period of time. The pre-configuration

as in Azure cloud environment decreases the overhead of

setting up and creating new VMs on the spot leading to the

reduced computational cost of the software stack and the

operating system configuration [14].

Our objective is to efficiently allocate tasks and their

data so that the overall completion time of the workload

execution is minimum while reducing the power

consumption of computing resources to decrease DCs

operational costs.

IV. PROBLEM FORMULATION

In this section, we present a mathematical formulation of

the proposed EEBA workload allocation method as a multi-

objective optimization problem.

A. Model Assumptions

The EEBA allocation method assumes the following:

 The target data-intensive workload consists of a set of

independent tasks, i.e. it is a bag-of-tasks (BoT)

workload.

 There is a set of available VMs pre-configured and

ready for execution on a set of PMs hosted in a set of

distributed DCs.

 Each VM executes one task at a time, and the task can

use all the processing cores allocated for the VM.

 The data files associated with the tasks are initially

located in a storage node (SN), where they are moved

back and forth to the DCs where the tasks reside.

 The network links between the DCs are preconfigured

before starting the workload allocation. Therefore, the

network links delays and available bandwidths are

known a priori.

TABLE 1 DESCRIPTION OF PARAMETERS USED IN THE PROBLEM

FORMULATION.

Notation Description

T set of independent tasks (BoT) to be scheduled

D Set of geographically distributed DCs
V Set of VMs hosted on D

H Set of physical machines hosting V

F Set of data files associated with tasks T
m Total number of hosts

d Total number of DCs

l Total number of VMs
vj Total number of VMs allocated to host hj

n Total number of tasks

taski A single task (cloudlet) submitted by a user, taski ∈ T

fi A data file associated with a task ti, fi ∈ F

dci DC at location i s. t. dci ∈ D

𝑣𝑚𝑖
𝑗

virtual machine i allocated to host hj s. t. vmj ∈ V

and hj ∈ H

Tt
Subset of worload tasks , Tt ⊂ T to be run on

resource 𝑣𝑚𝑖
𝑗

t
Total number of tasks assigned to be run on resource

𝑣𝑚𝑖
𝑗

𝐷𝑇𝑇
A deadline time to execute workload T; set in the

SLA between the broker and users.

𝑒𝑡(𝑡𝑘 , 𝑣𝑚𝑖
𝑗
) Execution time of task tk on vmi allocated to host hj

𝑡𝑡(𝑡𝑘 , 𝑣𝑚𝑖
𝑗
)

Transfer time of task tk to be processed on compute

resource vmi allocated to host hj

𝑙𝑙(𝑡𝑎𝑠𝑘𝑖) Length of a task taski in million instructions

𝑚𝑖𝑝𝑠(𝑣𝑚𝑖
𝑗
)

The available MIPS for virtual machine vmi allocated

to host hj

𝑝𝑒(𝑣𝑚𝑖
𝑗
)

The number of processing elements assigned to vmi
allocated to host hj

𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖) The available network link bandwidth between the SN

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

and 𝑑𝑐𝑖

dt(𝑑𝑐𝑖)
The delay time before sending a data file between the

SN and the virtual machine 𝑣𝑚𝑖
𝑗
at DC 𝑑𝑐𝑑

P𝑜𝑤𝑒𝑟(𝑣𝑚𝑖
𝑗
) power consumption of the vmi allocated to host hj

CTT The completion time of the workload T

𝑡𝑐(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖)
Congested time span of the network link between the

SN and dci

𝑡𝑎(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖))
Available time span of the network link between the
SN and dci

B. Mathematical Formulation

Given a workload consisting of n tasks T={t1, t2,

…,tn}, a set of f files F={f1, f2, …,ff} associated with

tasks T, a set of d DCs D={dc1, dc2, …, dcd}

distributed in different geographical regions, a set of

m hosts H={h1, h2, …,hm} distributed among d DCs,

and a set of l VMs V={vm1, vm2, …,vml} allocated

to m number of hosts, The goal is to allocate the set of

tasks T to the set of virtual machines V such that a

Deadline time set by the SLA is met. Our proposed

EEBA method target the minimization of three sub

objectives: workload makespan, network links

congestion, and DCs energy consumption. Our

proposed method allocates all tasks of workload as

one BoT. It also treats all VMs as one aggregated list,

even they are located on different DCs. The hosts are

also aggregated in one list. Therefore, we introduce

three matrices to depicts the relationships between

these entities.

Hosts/DCs relationship. Each DC contains more than

one host and each host is located at only one DC. Let A be

m x d matrix showing the mapping status of the m hosts to

the d DCs as follows:

𝐴 = [

𝑎11 ⋯ 𝑎1𝑑
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑑
]

where 𝑎𝑖𝑗 is a binary variable (0/1) such that:

𝑎𝑖𝑗 = {
1, 𝑖𝑓 ℎ𝑖 𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝐷𝐶 𝑑𝑐𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

VMs/Hosts relationship. Each host can hold more than

one VM and each VM is executed at only one host. Let B be

l x m matrix showing the mapping status of the l VMs to the

m hosts as follows:

𝐵 = [
𝑏11 ⋯ 𝑏1𝑚
⋮ ⋱ ⋮
𝑏𝑙1 ⋯ 𝑏𝑙𝑚

]

where 𝑏𝑖𝑗 is a binary variable (0/1) such that:

𝑏𝑖𝑗 = {
1, 𝑖𝑓 𝑣𝑚𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 ℎ𝑜𝑠𝑡 ℎ𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Tasks/VMs relationship. Each VM can execute more than

one task and each task is executed at only one VM. Let C be

n x l matrix showing the mapping status of the n tasks to the

l VMs as follows:

𝐶 = [

𝑐11 ⋯ 𝑐1𝑙
⋮ ⋱ ⋮
𝑐𝑛1 ⋯ 𝑐𝑛𝑙

]

where 𝑐𝑖𝑗 is a binary variable (0/1) such that:

𝑐𝑖𝑗 = {
1, 𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑣𝑚𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Now, we show how the workload makespan, the

network link overhead, and the total energy consumption are

calculated using the above three matrices A, B, and C.

Makespan calculation. Let the completion time of task

taskk on 𝑣𝑚𝑖
𝑗
 is the time instance where it finishes

execution. This time includes processing/execution time of

the task and the data transfer time.

The execution time of task taskk on 𝑣𝑚𝑖
𝑗
 will be defined

as:

𝑒𝑡(𝑡𝑎𝑠𝑘𝑘 , 𝑣𝑚𝑖
𝑗
) =

𝑙𝑙(𝑡𝑎𝑠𝑘𝑘)

𝑚𝑖𝑝𝑠(𝑣𝑚𝑖
𝑗
) ∗ 𝑝𝑒(𝑣𝑚𝑖

𝑗
)
 (1)

In Equation (1), we assume a task taskk is processed in

parallel using all the available PEs/cores of the virtual

machine 𝑣𝑚𝑖
𝑗
.

The transfer time to send a data file fa, associated with

task taska, from the SN where it initially resides to a virtual

machine 𝑣𝑚𝑖
𝑗
located in a DC 𝑑𝑐𝑥, and then return the file

back to its initial location can be computed as follows:

𝑡𝑡(𝑡𝑎𝑠𝑘𝑎, 𝑣𝑚𝑖
𝑗
) =

𝑖𝑛𝑆𝑖𝑧𝑒(𝑓𝑎) + 𝑜𝑢𝑡𝑆𝑖𝑧𝑒(𝑓𝑎)

𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑥)
+ 2 ∗ 𝑑𝑡(𝑑𝑐𝑥) (2)

We assume that the available link bandwidth between

the storage node (SN) and the DC, where a virtual machine

𝑣𝑚𝑖
𝑗
 resides, are the same in both directions

From Equations (1) and (2), the completion time for a

task taskk to be processed on VM 𝑣𝑚𝑖
𝑗
is calculated as

follows:

𝑐𝑡(𝑡𝑎𝑠𝑘𝑘 , 𝑣𝑚𝑖
𝑗
)

=

{

 𝑡𝑡(𝑡𝑎𝑠𝑘, 𝑣𝑚𝑖

𝑗
) + 𝑒𝑡(𝑡𝑎𝑠𝑘, 𝑣𝑚𝑖

𝑗
),

 𝑖𝑓𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑖𝑛 𝑣𝑚𝑖
𝑗

𝑐𝑡(𝑡𝑎𝑠𝑘𝑘−1, 𝑣𝑚𝑖
𝑗
) + 𝑡𝑡(𝑡𝑎𝑠𝑘, 𝑣𝑚𝑖

𝑗
) + 𝑒𝑡(𝑡𝑎𝑠𝑘, 𝑣𝑚𝑖

𝑗
),

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

In Equation (3), we assume the subset of tasks allocated to

a VM is queued and processed one by one as revealed in

Fig. 2.

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

Fig. 2. Scheduling t tasks to 𝒗𝒎𝒊
𝒋
, the waiting tasks are inserted into a FIFO

queue

The makespan schedule to execute a set of t tasks

Tt={taska, taskb,…, taskt} allocated to a resource 𝑣𝑚𝑖
𝑗
 s. t.

Tt ⊂T, will be simply the completion time of the last queued

task, taskt, as given in Equation (4) below.

𝑀𝑆
𝑣𝑚𝑖

𝑗 = 𝑐𝑡(𝑡𝑎𝑠𝑘𝑡 , 𝑣𝑚𝑖
𝑗
) (4)

Consider a host hk and a set of v VMs running on this

host such that Vv={𝑣𝑚1
𝑘, 𝑣𝑚2

𝑘, ..., 𝑣𝑚𝑣
𝑘} ⊂ V. Therefore,

the makespan schedule to execute all tasks on host hk is

defined as the maximum among all makespan schedules on

all VMs running on host hk, as given in Equation (5).

𝑀𝑆ℎ𝑘 = 𝑚𝑎𝑥𝑖=1
𝑣 𝑏𝑖𝑘 ∗ 𝑀𝑆𝑣𝑚𝑖

𝑘 (5)

Given a set of m hosts, H = {h1, h2, ..., hm}, distributed

on a set of d DCs. Using Equations (4)-(5) above, we can

calculate the makespan to execute all tasks in T on all active

hosts as:

𝑀𝑆𝑇 = 𝑚𝑎𝑥𝑙=1
𝑑 𝑚𝑎𝑥𝑖=1

𝑚 𝑎𝑖𝑙 ∗ 𝑀𝑆ℎ𝑖 (6)

Network Overhead calculation. Data-intensive

applications are highly sensitive to WAN communication

network (between SN and specific DC) and its available

bandwidth that leads to communication delay and

consequently networks congestion [11]. In this paper, we

introduce the network overhead (NOV) as a metric to guide

us in effectively allocating a workload’s tasks to the VMs

hosts on different hosts in different DCs such that the

accompanied data transfers are minimum. The overhead

occurs when the available bandwidth of the network links

connecting the storage nodes, where data resides, and the

compute nodes/hosts on DCs is insufficient leading to

excessive network traffic due to link congestions.

Let 𝑡𝑐(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖)) be the time span of the network

link between the SN and the VMs placed on dci being

congested, and 𝑡𝑎(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖)) be the time span of the

network link between the SN and the VMs placed on dci

being active. Hence, we define the network overhead 𝑁𝑂𝑉𝑇

as the average ratio of the time period when the network

links experience bandwidth utilization of 100% as given in

Equation (7) below.

𝑁𝑂𝑉𝑇 =
1

𝑑
∑

𝑡𝑐(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖))

𝑡𝑎(𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑖))

𝑑

𝑖=1

 (7)

Energy Consumption calculation. Developing an energy-

aware task allocation algorithm requires measuring the

dynamic power consumption to run the tasks on the compute

resources. To derive a new power consumption model, real-

time server power consumption monitoring is needed.

However, this is out of the scope of this paper. We used the

linear power model done in [13]. In this model, the power

consumption of a server scales linearly with its CPU

utilization. The total power consumed by a host/server is

given by:

𝑃(𝑢) = 𝑃𝑖𝑑𝑙𝑒 + (𝑃𝑓𝑢𝑙𝑙 − 𝑃𝑖𝑑𝑙𝑒) ∗ 𝑢 (8)

where Pidle is the server power consumption without

running any load on the server, Pfull is the amount of

consumed power when the server is fully utilized, and u is

the percentage of CPU utilization. Therefore, the power

consumption of a host hj,d holding v number of VMs

(sketched in Fig. 3 below) on DC dcd equals to the total

power consumed by v VMs allocated on host j. Assume

𝑃𝑜𝑤𝑒𝑟(𝑣𝑚𝑖
𝑗
) is the amount of power consumed by a virtual

machine 𝑣𝑚𝑖
𝑗
 at an instant of time, then the total power

consumption of host hj,d at a given instant of time can be

calculated as in Equation (9). Hence, the total energy

consumption 𝐸𝐶𝑇 of all the m hosts H={ h1, h2, …,hm} for

processing all the workload tasks T for time interval [0, ht]

can be calculated as in Equation (10) below.

𝑃𝑜𝑤𝑒𝑟 (ℎ 𝑗,𝑑) =∑𝑏𝑖𝑗 ∗ 𝑃𝑜𝑤𝑒𝑟(𝑣𝑚𝑖
𝑗

𝑣

𝑖=1

) (9)

𝐸𝐶𝑇 = ∑∑𝑎𝑗𝑘 ∗ 𝑃𝑜𝑤𝑒𝑟(ℎ 𝑗,𝑘)

𝑚

𝑗=1

∗ ℎ𝑡 (10)

𝑑

𝑘=1

Fig. 3. A physical server/host with v VMs

C. The Optimization Problem

The main goal of the proposed method is to map a set of

tasks T to a set V of VMs placed on geo-distributed DCs

without violation of the workload deadline constraint DTT

given by the SLA agreement between the provider and cloud

user. In additions, the mapping should result in a reduction

in the total execution cost. To fulfill this goal, we target

three objectives. The first objective is to minimize the

makespan to execute the set of T tasks on the set of

available VMs. The second objective is to minimize the

network’s links overhead incurred due to data files

transmission from the SN to the computing nodes. The third

objective is to minimize the energy consumption of the

computing servers because of running the VMs.

Given the above three mini-objectives, we can formulate our

multi-objective optimization problem as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (

𝑀𝑆𝑇
𝑁𝑂𝑉𝑇
𝐸𝐶𝑇

) (11)

Subject to:

1- The completion time of executing the workload T on a

set of available VMs V should not exceed the deadline

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

time constraint DT(T) given by the SLA between the

provider and user,

𝑀𝑆𝑇 ≤ 𝐷𝑇𝑇 (12)

2- At any instance, a task is executed on only one VM,

∑𝑐𝑖𝑗

𝑙

𝑗=1

= 1, ∀ 𝑖, 𝑖 = 1,2, … , 𝑛 (13)

3- At any instance, each VM is executed at only one host:

∑𝑏𝑖𝑗

𝑚

𝑗=1

= 1, ∀ 𝑖, 𝑖 = 1,2, … , 𝑙 (14)

4- At any instance, each host is assigned to only one DC

∑𝑎𝑖𝑗

𝑑

𝑗=1

= 1, ∀ 𝑖, 𝑖 = 1,2, … ,𝑚 (15)

5- The task requirements do not exceed the capacity of the

VM allocated to it.

∑ 𝑐𝑖𝑗 ∗ 𝑡𝑎𝑠𝑘𝑘 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑣𝑚𝑗
ℎ)𝑡

𝑘=1 (16)

∀ 𝑖, 𝑗, ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑖 = 1,2, … , 𝑛 ; 𝑗 = 1, 2, … , 𝑙;
 ℎ = 1,2, … ,𝑚

𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗 ∈ {0,1}

V. THE EEBA METHODOLOGY

In this section, we propose a genetic-based EEBA

workload allocation method to solve the formulated multi-

objective optimization problem in Equations (11) – (16),

which is an NP-hard problem [15].

Given a set T={t1, t2, …, tn} of n tasks , a set F={f1, f2,

..., ff} of m files (input/output files of tasks T), a set

D={dc1, dc2, …, dcd} of DCs distributed in different

regions, and a set of distributed and running VMs V={vm1,

vm2, …, vml} with different computing specification, the

EEBA genetic algorithm tries to optimally allocate the set of

tasks T to the set of running VMs V so that the total power

consumption of the cloud DCs is minimized and the QoS is

satisfied.

A. Proposed EEBA Genetic-Based Algorithm

In this section, we adopt Genetic Algorithms (GA) to

solve the formulated multi-objective EEBA model given in

Equations (11) - (16). We denote our adapted genetic

algorithm as EEBA. First, we describe the genetic operators

used in the genetic algorithm and relate them to the task

allocation problem under investigation. Then, we present

algorithms to calculate the three components of the multi-

objective function (Equation 11) that we use as the

algorithm’s fitness function.

A.1. Genetic operators

Encoding: A chromosome represents a solution to the

problem. That is the allocation of the n workload tasks to the

running VMs. A chromosome consists of n genes each of

which is responsible for mapping a task to a specific VM.

The value of a gene is a positive integer between 1 and l, the

total number of VMs. Table 2 shows an example of mapping

a workload consisting of 10 tasks to 3 VMs. Therefore, a

chromosome consists of 10 genes.

TABLE 2 A ONE CHROMOSOME CONSISTING OF TEN GENES (TASKS)

Task # 10 9 8 7 6 5 4 3 2 1

Binary
representati

on of a

gene

00

01

00

10

00

01

01

00

00

01

00

10

00

01

01

00

00

10

00

01

VM # 1 2 1 3 1 2 1 3 2 1

Initial Population: This is a set of chromosomes that

are randomly created to initialize a way to an optimal

solution. Each chromosome in the population represents a

solution to the problem (T tasks allocated to V VMs) and it

is called a population individual. From this initial

population, the fittest individual(s) are selected to mate and

produce the next generation.

Selection: There are various strategies to select the best

individuals that produce fittest new generation such as

Boltzmann strategy, rank-based selection, roulette wheel,

and tournament selection. We used the roulette wheel where

rank is given to each individual according to its fitness

value.

Crossover: This is an important operator of GA that

improves the quality of the newly generated population.

Pairs of chromosomes (parents/individuals) are selected to

produce next-generation individuals. We used random point

crossover to exchange VMs assignment between

corresponding tasks.

Mutation: To avoid generating uniform populations, a

mutation operator is used to maintain genetic diversity in the

subsequent generations. Moreover, mutation recovers the

good characteristics lost during the crossover. It is used to

modify the genes of a randomly selected chromosome using

a mutation probability.

Fitness function: A successful GA algorithm depends

on selecting a suitable fitness function to guide the

chromosomes selection and hence the final solution to the

original problem. We selected the objective function of the

formulated multi-objective optimization problem given in

Equation (11) as the fitness function. The three components

of the objective function, namely the workload makespan,

the network overhead, and the DCs energy consumption, are

merged into a single function by a weighted sum of the three

components.

B. Fitness function calculation

The following three algorithms show how the three

components of the multi-objective function (Equation 11)

are calculated.

Network Overhead Calculation: Algorithm 1 shows

pseudocode for calculating the network overhead (discussed

in Section III). “D” and “LinkBw” are the sets of a geo-

distributed DCs and network link bandwidths between the

SN and distributed computing nodes, respectively. “d” refers

to one of “c” DCs in “dc” list. The key idea of this algorithm

is to estimate the average ratio of the time when the network

links experience bandwidth utilization of 100% and the

active times of the links. It tracks the available and the

requested bandwidth of each network link (line 3 and 4). If

the available bandwidth is less than the requested one, it

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

calculates the elapsed time of the link being congested (lines

5-8). After computing the total time of network links being

congested, it is divided by the time span of the links being

active (line 10). The algorithm runs until the end of

workload processing (line 11). Finally, the algorithm

retrieves the NOV value after dividing the total congested

time of inter-DCs links by the number of DCs “c” (line 12-

13).
Algorithm 1 Network Overhead Calculation NOV(T)

Input: D={dc1, dc2, …, dcd}, a set of d DCs

𝐿𝑖𝑛𝑘𝐵𝑤 = {𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐1), 𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐2),… , 𝐿𝑖𝑛𝑘𝐵𝑤(𝑑𝑐𝑑)}, a set of
configured network link bandwidths between the SN and the distributed

DCs D.
Output: NOV value

Processing:

1: Do
2: For each DC i in D list

3: AvailableBw(dci) = LinkBw(dci).getUtilization() // get utilization

of LinkBw(dci)
4: RequestedBw(dci)=LinkBw(dci).getRequested() // get requested of

LinkBw(dci)

5: If AvailableBw(dci) < RequestedBw(dci)
6: timeDifference=LinkBw(dci).getTime()-

LinkBw(dci).previousActiveTime()

 //get the elapsed time of the LinkBw(dci) being congested
7: OverheadTimeDifferenceLinkBw(dci)+=timeDifference //

compute the total congested

 time of LinkBw(dci)
8: End If

9: End For

10: NOVDC+= OverheadTimeDifferenceLinkBw(dci)/activeTime //

activeTime: is the time
 span of the network link between the SN and dci being active.

11: Until the workload end of processing

12: NOV= NOVDC/d
13: Return NOV

Makespan Calculation: Algorithm 2 below calculates

the makespan of a workload T. For each vmi of v number of

VMs allocated to host hj (line 4) the vmi makespan is

calculated using Equation 4 (line 5). Consequently, the host

hj makespan will be the maximum makespan of v VMs

scheduled on host hj (as shown in Equation 5 and lines 6-8).

Hence, the makespan of workload T is the maximum

makespan of m hosts (lines 10-12).

Algorithm 2 Makespan Calculation MS(T)

Input: H={h1, h2, …,hm}, a set of m hosts
V={vm1, vm2, …,vml}, a set of l VMs

T = {𝑡1, 𝑡2…, 𝑡𝑛}, a set n tasks
Output: Makespan value of workload T

Processing:

1: MS(T)=-1
2: for each host hj in H

3: MS(hj)=-1

4: for each VM vmi in v VMs allocated to host hj

5: MS(𝑣𝑚𝑖
𝑗
) = CompletionTime(𝑡𝑡 , 𝑣𝑚𝑖

𝑗
) // MS(𝑣𝑚𝑖

𝑗
) is the

completion time of the last queued task

 tt allocated to 𝑣𝑚𝑖
𝑗
 as shown in Equation (4.4), such that

CompletionTime(𝑡𝑡, 𝑣𝑚𝑖
𝑗
) calculated using Equation 4.3

6: if MS(𝑣𝑚𝑖
𝑗
)>MS(hj)

7: MS(hj) = MS(𝑣𝑚𝑖
𝑗
)

8: End if

9: End for
10: if MS(hj) > MS(T)

11: MS(T)= MS(hj)

12: End if
13:End for

14: Return MS(T)

Energy Consumption Calculation: Algorithm 3 below

calculates the expected total energy consumption of DCs to

execute the workload T. The GetPowerConsumption()

function (line 4) returns the power consumption of each hi

using the real consumption data provided in SPECpower

benchmark [23] according to the level of utilization in Watts

-Table 9 (implementation details are given in Section VI).

Algorithm 3 Energy Consumption Calculation EC(T)

Input: D={dc1, dc2, …, dcd}, a set of d DCs
H={h1, h2, …,hm}, a set of m hosts

Output: EC value

Processing:
1:EC=0

2: For each DC dci in DC list D

3: For each host hj in dci
4: EC+= hi.GetPowerConsumption()*ActiveTime(hi)// compute the

energy consumption of hi

 as per its utilization as shown in Table 9-Section VI
5: End For

6: End For

7: Return EC

C. The EEBA genetic-based algorithm

The proposed EEBA adaptive genetic algorithm is given

in Algorithm 4 below. It describes the solution to the multi-

objective optimization problem in Equations (11-16).

Algorithm 4: EEBA-G algorithm

Input: T= {t1, t2, …,tn}, a set of workload tasks. V= {vm1, vm2, …, vml},
a set of distributed VMs.

D={dc1, dc2, …, dcd}, a set of geo-distributed DCs, workload Deadline

time DT(T).
Population size (pop_size; the number of solutions in each generation),

Maximum number of generations (max_gen) (the used parameters are

given in Table 3 –Section VI)
Output: allocating set of task T to the set of VMs V.

Processing:

1: Begin
2: Generate the initial population randomly with pop_size individuals

3: Evaluate each candidate solution (individual) by calculating the fitness

value for each
 individual in the initial population using Algorithms 1, 2 and 3.

4: Find the top two fittest individuals and consider them elite; pass them to

next generation without
 any changes.

5: While gen_size < pop_size

6: Use random Roulette Wheel method to select two chromosomes
as parents

7: Perform crossover between the selected chromosomes

8: Pass the new individuals to the next generation
9: End while

10: Replace the current generation with the newly created generation.

11: Apply mutation operator with probability Pm=0.15
12: Go to step 3 until the max_gen or if the achieved makespan is less than

or equal to DT(T) (Equation 12)

13: End

As shown in Algorithm 4, GA goes through the following

phases:

1- Creation of the initial random population (line 2), where

each population individual is considered a possible

solution to the problem.

2- Calculating the Fitness evaluation (line 3) using the

above Algorithms 1, 2 and 3. The fitness function is a

weighted sum of three objectives.

3- Parents’ selection to generate the new fittest

populations by applying crossover and mutation GA

operators to the selected parents (line 4-11). After a

number of iterations, the algorithm retrieves the

individual with the highest fitness from the last

population as an optimal solution to the problem (line

12).

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

 VI. PERFORMANCE EVALUATION

This section validates the effectiveness of the proposed

EEBA method through extensive simulations using

CloudSim 3.0.3 simulator. We start by presenting a brief

description of the CloudSim environment as well as the

modules that are used in our implementations. Then we

show the performance of our method using both synthetic

and real data sets.

A. CloudSim Toolkit

CloudSim is a toolkit for the simulation of cloud

computing systems. CloudSim is an open-source

development toolkit that supports the development of new

resource management, application scheduling, VM

allocations, migrations methods, and much more new

implementation policies to improve the cloud environment

from its various levels [24]. To model the adaptive EEBA

genetic algorithm, we utilized CloudSim 3.0.3 by modifying

the DC broker algorithm that plays the role of mediator

between the cloud user and service provider.

B. Simulation Setup

The extensive simulations were conducted on Intel(R)

core(TM) i7 Processor 3.4GHz, Windows 7 platform using

NetBeans IDE 8.0.2 and JDK 1.8. Different scenarios were

conducted through varying the number of distributed DCs

and their specifications as well as the workload

characteristics to validate the effectiveness of the proposed

EEBA method. The network links characteristics are

represented by the following two matrices:

1- Delay Matrix (DM) that stores and resembles the

average value for communication delay between the SN and

geographically distributed DCs hosting the compute nodes

(VMs). The communication delay was approximated using

the geographical distance since there is no general analytical

model for the delay in the network [13]. However, in our

experiment, we used the WAN Latency Estimator [16] to

estimate the network latency in milliseconds.

2- Bandwidth Matrix (BM) that represents the

bandwidth link capacity between the SN and the compute

nodes at the DCs. The bandwidth between the SN and the

geo-distributed DCs is randomly generated between [1Gb/s,

10Gb/s].

We conducted two different simulation scenarios. The

first one uses a synthetic workload trace. This scenario

randomly models the distributed cloud environment and

measures the effectiveness of the proposed EEBA method

using time-based metrics including the network overhead

incurred. However, the second one uses the benchmark

Planetlab workload traces [17] with real data about hosts’

energy consumption to show an accurate estimate of the

energy-saving due to using our proposed EEBA model.

For comparison purposes, the proposed adaptive EEBA

genetic algorithm was compared and analyzed according to

three benchmark task allocation algorithms: Shortest Job

First (SJF), Round Robin (RR), an energy-efficient genetic-

based task allocation algorithm [18], which we call Green

Genetic algorithm (GGA), and the Location-aware Energy-

Efficient (LAEE) genetic-based algorithm, that proposed in

[13]. LAEE is a designed heuristic takes into account the

cost of the data transfer time as well as the workload

makespan without considering the network overhead

between the SN and computing nodes.

Table 3 shows the experimental setup of the different

genetic operators used in the proposed EEBA adaptive

genetic algorithm based on a benchmark used parameters

[13, 19].

TABLE 3 GENETICS PARAMETER SETTINGS

Parameter Value

Population size 100

Number of generations 100

Crossover rate 0.8

Mutation rate 0.15

C. Experimental Results

C.1. The first Scenario

In this experiment, the cloud provider owns 4 different

DCs distributed among 4 different regions: US, Asia,

Australia, and Brazil. The SN of the cloud provider (as

shown in Section III) is located in Australia.

Table 4 shows the average distance and latency between

the cloud provider SN and geo-distributed DCs. To measure

effectively the makespan metric, two different cloud

environments are tested. One considered hosts are

homogeneous of Type 1 (as shown in Table 5), and use

small VM instance type (as shown in Table 6). The others

are considered heterogeneous hosts of types: Type 1-7 (as

shown in Table 5) and four different VM types (as shown in

Table 6). The number of hosts for each DC varies within

the range [100:300]. We assume that hosts will consume the

full system power when the server is on. Moreover, we

consider that SN and DCs are fully connected, and the

capacity of different links varies within the range [0.5 Gb/s:

10 Gb/s].

To measure the efficacy of the proposed EEBA method,

we focus on measuring the three time-based performance

metrics, namely, workload makespan, VM makespan, and

host makespan. Moreover, the newly proposed network

overhead (NOV) parameter (see Section III) is used to

measure the degree of the WAN communication network

congestion. Consequently, nine BoT clusters are created (as

shown in Table 7 and 8). Each cluster workload is built

synthetically using a random uniform distribution generator

to consider cloud user applications. The generated clusters

contain different tasks types varying in the range of

[1000:6000] as a task length (MI), and in the range of

[0.05:1000] as a task data file size (MB). To study the

importance of EEBA model and its effect on data

transmission delay between the SN and the geo-distributed

DCs, the data sizes of each generated workload (BoT) is

considered as the following three types:

1- Simple BoT: Bag-of-tasks with small size data

2- Mixed BoT: Bag-of-tasks for a mixed size data

3- Heavy BoT: Bag-of-tasks for data-intensive

Tasks with large data size traces are expected to show

the importance of the EEBA method in data placement and

DCs selection that achieves higher improvement in

makespan. For the plotted results of the genetic-based

algorithms (i.e., LAEE, GGA, and EEBA) we plot the

average of 25 independent executions in order to avoid the

effect of the initial random population.

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

TABLE 4 AVERAGE DISTANCE AND LATENCY BETWEEN THE SN AND THE

SELECTED DCS

DC dc1 dc2 dc3 dc4

Average

Distance

(miles)

10500 6500 2200 8400

Average

Latency

(milliseconds)

194 122 46 150

TABLE 5 HOST’S TYPE AND SPECIFICATIONS

Host’s

type

Specifications

Type 1 HP ProLiant ML110 G4 (1 x [Xeon 3040 1860 MHz, 2 cores],

16GB)

Type 2 HP ProLiant ML110 G5 (1 x [Xeon 3075 2660 MHz, 2 cores],

16GB)

Type 3 HP ProLiant ML110 G3 (1 x [Pentium D930 3000 MHz, 2

cores], 16GB)

Type 4 IBM server x3250 (1 x [Xeon X3470 2933 MHz, 4 cores],

32GB)

Type 5 IBM server x3250 (1 x [Xeon X3480 3067 MHz, 4 cores],

32GB)

Type 6 IBM server x3550 (2 x [Xeon X5670 2933 MHz, 6 cores],

48GB)

Type 7 IBM server x3550 (2 x [Xeon X5675 3067 MHz, 6 cores],
64GB)

TABLE 6 AMAZON EC2 VM(S) SPECIFICATIONS

VM instance
Type

Cores MIPS RAM
(MB)

Bandwidth
(Mbps)

Storage
(GB)

Extra Small 1 500 613 100 0.633

Small 1 1000 1740 100 1.7

Medium 1 1500 1740 100 0.85

Large 1 2000 870 100 3.75

TABLE 7 VM CLUSTER SPECIFICATIONS

Cluster Type Number of VMs Number of Cloudlets

Small 500 1000

Medium 1000 2000

Large 1500 3000

TABLE 8 THREE TYPES OF WORKLOAD SPECIFICATIONS WITH VARIABLE

DATA SIZES

Simple BoT Mixed BoT Heavy BoT

 33% [0.05:1] MB

[0.05:1] MB 33% [2:500] MB [100:1000] MB

 33% [501:1000] MB

Workload Makespan. The main objective of this

experiment is to study the importance of combining data

transfer time, network delay (Equations 2 and 3), and NOV

(Equation 7) as factors when executing different types of

BoT application. Figures 4a and 4b show the corresponding

workload makespan results for the three different workload

clusters under RR, SJF, GGA, LAEE, and EEBA using three

different BoT workload type (Simple, Mixed, Heavy).

As shown in the figures (Figures 4a and 4b) EEBA

algorithm significantly outperforms other competing

algorithms in achieving high cloud QoS with approximate

11%, 38%, and 15% rate of makespan enhancement using

Simple, Mixed, and Heavy BoT respectively.

The makespan improvement as shown in Figures 4a and

4b varies in its rates according to workload cluster type (see

Table 8). It is shown that the EEBA genetic algorithm

achieves significant improvements in makespan in case of

the Mixed BoT (up to 38%). On the other hand, the

improvement is limited to up 11% and 15% compared to

other competing algorithms Heavy BoT respectively. The

following illustrates precisely the importance of the EEBA

model using different workload specifications (as shown in

Table 8) carried out in homogeneous and heterogeneous

cloud environment of Type 1 and types: Type 1-7

respectively as shown in Table 5:

1- In the case of Simple BoT that reflects the small size

data applications, we observe that the data transfer

time and the NOV incurred due to WAN

communication network congestion is negligible

compared to the total BoT makespan time. That is

why the improvement rate is limited to 11%

compared to other competing algorithms.

2- In the case of Mixed BoT that reflects the mixed size

data application, we observe the main efficacy of

EEBA algorithm and its high importance in

achieving high improvement in makespan compared

to other competing ones. The importance of

considering the WAN communication network link

BW is clearly shown in this experimental part and

how the EEBA model to direct the data-intensive

tasks to high available bandwidth DCs without

ignoring the importance of data transfer time and

links delay. Moreover, although LAEE algorithm

takes into its consideration the data transfer time and

the links delay [13], however, and as shown in Fig.

4, EEBA outperforms the LAEE with an average

rate of 20% due to the importance of considering the

WAN communication network link bandwidth to

minimize the NOV (using Equation 7). The figure

also shows the unstableness of the SJF algorithm

using this type of applications.

3- In the case of Heavy BoT that reflects the data-

intensive application type, the EEBA algorithm

outperform the competing non-location aware

(GGA, SJF, and RR) with an average makespan

improvement rate of 18%. However, the

improvement is limited to 10% compared to LAEE

that is data transfer and link delay aware algorithm.

As a conclusion, EEBA model guarantees a perfect

makespan of an application in different cases and

contributes with an approximate 21% rate of makespan

improvement (using different scenarios and environments).

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

Fig. 4a. Workload Makespan in different number of cloudlets and VMs –Homogenous environment (Type 1 as shown in Table 5)

Fig. 4b. Workload Makespan in different number of cloudlets and VMs –Heterogeneous environment (types: Type 1-7 as shown in Table 5)

VM Makespan. Fig. 5 shows the comparison results of

the average of VMs makespan where 10 VMs are selected

randomly using the average of three different cluster types

(as shown in Table 8) conducted on homogeneous as well as

a heterogeneous cloud environment. This metric is an

indicator that reflects the importance of the EEBA allocation

algorithm to improve the utilization of the available VMs.

Fig. 5 shows that the EEBA algorithm has approximately a

uniform VM makespan among all available VMs compared

to RR, SJF, GGA, and LAEE using the average of different

workload type as shown in Table 8. This reflects the success

of the EEBA algorithm to balance the workload on the

available VMs, which lead to the workload makespan

improvement seen in Fig. 4 above.

Fig. 5. VM Makespan: Comparing our proposed EEBA algorithm with RR,

SJF, GGA and LAEE algorithms.

Host makespan. The Host makespan (calculated using

Equation 5) is a good indication of the degree of loading

balancing of the allocation algorithm. Fig. 6 shows the rate

of improvement in host makespan using the average of the

three workload types given in Table 8 conducted on

homogeneous as well as heterogeneous cloud environment

using 10 hosts selected at random from all available geo-

distributed DCs.

Fig. 6: Host Makespan: Comparing our proposed EEBAG algorithm with
RR, SJF, GGA and LAEE algorithms.

The results show the importance of the proposed EEBA

in balancing the tasks of the BoT workload among the

available hosts that hold a number of VMs, which helps in

satisfying the deadline constraint.

Network Overhead (NOV): The NOV metric measures

the percentage of network congestion throughout the BoT

execution time (as shown in Equation 7), is a crucial

indication about the efficacy of EEBA model in achieving

high QoS and low SLA violations. Fig. 7 shows that the

EEBA model contributes with approximate of 55% of NOV

improvement compared to LAEE GGA, SJF and RR using

homogeneous and heterogeneous hosts with two different

VM cluster type (Mixed and Heavy). On the other hand,

using the Simple BoT workload type the NOV is below 1%

with respect to all algorithms including EEBA. Fig. 7

reveals that the network links are more congested when

executing Heavy BoT workload type, with large data sizes.

Accordingly, the makespan achievements of the EEBA

model (as shown in Fig. 4), is the result of the model

efficacy in reducing the NOV and network congestion as

plotted in Fig. 7.

0

5000

10000

15000

20000

V
M

1

V
M

2

V
M

3

V
M

4

V
M

5

V
M

6

V
M

7

V
M

8

V
M

9

V
M

1
0V

M
 M

ak
es

p
an

 i
n

se
co

n
d

s

RR

SJF

GGA

LAEE

EEBA

0

10000

20000

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

H
o

st
 M

ak
es

p
an

 i
n

se
co

n
d

s

RR SJF GGA LAEE EEBA

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

TABLE 9 HP & IBM SERVERS HOST LOAD TO ENERGY (WATT) MAPPING TABLE

Server type 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117

HP G5 93.7 97 101 105 110 116 121 125 129 133 135

HP G3 105 112 118 125 131 137 147 153 157 164 169

IBM x3470 41.6 46.7 52.3 57.9 65.4 73 80.7 89.5 99.6 105 113

IBM x3480 42.3 46.7 49.7 55.4 61.8 69.3 76.1 87 96.1 106 113

IBM x5670 66 107 120 131 143 156 173 191 211 229 247

IBM x5675 58.4 98 109 118 128 140 153 170 189 205 222

Fig. 7: Network overhead (NOV): Comparison graph among RR, SJF,
GGA, and LAEE versus proposed EEBA algorithm

Fig. 8: BoT SLA deadline violation in a different number of cloudlets and
VMs

SLA violation: SLA violation due to exceeding the

deadline of the workload incurs penalty paid by the cloud

provider to compensate users. Moreover, it reduces user

satisfaction and degrades cloud providers’ QoS. The authors

in [20, 21] estimated that a delay for one-second could result

in a 16% degradation in customer satisfaction and more than

22% drop in cloud services sales.

Fig. 8 shows the importance of the EEBA algorithm in

achieving the users’ time constraint with a minimum SLA

violation compared to other competing algorithms. It shown

that EEBA guarantees the least number of SLA violations

with less than 6% compared to actual time constraint set by

cloud users’. The total improvement of EEBA algorithm is

around 80% over the non-location-aware competing

algorithms (GGA, SJF, and RR). However, EEBA model

contributes to around 60% improvement in SLA violation

over the location and network-aware LAEE algorithm that

ignores the network link bandwidths, which lead to more

network congestion shown as higher NOV percentage (as

shown in Fig. 7).

C.2. The Second Scenario

This scenario measures the effectiveness of the proposed

EEBA model in optimizing the power consumption of the

provider’s DCs, which has a direct impact on leveraging the

revenue of the cloud providers and pave the way to green

computing. We combined our method with the Dynamic

Voltage and Frequency Scaling (DVFS) technique [22] that

contributes to the overall reduction of energy by adjusting

the processor/core working frequencies whenever the

utilization is low.

The experiment was conducted using real Planetlab

workload traces [17]. The selected workload is made up of

287,794 cloudlets with different specifications. To emulate

the cloud environment, we build a simulation setup made up

of 800 servers distributed among 4 DCs to run 800

heterogeneous VMs with Amazon specifications shown in

Table 6. However, hosts are considered heterogeneous of

type 1-7 as shown in Table 5. According to the linear power

model in Equation (1), and the real data from the

SPECpower benchmark [23], Table 9 presents the host's

power consumption at different load levels. Each WAN link

(between SN and distributed DCs) is emulated using one

physical link with a bandwidth capacity randomly generated

in the interval [1Gb/s, 10Gb/s]. To emulate the WAN delay

environment, the delays are generated using the geometric

distances between the SN and the 4 distributed DCs as used

in [13] and as shown in Table 4. The results shown in Fig. 8

are calculated from one-day simulation time.

Fig. 9 shows the energy consumption improvements

when a cloud provider’s broker employs the proposed

EEBA energy-efficient task allocation method instead of

non-power aware algorithms such as RR and SJF. As the

figure shows, the average power saving improvement rate of

EEBA algorithm is about 14% over the benchmarks

algorithms RR and SJF, 9% over the GGA genetic

algorithm, and 3% over LAEE algorithm. Moreover, Fig. 9

shows the importance of combining the DVFS technique to

task allocation model that leads to high-energy efficiency

compared to non-power aware task allocation model (NPA)

that does not incorporate the DVFS technique and ignore its

importance.

Overall, Fig. 9 prove the importance of load balancing

that achieved using EEBA model in reducing the energy

consumption considering the minimization of the network

links overhead besides the workload makespan over the

other competing algorithms as shown in the previous

figures.

Fig. 9. Comparing the DCs Energy Consumption of the proposed EEBA

algorithm with LAEE, GGA, SJF, RR, and NPA algorithms.

7%

18%16%

30%

19%

31%
23%

48%

19%

43%

0%

20%

40%

60%

Mixed Heavy

N
O

V
 (

%
)

EEBA LAEE GGA SJF RR

4% 4% 3%

16%
12%

15%
21%

17%
20%

29% 28%
24%

29%
25% 25%

0%

10%

20%

30%

40%

Small Medium LargeS
L

A
 v

io
la

ti
o
n

 (
%

)

EEBA LAEE GGA SJF RR

289.1 298.7 314.85 343.21 373.58

2286.44

0

1000

2000

EEBA LAEE GGA SJF RR NPA

E
n

er
g
y

co
n

su
m

p
ti

o
n

(K
W

h
)

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

1000

1200

1400

1600

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

F
it

n
es

s
F

u
n

ct
io

n

Number of Iterations

Genteic Convergance

Genetic Convergence. Solving an optimization problem

using GA requires a critical issue called GA convergence.

Crossover and mutation are important operators to produce

the diversity needed and avoid suboptimal solutions [19].

Consequently, suboptimal solutions occur due to premature

convergence, which means that the GA converges quickly.

Therefore, tuning GA parameters is an important concern to

get an optimum solution.

Fig. 10 shows that EEBA characterized by good stability

and high convergence. The influence of good use and tuning

of GA operators reflects the result, which reveals that up to

almost 43% of EEBA processing time is saved without

affecting the model accuracy.

Fig. 10. Genetic Convergence

The above experimental results lead us to the following

conclusions:

1- The performance of the EEBA model (as shown in Fig.

4) is highly depends on the generated workload type,

i.e. Simple, Mixed, or Heavy. Moreover, incorporating

NOV as a factor in data-intensive BoT workload

allocation NP problem over geo-distributed DCs has

high efficacy in minimizing network link congestion

between the SN and geo-distributed DCs as shown in

Fig. 7.

2- Task allocation algorithm is essential to achieving load

balancing and system efficiency. LAEE and EEBA task

allocation models proved their efficacy among the

competing algorithms on achieving their objectives in

optimizing the cloud QoS through minimizing the

workload makespan (as shown in Fig. 4) as well as the

DCs energy consumption (Fig. 9). For instance, and

since we target the problem of data-intensive workload

that specified with high data transfer, NOV should be

taken into account to avoid the congested network that

leads to QoS degradation. That is why EEBA is more

suitable for data-intensive workload type resulting in

low SLA violation as shown in Fig. 8.

3- Since we are targeting the data-intensive

applications that require high data transfer time compared to

its execution time, incorporating the DVFS technique is

crucial in achieving high-energy efficiency (as shown in Fig.

9). However, one cannot ignore the importance of high-

performance EEBA model that incorporates the energy

factor (Equation 9) in achieving high-energy efficiency

compared to other competing algorithms (Fig. 9). Moreover,

the above experimental results show the efficacy of load

balancing achieved using EEBA and LAEE models in extra

contribution to energy saving compared to other non-energy

aware algorithms.

VII. CONCLUSION

This paper presented the EEBA method, an Energy-

Efficient and Bandwidth-Aware workload allocation method

for data-intensive applications in geo-distributed DCs. Our

method combined energy consumption, workload makespan

and WAN network overhead to fulfill a better QoS for cloud

users. We formulated the allocation problem as a multi-

objective optimization problem, which is an NP-hard

problem. We proposed a meta-heuristic genetic algorithm to

find a near-optimal solution to the problem. Extensive

simulations are conducted using both real and synthetic

workload traces. Our experimental results showed that the

proposed EEBA method improved the workload makespan

and QoS by respecting the workload deadline constraint.

Also, the EEBA adaptive genetic algorithm contributed to

reducing the energy consumption of the cloud DCs due to

load balancing the workload tasks as well as reducing the

communication network links delay due to the proposed

network overhead metric (NOV).

REFERENCES

[1] Welsh, Thomas, and Elhadj Benkhelifa. "On Resilience in Cloud
Computing: A survey of techniques across the Cloud Domain." ACM

Computing Surveys (CSUR) 53, no. 3 (2020): 1-36.

[2] Rawas, Soha, Wassim Itani, Ali Zaart, and Ahmed Zekri. "Towards
greener services in cloud computing: Research and future directives."

In 2015 International Conference on Applied Research in Computer

Science and Engineering (ICAR), pp. 1-8. IEEE, 2015.
[3] Rawas, Soha, Ahmed Zekri, and Ali El Zaart. "Power and Cost-aware

Virtual Machine Placement in Geo-distributed Data Centers." In

CLOSER, pp. 112-123. 2018.
[4] Aburukba, Raafat O., Mazin AliKarrar, Taha Landolsi, and Khaled

El-Fakih. "Scheduling Internet of Things requests to minimize latency

in hybrid Fog–Cloud computing." Future Generation Computer
Systems 111 (2020): 539-551.

[5] Banerjee, Sourav, Mainak Adhikari, Sukhendu Kar, and Utpal

Biswas. "Development and analysis of a new cloudlet allocation
strategy for QoS improvement in cloud." Arabian Journal for Science

and Engineering 40, no. 5 (2015): 1409-1425.

[6] Dong, Ziqian, Ning Liu, and Roberto Rojas-Cessa. "Greedy
scheduling of tasks with time constraints for energy-efficient cloud-

computing data centers." Journal of Cloud Computing 4, no. 1 (2015):

1-14.
[7] Chatterjee, Tamojit, Varun Kumar Ojha, Mainak Adhikari, Sourav

Banerjee, Utpal Biswas, and Václav Snášel. "Design and

implementation of an improved datacenter broker policy to improve
the QoS of a cloud." In Proceedings of the Fifth International

Conference on Innovations in Bio-Inspired Computing and

Applications IBICA 2014, pp. 281-290. Springer, Cham, 2014.
[8] Huai, Weicheng, Zhuzhong Qian, Xin Li, Gangyi Luo, and Sanglu

Lu. "Energy Aware Task Scheduling in Data Centers." J. Wirel. Mob.

Networks Ubiquitous Comput. Dependable Appl. 4, no. 2 (2013): 18-
38.

[9] Kliazovich, Dzmitry, Sisay T. Arzo, Fabrizio Granelli, Pascal Bouvry,

and Samee Ullah Khan. "e-STAB: Energy-efficient scheduling for
cloud computing applications with traffic load balancing." In 2013

IEEE International Conference on Green Computing and

Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing, pp. 7-13. IEEE, 2013.

[10] Alizadeh, Mohammad, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam et al.
"CONGA: Distributed congestion-aware load balancing for

datacenters." In Proceedings of the 2014 ACM conference on

SIGCOMM, pp. 503-514. 2014.
[11] Toosi, Adel Nadjaran, Richard O. Sinnott, and Rajkumar Buyya.

"Resource provisioning for data-intensive applications with deadline

constraints on hybrid clouds using Aneka." Future Generation
Computer Systems 79 (2018): 765-775.

[12] Abdi, Somayeh, Latif PourKarimi, Mahmood Ahmadi, and Farzad

Zargari. "Cost minimization for deadline-constrained bag-of-tasks
applications in federated hybrid clouds." Future Generation Computer

Systems 71 (2017): 113-128.

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

[13] Rawas, Soha, and Ahmed Zekri. "Location-Aware Energy-Efficient

Workload Allocation in Geo Distributed Cloud Environment." J.
Comput. Sci. 14, no. 3 (2018): 334-350.

[14] Rawas, Soha. "Energy, network, and application-aware virtual

machine placement model in SDN-enabled large scale cloud data
centers." Multimedia Tools and Applications 80, no. 10 (2021):

15541-15562.Bienstock, Daniel, and George Nemhauser. Integer

programming and combinatorial optimization. Springer International
Publishing, 2020.

[15] http://wintelguy.com/wanlat.html. Accessed December 2018.

[16] Planet lab traces, https://www.planet-lab.org, Accessed December
2018.

[17] Kumar, Dilip, Bibhudatta Sahoo, Bhaskar Mondal, and Tarni Mandal.

"A genetic algorithmic approach for energy efficient task
consolidation in cloud computing." International Journal of Computer

Applications 118, no. 2 (2015): 1-6.

[18] Kołodziej, Joanna, Samee Ullah Khan, Lizhe Wang, and Albert Y.

Zomaya. "Energy efficient genetic‐based schedulers in computational
grids." Concurrency and Computation: Practice and Experience 27,

no. 4 (2015): 809-829.

[19] Bilal, Kashif, Osman Khalid, Aiman Erbad, and Samee U. Khan.
"Potentials, trends, and prospects in edge technologies: Fog, cloudlet,

mobile edge, and micro data centers." Computer Networks 130

(2018): 94-120.
[20] Rawas, Soha, Ahmed Zekri, and Ali El Zaart. "CELA: Cost-Efficient,

Location-Aware VM and Data Placement in Geo-Distributed DCs." In

International Conference on Cloud Computing and Services Science,
pp. 1-23. Springer, Cham, 2018.

[21] Garg, Ritu, and Mamta Mittal. "Reliability and energy efficient

workflow scheduling in cloud environment." Cluster Computing 22,
no. 4 (2019): 1283-1297.

[22] https://www.spec.org/benchmarks.html, Accessed December 2018.

[23] Calheiros, Rodrigo N., Rajiv Ranjan, Anton Beloglazov, César AF De
Rose, and Rajkumar Buyya. "CloudSim: a toolkit for modeling and

simulation of cloud computing environments and evaluation of

resource provisioning algorithms." Software: Practice and experience
41, no. 1 (2011): 23-50.

[24] Rawas, Soha, and Ahmed Zekri. "CAEE: Communication-Aware,

Energy-Efficient VM placement Model for Multi-Tier Applications in
Large Scale Cloud Data Centers." BAU Journal-Science and

Technology 2, no. 1 (2020): 11.

[25] Hua-Ping Wu, Hui Li, and Xiao-Lan Sun, "Evolutionary Game for
Enterprise Cloud Accounting Resource Sharing Behavior Based on

the Cloud Sharing Platform," IAENG International Journal of Applied

Mathematics, vol. 51, no.1, pp125-132, 2021
[26] Bindu, GB Hima, K. Ramani, and C. Shoba Bindu, "Optimized

resource scheduling using the meta heuristic algorithm in cloud

computing," IAENG International Journal of Computer Science, vol.
47, no. 3, pp 360-366, 2020.

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_29

Volume 48, Issue 3: September 2021

__

http://wintelguy.com/wanlat.html

