
 

  

Abstract—Deep neural networks (DNNs) have been deployed 

successfully in various scenarios, but numerous studies have 

shown that deep neural networks are vulnerable to the attack of 

adversarial examples. In order to protect deep neural networks 

against adversarial examples, a lot of countermeasures have 

been developed. The APE-GAN is one of these proposed 

countermeasures, which employ a generative adversarial 

network (GAN) to eliminate adversarial perturbations. 

Although it performs more excellently than other 

countermeasures, it still has some shortcomings. First, its 

training process is precarious and has a vanishing gradient 

problem. Second, its performance can be improved further. In 

this paper, we propose the APE-GAN++, which is an enhanced 

APE-GAN, to overcome its disadvantages. First, the proposed 

APE-GAN++ utilizes the WGAN-GP loss to make the training 

process stable. Then, it uses a newly added third-party 

classification loss to enhance the capacity of the generator to 

eliminate adversarial perturbations. Experiments are 

conducted on the MNIST and CIFAR-10 datasets to verify the 

proposed APE-GAN++’s performance. Experimental results 

show that the proposed APE-GAN++ has a stable training 

process and solves the vanishing gradient problem. Besides, it 

can also achieve a more excellent performance than other 

countermeasures when defending against adversarial examples. 

Experimental code is available at 

https://github.com/Afreadyang/APE-GAN-Plus-Plus. 

Index Terms—Adversarial example, Deep neural network, 

Generative adversarial network, AI security, APE-GAN 

 

I. INTRODUCTION 

dversarial examples [1] have shown that deep neural 

networks are weak and vulnerable to small and 

imperceptible perturbations. Although these adversarial 

perturbations do not affect human perception, they can result 

in wrong predictions of deep neural networks. 

In order to eliminate the effect of adversarial examples, 

numerous researchers have tried to develop countermeasures 

to protect deep neural networks. The first is to detect 

adversarial examples or eliminate adversarial perturbations 

before they are fed into deep neural networks. The second is 

to resist adversarial examples by improving the robustness of 
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deep neural networks. The first category includes the 

adversarial example classifier [2], the statistical analysis [3], 

the prediction based on density and uncertainty [4], the 

modification loss [5], and the reconstruction loss [6]. Carlini 

et al. [7] have evaluated ten adversarial example detectors 

and found that they can all be defeated. They pointed out that 

it is challenging to detect adversarial examples as excepted. 

The second category includes data enhancement [8], 

regularization [9], randomization [10], and input 

transformation [11]. Adversarial training [8] is the usual 

method of data enhancement. Although it is considered the 

most effective countermeasure in improving the robustness 

of deep neural networks, it is also time-consuming. 

Concerning the input transformation, the manifold-based 

denoisers are also effective in defending against adversarial 

examples. The APE-GAN [12] is one of these 

manifold-based denoisers. The idea behind the APE-GAN is 

that utilizing a generative adversarial network [27] to 

eliminate adversarial perturbations. Its architecture consists 

of a generator and a discriminator, which is a standard GAN 

framework. Its loss function includes a common GAN loss 

and a minimum square error loss. Although it performs more 

excellently than other countermeasures, it still has some 

shortcomings. First, its training process is volatile and has a 

vanishing gradient problem. Second, its performance can be 

improved further.  

To overcome these disadvantages, we propose the 

APE-GAN++, which is an improved APE-GAN. First, we 

replace the standard GAN loss with the WGAN-GP [28] loss, 

which is presented to ensure a stable training process. Then, 

we add a third-party classifier to the architecture of the 

APE-GAN. The classification loss from the third-party 

classifier can enhance the performance of the APE-GAN to 

eliminate adversarial perturbations. Comparing with the 

APE-GAN, the architecture of the APE-GAN++ includes a 

generator, a discriminator, and a newly added third-party 

classifier. Comparing with the APE-GAN, the loss function 

of the APE-GAN++ consists of a WGAN-GP loss, a 

minimum square error loss, and a classification loss from the 

newly added third-party classifier. Experiments are 

conducted on the MNIST and CIFAR10 datasets, and results 

show that the proposed APE-GAN++ has a stable training 

process and solves the vanishing gradient problem. Besides, 

it can also achieve a more excellent performance than other 

countermeasures when defending against adversarial 

examples. 

This paper makes the following contributions: 

(1) To ensure the training process is stable, the proposed 

APE-GAN++ replaces the standard GAN loss with the 

WGAN-GP loss. 

(2) To enhance the APE-GAN’s performance, the 
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proposed APE-GAN++ adds a third-party classifier to the 

APE-GAN’s architecture. 

The rest of the paper will be organized as follows. Section 

II is a brief overview of adversarial example defenses. Then, 

in section III, we describe all details of the proposed 

APE-GAN++. Experiments are conducted in Section V. The 

conclusion is offered in Section VI. 

II. RELATED WORK 

In this section, we will briefly review these existing 

adversarial example defenses, especially GAN-based 

methods. 

A. Adversarial Example Defenses 

Goodfellow et al. [13] proposed adversarial training to 

enhance deep learning models’ robustness, which is 

considered the most effective countermeasure at present. Guo 

et al. [14] applied the total variance minimization and the 

image quilting to adversarial images to eliminate adversarial 

perturbations. Buckman et al. [15] proposed a 

countermeasure based on deep neural networks’ 

high-dimensional linearity. It can eradicate adversarial 

perturbations by quantizing and discretizing the input data of 

deep neural networks. Yang et al. [16] introduced a 

preprocessing-based countermeasure named ME-Net. It can 

drop adversarial images and reconstruct benign images. Xu et 

al. [6] argued that the dimensionality of input features is often 

unnecessarily large. They proposed two feature squeezing 

methods to eliminate adversarial perturbations. Metzen et al. 

[2] proposed a pre-trained binary classifier to detect 

adversarial examples. Feinman et al. [14] suggested the 

kernel density and bayesian uncertainty estimation perform 

malicious detection. 

B. GAN-based Adversarial Example Defenses 

Samangouei et al. [17] proposed the Defense-GAN to 

recovery adversarial examples to benign examples. Its 

defense strategy consists of two steps. First, it is trained to 

learn benign examples’ distribution. Second, the generator 

takes adversarial examples as inputs and finds close outputs 

that are not adversarial. Shen et al. [12] proposed the 

APE-GAN to eliminate adversarial perturbations. Its defense 

strategy is a standard GAN training process. The generator 

takes adversarial examples as inputs and is trained to remove 

adversarial perturbations. The discriminator is employed to 

distinguish between original benign examples and fake 

benign examples. Lindqvist et al. [19] introduced the 

Auto-GAN, which can ease adversarial attacks by projecting 

perturbed data points into a benign lower-dimensional 

manifold. Lee et al. [18] combined a generative adversarial 

network with adversarial training to improve deep neural 

networks’ robustness. It includes a generator and a deep 

neural network. The generator is employed to craft 

adversarial examples. They alternately trained both the deep 

neural network and the generator network, enhancing the 

deep neural network’s robustness. Liu et al. [20] designed a 

GAN-based adversarial training. It utilizes a competition 

game to regulate the feature selection during the training 

process. Hashemi et al. [21] proposed the Noise-GAN to 

protect deep neural networks against adversarial attacks. Its 

defense strategy is based on adversarial training. It has a 

multi-class discriminator, which is employed to generate 

various adversarial perturbations. 

III. APE-GAN++: AN IMPROVED APE-GAN 

In this section, we will describe all details of the proposed 

APE-GAN++. First, we will overview the idea behind the 

APE-GAN++. Then, we will introduce its network structure 

and loss function.  

A. The Idea behind APE-GAN++ 

Santhanam et al. [22] have demonstrated that adversarial 

examples lie outside the manifold region of benign examples. 

Therefore, we can utilize a manifold mapping to project 

adversarial examples into the manifold region of benign 

examples. The APE-GAN is one of these manifold projectors. 

The APE-GAN can eliminate adversarial perturbations 

before they are fed into classification models. Although it 

performs more excellently than other countermeasures, it still 

has some shortcomings. First, its training process is 

precarious and has a vanishing gradient problem. Second, its 

performance can be improved further. To overcome these 

limitations, we proposed the APE-GAN++, which is shown 

in Fig.1. The architecture of the APE-GAN++ consists of a 

generator, a discriminator, and a third-party classification 

model. The generator takes adversarial examples as inputs 

and is trained to remove adversarial perturbations. The 

discriminator is used to distinguish between original benign 

examples and fake benign examples. It is a standard GAN 

training process. The APE-GAN++ replaces the initial GAN 

loss with the WGAN-GP loss to ensure the training process is 

stable. Besides, the third-party classification model is also 

employed to guide the training of the APE-GAN++. The 

third-party classification model can promote the stability of 

the APE-GAN++ and improve the capacity of the generator 

to eliminate adversarial perturbations. 

B. Network Structure and Loss Function 

As you can see from Fig.1, the generator’s purpose is to 

remove adversarial perturbations. Therefore, the generator 

takes adversarial examples as inputs and outputs fake normal 

examples. In the APE-GAN++’s training process, the 

generator takes various adversarial examples instead of just 

one kind of adversarial example as inputs, different from the 

APE-GAN. This modification can make the APE-GAN++ 

defend against various adversarial examples. The generator’s 

network structure adopts convolution encoder-decoder 

architecture, as shown in Fig.2 (a). Its loss function includes a 

WGAN-GP loss, a minimum square error loss, and a 

classification loss from the third-party classification model. 

The minimum square error loss is calculated as the error 

between real benign examples and fake benign examples. 

The classification loss from the third-party classification 

model refers to the error of the third-party classification 

model on the fake benign examples. The discriminator takes 

real benign examples and fake benign examples as inputs and 

distinguishes which one is real or fake. The discriminator’s 

network structure adopts a simple convolution neural 

network, as shown in Fig.2 (b). Its loss only includes a 

WGAN-GP loss. The total loss functions can be expressed as: 

APE-GAN++ WGAN-GP 1 MSE 2 CLCL L L L = + +  (1) 
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MSE real-benign fake-benignL X X= −  
(2) 

( )CLC real-benign fake-benignCrossEntropyL Y Y= −  (3) 

 
Fig.1.The architecture of the APE-GAN++. 

IV. EXPERIMENTS AND RESULTS ANALYSIS 

A. Experiment Settings 

We conduct experiments on the MNIST and CIFAR-10 

datasets in the image classification task. MNIST, which is 

available at http://yann.lecun.com/exdb/mnist/, is a 

handwritten digit dataset from 0 to 9. It contains 60000 

training images and 10000 testing images. They are 

single-channel greyscale images, and their size is 28x28 

pixels. CIFAR-10, which is available at 

https://www.cs.toronto.edu/∼kriz/cifar.html, is a color image 

dataset in 10 classes. It contains 50000 training images and 

10000 testing images. They are three-channel color images, 

and their size is 32x32 pixels. We utilize the FGSM algorithm 

to generate adversarial examples with various perturbations 

on the MNIST or CIFAR10 training data. For the MNIST 

dataset, these perturbations include 0.1, 0.3, 0.5, and 0.7. For 

the CIFAR-10 dataset, these perturbations include 0.01, 0.03, 

0.05, and 0.07. Then, these generated adversarial examples 

are employed to train the APE-GAN++. For the MNIST 

dataset, the classification model includes MNIST-CNN, 

ResNet18 [29], VGG16 [30], LeNet [31]. For the CIFAR-10 

dataset, the classification model includes CIFAR-CNN, 

ResNet18, VGG16, DenseNet [32]. MNIST-CNN and 

CIFAR-CNN are also used to generate adversarial examples 

due to their simple network structure. They are shown in 

Fig.3. For the APE-GAN++’s loss function, we set 
1  equal 

to 0.5 and 
2  equal to 0.5. The measure used in the 

experiment is the classification accuracy of examples on 

classification models. Table I shows the classification 

accuracy of benign examples on classification models. As 

can be seen from Table I, their classification accuracy is quite 

high. The used adversarial example generation algorithm inc- 

 
Fig.2.The network structure of the generator and the discriminator. 

 
Fig.3.The network structure of MNIST-CNN and CIFAR-CNN. 
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ludes FGSM [13], BIM [23], DeepFool [24], JSMA [25], and 

C&W [26]. Table II shows the classification accuracy of 

adversarial examples on classification models. As can be 

seen from Table II, their performance is strong. The used 

adversarial example defense algorithm includes APE-GAN 

[12], Bit Depth [6], TotalVarMin [14], SpatialSmoothing [6], 

Adversarial Training [13]. Table III-VI show the 

classification accuracy of adversarial examples on the 

MNIST and CIFAR-10 datasets with the defense mentioned 

above. These results are employed to compare with the 

APE-GAN++. 

B. Experiments 

We utilize generated adversarial examples to train the 

APE-GAN++ with various third-party classification models. 

After that, the APE-GAN++ is used to defend against 

adversarial examples generated on different classification 

models. We demonstrated that the APE-GAN++ has a stable 

training process and solves the vanishing gradient problem. 

Besides, it also achieves a better comprehensive performance 

than other defenses include the APE-GAN. 

1. APE-GAN++’s Stability 

For the APE-GAN++’s stability, we record the generator 

and the discriminator’s loss values with 200 epochs during 

the training process. Figure.4 and Figure.5 show the 

generator and the discriminator’s loss curve with various 

third-party classification models. Figure.4 (a) is on the 

MNIST dataset. Figure.5 (b) is on the CIFAR-10 dataset. For 

the MNIST dataset, these loss curves are nearly perfect. After 

the training process with 200 epochs, the generator and the 

discriminator’s loss tend to converge. For the CIFAR-10 

dataset, the generator’s loss curves are a little shaky during 

the training process. However, it is still stable. If we increase 

the number of training rounds, the generator and the 

discriminator’s loss will converge. As shown in Fig.4, we can 

demonstrate that the APE-GAN++ has a stable training 

process and solves the vanishing gradient problem. 

2. APE-GAN++’s Performance 

Figure.6 to 13 are the classification accuracy curves of 

adversarial examples on the MNIST and CIFAR-10 datasets 

with the APE-GAN++. Each small graph represents 

adversarial examples generated on various classification 

models. Each large graph represents the APE-GAN++ trained 

with different third-party classification models. For the 

MNIST dataset, the classification model includes 

MNIST-CNN, ResNet18, VGG16, LeNet. For the CIFAR-10 

dataset, the classification model includes CIFAR-CNN, 

ResNet18, VGG16, DenseNet. As you can see from Fig.6 to 

13, the classification accuracy curves are nearly stable, 

especially on the MNIST dataset. It also shows that 

APE-GAN++ has a steady training process. We can't 

compare APE-GAN here because it doesn't even have 50 

training epochs. In Fig.6 to 9, the APE-GAN++ trained with 

MNIST-CNN, VGG16, and LeNet cannot defend well 

against JSMA adversarial examples. The APE-GAN++ 

trained with ResNet18 cannot defend well against DeepFool 

adversarial examples. In Fig.10 to 13, the APE-GAN++ 

trained with MNIST-CNN and ResNet18 cannot defend well 

against FGSM and BIM adversarial examples generated on 

ResNet18, VGG16, and DenseNet. It is mainly because we 

only use FGSM adversarial examples as the training data. In 

addition, differences in the network structure of classification 

models lead to this phenomenon. 

Table III-IV show the classification accuracy of 

adversarial examples on the MNIST dataset with the defense 

algorithm mentioned in the experiment settings. Table V-VI 

show the classification accuracy of adversarial examples on 

the CIFAR-10 dataset with the defense algorithm mentioned 

in the experiment settings. These adversarial examples are 

generated on various classification models. From Table 

III-VI, we can find that the APE-GAN’s overall performance 

is better than that of other countermeasures. Although the 

performance of some defense algorithms is better than that of 

the APE-GAN on some types of adversarial examples, they 

cannot defend well against all types of adversarial examples. 

For example, the APE-GAN can defend well against all types 

of adversarial examples generated on ResNet18. Bit Depth 

can only defend well against FGSM and BIM adversarial 

examples. Besides, the performance of the APE-GAN on the 

CIFAR-10 dataset can be further improved. 

Table VII-VIII show the classification accuracy of 

adversarial examples on the MNIST dataset with the 

APE-GAN++. Table IX-X offer the classification accuracy of 

adversarial examples on the CIFAR-10 dataset with the 

APE-GAN++. These adversarial examples are generated on 

various classification models. The APE-GAN++ is trained 

with multiple third-party classification models. From Table 

VII-X, we can find that APE-GAN++’s overall performance 

is better than that of other countermeasures. However, there 

are still some shortcomings in the performance of the 

APE-GAN++. These shortcomings have been mentioned 

above. We will make a detailed comparative analysis of 

Table III-VI and Table VII-X in the following part of the 

result analysis. 

C. Result Analysis 

1. Visualization Analysis 

Figure.14, Figure.15, Figure.16, and Figure.17 are the 

visualizations of adversarial examples recovering from the 

APE-GAN++. As shown in Fig.14 to 15, they are on the 

MNIST dataset. Figure.14 (a) represents the APE-GAN++ 

trained with MNIST-CNN. Figure.14 (b) illustrates the 

APE-GAN++ trained with ResNet18. Figure.15 (c) 

represents the APE-GAN++ trained with VGG16. Figure.15 

(d) represents the APE-GAN++ trained with LeNet. 

For each part, the first column represents adversarial 

examples generated on MNIST-CNN. The second column 

represents adversarial examples generated on ResNet18. The 

third column represents adversarial examples generated on 

VGG16. The last column represents adversarial examples 

generated on LeNet. As you can see from Fig.14 to 15, these 

adversarial perturbations are visible to human eyes. The 

APE-GAN++ can eliminate these adversarial perturbations 

very well and maintain examples’ visual perception. 

As shown in Fig.16 to 17, they are on the CIFAR-10 

dataset. Figure.16 (a) represents the APE-GAN++ trained 

with CIFAR-CNN. Figure.16 (b) illustrates the APE-GAN++ 

trained with ResNet18. Figure.17 (c) represents the 

APE-GAN++ trained with VGG16. Figure.17 (d) represents 

the APE-GAN++ trained with DenseNet. For each part, the 

first column represents adversarial examples generated on 

CIFAR-CNN. The second column represents adversarial 

examples generated on ResNet18. The third column 

represents adversarial examples generated on VGG16. The 

last column represents adversarial examples generated on 

DenseNet. As you can see from Fig.16 to 17, these 
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adversarial perturbations are small, except for JSMA 

adversarial examples. The APE-GAN++ can eliminate these 

adversarial perturbations very well, and their visual 

perception is nearly perfect. 

Figure.18 is the visualization of adversarial examples 

recovering from the APE-GAN. Figure.18 (a) is on the 

MNIST dataset. Figure.18 (b) is on the CIFAR-10 dataset. As 

you can see from Fig.18, their visual perception is poor 

comparing with Fig.14 to 15 and Fig.16 to 17. The 

APE-GAN focuses on recovering adversarial examples’ 

semantic information. They ignore adversarial examples’ 

local information, such as the background. On the contrary, 

the APE-GAN++ focuses on recovering not only semantic 

information but also regional information. That explains why 

the APE-GAN++ outperforms the APE-GAN.  

2. Comparative Analysis 

Figure.19 to 22 are the line chart of adversarial examples 

under various defense algorithms. As shown in Fig.19 to 20, 

it is on the MNIST dataset. As shown in Fig.21 to 22, it is on 

the CIFAR-10 dataset. Figure.19 (a), Figure.20 (a), Figure.21 

(a), and Figure.22 (a) are the defense algorithm mentioned in 

the experiment settings. Figure.19 (b), Figure.20 (b), 

Figure.21 (b), and Figure.22 (b) are the APE-GAN++ trained 

with various third-party classification models. Adversarial 

examples are crafted on multiple classification models. 

As you can see from Fig.19(a), Fig.20 (a), Fig.21 (a), and 

Fig.22 (a), the shortcomings of the defense algorithm 

mentioned in the experiment settings, except for the 

APE-GAN, are apparent. They cannot defend well against all 

types of adversarial examples. They only perform well only 

on some specific types of adversarial examples. That explains 

why Fig.19 (a) and Fig.20 (a) are so shaky. In this respect, the 

APE-GAN and the APE-GAN++ outperform them. Although 

they do have a few exceptions, the APE-GAN and the 

APE-GAN++ defend well against all types of adversarial 

examples. These exceptions have been mentioned above. In 

general, the APE-GAN and the APE-GAN++ perform better 

than the defense algorithm mentioned in the experiment 

settings, except for the APE-GAN. This indicates that the 

APE-GAN++ has better overall performance than other 

defenses when defending against various adversarial 

examples. 

Next, we compared the performance of the APE-GAN and 

the APE-GAN++. The APE-GAN++’s advantage is that 

adversarial examples recovering from the APE-GAN++ have 

a higher classification accuracy than the APE-GAN. As you 

can see from Fig.19 (b) and Fig.20 (b), the APE-GAN++ can 

recovery adversarial examples with a nearly 100% success 

rate, except for a few exceptions. These exceptions can be 

solved by increase training data. As you can see from Fig.21 

(b) and Fig.22 (b), the performance of the APE-GAN++ 

trained with CIFAR-CNN is so encouraging. Its overall 

performance is ultimately stronger than that of the APE-GAN. 

Although the APE-GAN++ trained with other third-party 

classification models has better performance, it cannot 

defend well against FGSM and BIM adversarial examples. In 

general, the APE-GAN++ performs better than the 

APE-GAN. This shows that the APE-GAN++ has better 

overall performance than the APE-GAN when defending 

against various adversarial examples. 

V. CONCLUSION 

In this paper, we propose an improved APE-GAN, named 

APE-GAN++. First, the APE-GAN++ is based on 

WGAN-GP, which makes the APE-GAN’s training process 

stable. Then, we add a third-party classification model to the 

standard GAN architecture. The additional classification 

model can guide the APE-GAN’s training process and 

enhance the generator's ability to eliminate adversarial 

perturbations. Experiments are conducted on the MNIST and 

CIFAR-10 datasets. Experimental results demonstrate that 

the training process is stable, and the APE-GAN++ achieves 

better performance than other defenses when defending 

against various adversarial examples. In the future, we will 

explore how to utilize the APE-GAN++ to defend against 

adversarial examples in the speech field. 

TABLE I  

THE CLASSIFICATION ACCURACY (%) OF BENIGN EXAMPLES ON CLASSIFICATION MODELS. 

 MNIST  CIFAR-10 

MNIST-CNN ResNet18 VGG16 LeNet  CIFAR-CNN ResNet18 VGG16 DenseNet 

Benign samples 98.51 99.65 99.66 99.02  83.98 87.43 89.91 92.58 

TABLE II 

 THE CLASSIFICATION ACCURACY (%) OF ADVERSARIAL EXAMPLES ON CLASSIFICATION MODELS. 

 MNIST  CIFAR-10 

MNIST-CNN ResNet18 VGG16 LeNet  CIFAR-CNN ResNet18 VGG16 DenseNet 

FGSM 10.57 9.63 30.13 31.57  10.16 11.69 41.00 37.60 

BIM 1.00 0.33 0.29 1.25  10.06 9.02 15.46 11.75 

JSMA 54.83 0.03 0.05 1.42  1.70 1.27 1.09 1.03 

DeepFool 51.32 5.86 0.41 1.23  43.10 20.91 8.99 9.52 

C&W 70.31 0.39 0.00 1.17  8.59 7.03 7.03 3.91 

TABLE III 

THE CLASSIFICATION ACCURACY (%) OF ADVERSARIAL EXAMPLES ON THE MNIST DATASET UNDER DEFENSE ALGORITHMS MENTIONED IN THE EXPERIMENT 

SETTINGS. 

 MNIST-CNN  ResNet18 

FGSM BIM JSMA DeepFool C&W  FGSM BIM JSMA DeepFool C&W 

APE-GAN 74.15 71.29 89.19 90.10 88.28  89.97 91.48 93.45 80.04 85.94 

Bit Depth 81.75 77.03 64.80 95.94 75.09  92.79 95.65 64.99 44.25 16.02 

TotalVarMin 34.48 14.29 70.57 83.03 81.64  21.39 22.19 71.93 47.70 72.66 

SpatialSmoothing 29.24 6.05 80.07 82.67 89.45  20.78 20.43 95.22 57.28 87.89 

Adversarial Training 68.39 9.02 64.55 69.35 91.00  70.59 14.47 68.52 72.63 89.26 
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TABLE IV 
THE CLASSIFICATION ACCURACY (%) OF ADVERSARIAL EXAMPLES ON THE MNIST DATASET UNDER DEFENSE ALGORITHMS MENTIONED IN THE EXPERIMENT 

SETTINGS. 

 VGG16  LeNet 

FGSM BIM JSMA DeepFool C&W  FGSM BIM JSMA DeepFool C&W 

APE-GAN 88.89 90.64 92.03 95.10 92.58  62.88 42.64 56.03 82.20 55.47 

Bit Depth 91.26 91.45 54.36 98.17 34.77  83.59 81.46 49.98 96.38 20.70 

TotalVarMin 52.69 40.84 65.81 88.55 76.17  34.79 2.18 42.74 81.23 56.25 

SpatialSmoothing 42.88 26.83 80.43 95.24 90.63  38.30 17.43 47.12 78.20 81.25 

Adversarial Training 71.46 13.72 67.31 73.58 90.77  74.59 14.47 68.52 72.63 89.26 

TABLE V 

 THE CLASSIFICATION ACCURACY (%) OF ADVERSARIAL EXAMPLES ON THE CIFAR-10 DATASET UNDER DEFENSE ALGORITHMS MENTIONED IN THE 

EXPERIMENT SETTINGS. 

 CIFAR-CNN  ResNet18 

FGSM BIM JSMA DeepFool C&W  FGSM BIM JSMA DeepFool C&W 

APE-GAN 58.25 62.94 67.21 68.59 69.14  56.48 65.31 68.67 69.7 71.09 

Bit Depth 22.52 28.67 46.83 79.64 82.42  21.43 30.02 49.39 64.92 79.30 

TotalVarMin 35.10 42.36 48.76 53.71 53.13  28.98 36.81 45.39 48.40 50.39 

SpatialSmoothing 32.87 40.42 69.65 73.29 79.69  27.15 37.15 74.50 66.02 73.83 

Adversarial Training 59.23 49.65 29.9 39.50 32.50  64.79 54.63 34.14 44.15 37.81 

TABLE VI 
 THE CLASSIFICATION ACCURACY (%) OF ADVERSARIAL EXAMPLES ON THE CIFAR-10 DATASET UNDER DEFENSE ALGORITHMS MENTIONED IN THE 

EXPERIMENT SETTINGS. 

 VGG16  DenseNet 

FGSM BIM JSMA DeepFool C&W  FGSM BIM JSMA DeepFool C&W 

APE-GAN 65.95 67.35 69.21 65.97 71.88  65.23 64.51 68.16 68.12 69.92 

Bit Depth 42.22 37.07 47.98 34.85 71.48  42.82 39.48 50.39 68.70 78.13 

TotalVarMin 45.53 45.47 50.76 44.27 57.03  42.19 42.74 45.36 51.66 55.08 

SpatialSmoothing 48.29 46.54 75.14 47.57 76.95  47.90 43.93 82.03 74.41 80.86 

Adversarial Training 66.16 56.92 36.47 46.39 39.83  69.34 59.52 39.70 49.6 42.55 

TABLE VII 

THE CLASSIFICATION ACCURACY (%) OF ADVERSARIAL EXAMPLES ON THE MNIST DATASET UNDER THE APE-GAN++. 

 MNIST-CNN  ResNet18 

FGSM BIM JSMA DeepFool C&W  FGSM BIM JSMA DeepFool C&W 

MNIST-CNN 97.53 96.68 76.13 98.17 98.83  94.78 94.66 86.49 98.03 98.05 

ResNet18 97.47 98.53 93.85 83.59 96.48  96.45 98.39 95.14 82.77 95.70 

VGG16 97.52 97.55 83.86 99.22 97.66  96.35 96.97 86.77 99.15 98.44 

LeNet 93.86 94.11 50.69 98.63 89.06  90.00 97.03 53.50 98.65 92.19 

TABLE VIII 
 THE CLASSIFICATION ACCURACY (%) OF ADVERSARIAL EXAMPLES ON THE MNIST DATASET UNDER THE APE-GAN++. 

 VGG16  LeNet 

FGSM BIM JSMA DeepFool C&W  FGSM BIM JSMA DeepFool C&W 

MNIST-CNN 95.06 94.89 85.97 97.91 98.44  95.27 94.74 84.35 98.10 98.83 

ResNet18 96.47 98.41 94.34 79.84 95.31  96.53 98.28 90.66 73.42 95.53 

VGG16 96.50 96.74 85.92 99.12 98.05  96.64 96.91 84.86 99.13 97.66 

LeNet 89.46 90.73 54.19 98.65 91.79  90.68 91.25 49.04 98.77 91.80 

TABLE IX 

THE CLASSIFICATION ACCURACY (%) OF ADVERSARIAL EXAMPLES ON THE CIFAR-10 DATASET UNDER THE APE-GAN++. 

 CIFAR-CNN  ResNet18 

FGSM BIM JSMA DeepFool C&W  FGSM BIM JSMA DeepFool C&W 

CIFAR-CNN 74.20 73.76 72.99 76.48 82.03  56.95 65.83 74.47 79.61 81.64 

ResNet18 68.17 73.39 73.45 77.98 80.47  57.39 69.06 78.27 81.77 85.94 

VGG16 73.42 75.85 72.32 75.80 82.03  66.71 75.49 77.96 71.04 85.16 

DenseNet 74.61 76.16 75.05 81.35 83.98  70.67 76.78 82.32 85.69 88.67 

TABLE X 

 THE CLASSIFICATION ACCURACY (%) OF ADVERSARIAL EXAMPLES ON THE CIFAR-10 DATASET UNDER THE APE-GAN++. 

 VGG16  DenseNet 

FGSM BIM JSMA DeepFool C&W  FGSM BIM JSMA DeepFool C&W 

CIFAR-CNN 59.23 66.44 74.28 79.03 83.59  56.93 65.74 73.79 78.78 83.98 

ResNet18 51.74 68.94 77.42 81.11 85.16  51.09 68.48 77.31 80.95 84.77 

VGG16 68.35 75.64 77.49 71.72 85.55  67.26 75.67 77.35 70.67 84.38 

DenseNet 70.81 76.02 81.20 85.38 87.89  71.63 77.27 81.34 85.35 89.06 
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Fig.4.The loss curve of the generator and the discriminator under various third-party classification models. 
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Fig.5.The loss curve of the generator and the discriminator under various third-party classification models. 
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Fig.6.The classification accuracy curves of adversarial examples on the MNIST dataset under the APE-GAN++. 

 
Fig.7.The classification accuracy curves of adversarial examples on the MNIST dataset under the APE-GAN++. 
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Fig.8.The classification accuracy curves of adversarial examples on the MNIST dataset under the APE-GAN++. 

 
Fig.9.The classification accuracy curves of adversarial examples on the MNIST dataset under the APE-GAN++. 

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_42

Volume 48, Issue 3: September 2021

 
______________________________________________________________________________________ 



 

 
Fig.10.The classification accuracy curves of adversarial examples on the CIFAR-10 dataset under the APE-GAN++. 

 
Fig.11.The classification accuracy curves of adversarial examples on the CIFAR-10 dataset under the APE-GAN++. 

IAENG International Journal of Computer Science, 48:3, IJCS_48_3_42

Volume 48, Issue 3: September 2021

 
______________________________________________________________________________________ 



 

 
Fig.12.The classification accuracy curves of adversarial examples on the CIFAR-10 dataset under the APE-GAN++. 

 
Fig.13.The classification accuracy curves of adversarial examples on the CIFAR-10 dataset under the APE-GAN++. 
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Fig.14.The visualization of adversarial examples on the MNIST dataset recovering from the APE-GAN++. 

 
Fig.15.The visualization of adversarial examples on the MNIST dataset recovering from the APE-GAN++. 
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Fig.16.The visualization of adversarial examples on the CIFAR-10 dataset recovering from the APE-GAN++. 

 
Fig.17The visualization of adversarial examples on the CIFAR-10 dataset recovering from the APE-GAN++. 
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Fig.18.The visualization of adversarial examples recovering from the APE-GAN. 

 

Fig.19.The classification accuracy line chart of adversarial examples on the MNIST dataset under various defense algorithms. 
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Fig.20.The classification accuracy line chart of adversarial examples on the MNIST dataset under various defense algorithms. 

 
Fig.21.The classification accuracy line chart of adversarial examples on the CIFAR-10 dataset under various defense 

algorithms. 
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Fig.22.The classification accuracy line chart of adversarial examples on the CIFAR-10 dataset under various defense 

algorithms. 
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