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Abstract—This paper presents a metaheuristic with online
learning (MOL) to solve the multi-school heterogeneous-fleet
school bus routing problem (MHSBRP). In the iterated local
search (ILS) metaheuristic framework, an online learning mech-
anism is integrated with the neighborhood search heuristic. It
evaluates the performance of search operators according to the
historical search information, and then adjusts the selection
probability of the operators in the following loops of search. The
proposed algorithm is tested on a set of benchmark instances.
The solution results show that MOL solves both mixed-load and
single-load instances of MHSBRP effectively, and outperforms
the ILS significantly. Compared with the algorithm without
learning mechanism, MOL could improve the convergence of
neighborhood search and the quality of solution.

Index Terms—Metaheuristic, online learning, multi-school
heterogeneous-fleet, school bus routing problem

I. INTRODUCTION

OPTIMIZING the school bus route contributes to the
cost reduction while ensuring the school bus service

quality. It also helps alleviate traffic congestion and reduce
carbon emission. The school bus routing problem (SBRP)
seeks to find optimal routes for a fleet of school buses that
transport students to and from their schools while satisfying
various constraints [1]. The SBRP is often classified into
sub-problems according to different problem attributes, such
as the number of schools, service environment, allowance
for mixed-loads, homogeneous or heterogeneous bus fleet,
objectives of routing, and constraints on service [2].

The problem is more complicated when several schools
share school buses. In some regions in China, primary
and secondary schools contract with school bus companies
for student delivery. The buses are of various capacities,
purchasing and operating costs. The school bus services are
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usually shared by multiple schools to save costs. There-
fore, the research on multi-school heterogeneous fleet SBRP
(MHSBRP) has great application potentials in China.

In this paper, both the mixed-load and single-load prob-
lems of MHSBRP are addressed. When students from differ-
ent schools are transported by the same bus simultaneously,
the problem is mixed-load. Otherwise, the problem is single-
load [3].

The existing approaches to solving the MHSBRP are
construction heuristics and metaheuristics. Souza et al [4]
propose a construction heuristic method: adaptive location
based heuristic (ALBH). This approach considers both the
maximum vehicle capacity and the route length. ALBH
employs the greedy algorithm to construct feasible solutions.
The algorithm calculates the increased cost of inserting each
unvisited bus stop into the current route, and then inserts
bus stops with the minimum cost increase into the route
until a feasible solution is generated. Finally, the bus type
is adjusted according to the number of students on each
route to further reduce the total costs. Souza Lima et al
[5] adopt a hybrid method to solve the heterogeneous-fleet
SBRP (HFSBRP) problem and evaluate the algorithm by
solving four different data sets. The results show that the
heterogeneous motorcade method is suitable for rural areas
with few population. Souza Lima et al [6] implement four
multi-objective meta-heuristic algorithms to solve the route
problem of rural school buses with heterogeneous fleets
and mixed-loads with multi-objective capacity constraints.
Compared with approaches in the literature, the results show
that the overall performance of the algorithm embedded in
the route relinking process is the best. Caceres et al [7]
address the school bus route problem of special education
students and develop a method combining greed heuristic
and column generation method to obtain the approximate
solution of the benchmark example. This algorithm not only
supports the use of heterogeneous fleets, but also adopts the
hybrid strategy when the stations and schools are scattered.
Sales et al [8] suggest a memetic algorithm to solve the
HFSBRP problem. The optimal solution from an experiment
of small instances shows the algorithm’s better consistency in
solution quality, compared with genetic algorithm and greedy
algorithm, but the algorithm takes longer time to compute.
Hou et al [9] employ a greedy random adaptive algorithm
for mixed set partitioning (SP) for HFSBRP with different
optimization objectives under different planning scenarios.
The algorithm is applicable to HFSBRP with different opti-
mization objectives like vehicle mixing and vehicle number
limitation. Dang et al [10] implement a hybrid meta heuristic
algorithm combining iterative local search (ILS) with SP. The
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algorithm is tested on a benchmark and proved effective by
the test results.

MHSBRP, due to its computational complexity, is usually
divided into sub-problems[3, 11, 12], which are solved
sequentially. Based on the bus trips for each school, Kim
et al [11] propose a construction algorithm and a mixed
integer programming (MIP) model to solve the single-load
MHSBRP. Results from benchmark and real-world problems
show that the heuristic algorithm can be used for large
heterogeneous problems. Chen et al [12] suggest a new MIP
model and a simulated annulling algorithm for the same
single-load instances. The solution quality is improved by
the exact and metaheuristic approaches. Based on a feasible
single-load plan, Park et al [3] describe a post-improvement
procedure for the mixed-load school bus routing problem.
The algorithm is tested on seven real-world instances with
heterogeneous fleet. Compared with the number of buses
currently in use, the mixed-load algorithm can reduce the
utilization of 22.0% buses. However, the solution quality is
evaluated by the number of buses rather than the total costs.
The information of bus types, capacities and purchasing costs
are not described in the algorithm.

Another approach to MHSBRP is presented by modeling
it as a pickup and delivery problem with time windows
(PDPTW) [13]. This algorithm combines iterative local
search (ILS) and variable neighborhood descent (VND) to
minimize bus purchasing and operating costs. In the algo-
rithm, three operators for PDPTW (SPI, SBR and WRI) with
a strategy of bus type adjustment are used for neighborhood
search. The algorithm generates the best solutions so far on
a set of benchmark instances.

In the existing local-search based metaheuristics, neigh-
borhood search operators are often executed iteratively in a
fixed or random order. Usually, one algorithm could hardly
perform well on all instances according to the “no free lunch”
theory [14]. Fortunately, some scholars have introduced on-
line learning to solve problems and have attained influential
achievements with adaptive metaheuristic and hyper-heuristic
algorithms[15, 16, 17, 18]. The basic idea of online learning
is to record operator’s historical information in iterations,
evaluate the adaptivity of each operator with current instance,
and then adjust operator’s selection probability accordingly
in the following iterations. The online learning mechanism is
embedded in metaheuristic algorithms to solve the MHSBRP.

The key issue of online learning is to evaluate operators’
optimization performance based on its historical information.
Fialho et al [19] evaluate operators by extreme value based
credit assignment, believing that rare but highly beneficial
jumps, in most instances, are more effective than frequent but
small improvements. The bigger improvement the operator
offers, the higher score it gets, and vice versa. When the
operators are selected by roulette method, lower score leads
to lower selection probability. Soria-Alcaraz et al [20] solve
the education timetabling problem by integrating the above
approach with ILS. Mısır et al [21] evaluate operators’ per-
formance based on the times and degree of the improvement
they make to the solutions. In the model presented by Walker
et al [16], every operator’s score is based on the average
improvement the operator has made to objective function
in the whole iteration stage. Then operators are ranked
according to their performance, the operator with the best

performance at the beginning, and neighborhood search is
based on the rank. When evaluating operators, Cowling et al
[22] take into account the operator’s last call time to avoid
long time no-call operators. To optimize the marshalling plan
for railroad freight cars, Hirashima et al [23] employs the
reinforcement learning system. The possible layouts take into
account the evaluation values of the delivery distance and
locomotive movement numbers, and the best plan is to move
freight cars with the best evaluation. For the same problem,
Yoichi et al[24] propose a different reinforcement leanring
method to generate marshalling plans for railroad freight cars
based on the processing time. Online learning is effective in
solving route problem because it has the capability to adjust
node allocation and prune nodes, thus effectively reducing
hidden notes [25].

A metaheuristic with online learning (MOL) for the MHS-
BRP is presented in this paper. The effectiveness of the
algorithm was tested on a set of benchmark instances. The
solution results show that MOL is effective for solving
both mixed-load and single-load instances of MHSBRP.
Compared with the algorithm without learning mechanism,
MOL could improve the convergence of neighborhood search
and the quality of solution. In addition, the effects of online
learning on benchmark instances are also discussed.

This paper is organized as follows. The next section
describes the MHSBRP in detail. Section III presents the
algorithm MOL for MHSBRP, including the online learning
mechanism, the neighborhood search operators, and the bus
type adjustment strategy. Section IV tests the algorithm on
benchmark instances and analyzes the algorithm.

II. PROBLEM DEFINITION AND MATHEMATICAL
FORMULATIONS

The MHSBRP in this paper is defined as follows. a) Each
school bus departs from one of the depots; b) every bus stop
is visited by one bus and visited only once; c) each student
is delivered to his/her school; d) the number of students on
a bus never exceeds the capacity of the bus; e) the riding
time of each student never exceeds the maximum riding
time; f) all students are delivered to their schools within
the schools’ time window; g) the objective is to minimize
the bus purchasing and operating costs. The parameters and
decision variables in MHSBRP model are listed in Table I.

Based on the above description and the mathematical
formulations in previous studies [3, 13, 26], the mixed-load
MHSBRP is defined as follows.

TABLE I
PARAMETERS AND DECISION VARIABLES IN MODEL

Parameters Meaning

D The set of depot nodes
P+ The set of bus stop nodes
P− The set of school nodes
P P = P+ ∪ P−

V V = P ∪D

qi The change of student number at node i, i ∈ P
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sti The service time at node i, i ∈ P

s(i) The school that bus stop i belongs to, i ∈ P+

ei The earliest arrival time at node i, i ∈ P

li The latest arrival time at node i, i ∈ P

T Maximum riding time
M The collection of bus types
Qk The bus capacity of bus type k, k ∈ M

fk The fixed cost of bus type k, k ∈ M

vk The various cost of bus type k

dij The distance from node i to j ,i, j ∈ V

tij The travel time from node i to j ,i, j ∈ V

Decision
variables Meaning

xijk If bus k visits node i to j, xijk = 1; otherwisexijk = 0

yik If bus k visits node i, yik = 1 ; otherwise yik = 0

Tik The arrival time of bus k at node i

Lik The number of students on bus k after k leaves node i

minf(x) =
∑
j∈P+

∑
k∈M

fkx0jk +
∑
i∈V

∑
j∈V

∑
k∈M

xijkdijvk

(1)

s.t.
∑
k∈M

yik = 1,∀i ∈ P+ (2)∑
j∈V

xijk −
∑
j∈V

xjik = 0,∀i ∈ P, k ∈M (3)∑
j∈V

xjik −
∑
j∈V

xjs(i)k = 0,∀i ∈ P+, s(i) ∈ P−, k ∈M

(4)
Tik + sti + tis(i) ≤ Ts(i)k,∀i ∈ P+, s(i) ∈ P−, k ∈M

(5)∑
j∈P

xj0k −
∑
j∈P

x0jk = 1,∀k ∈M (6)

Lik = 0,∀i ∈ D, k ∈M (7)
qi ≤ Lik ≤ Qk,∀i ∈ P, k ∈M (8)
0 ≤ Ls(i)k ≤ Qk − qi,∀i ∈ P+, s(i) ∈ P−, k ∈M (9)

0 ≤ Ljk ≤ Qk −
∑

s(i)=j

xijkqi,∀i ∈ P+, k ∈M (10)

Ts(i)k − Tik ≤ T, ∀i ∈ P+, k ∈M (11)
ei ≤ Ti ≤ li,∀i ∈ V, k ∈M (12)
xijk ∈ {0, 1},∀i, j ∈ P, k ∈M (13)
yij ∈ {0, 1},∀i, j ∈ P (14)
xijk = 0,∀i, j ∈ P+, s(i) 6= (j), k ∈M (15)

Equation (1) defines the objective function including fixed
bus costs and variable operating costs. Constraint (2) ensures
that every bus stop is visited by one school bus. Constraint
(3) ensures that each school bus must leave node i after
visiting it. Constraint (4) ensures that a school bus must
visit the corresponding school s(i) after visiting bus stop
i. Constraint (5) ensures that a school bus visits bus stop
i before visiting the corresponding school. Constraint (6)
ensures that the departure and destination of every route is
the depot. Constraint (7) ensures that there is no student on
bus at the depot. Constraint (8) ensures that the number of
students on school bus does not exceed the bus capacity.

Constraint (9) shows the change of student number after a
school bus visits a school. Constraint (10) shows the change
of student number after a school bus visits a set of nodes,
and if the node is a school and qi is negative, it represents
the number of alighting students. Constraint (11) shows that
students’ riding time cannot exceed the maximum riding
time. Constraint (12) ensures that the school bus arrives at
a school in the given time window. Constraint (13) and (14)
define the decision variables xijk and yik. For the single-
load MHSBRP, additional constraints must be added to the
models. Mixed-loads are not allowed by (15).

III. METAHEURISTIC WITH ONLINE LEARNING

In this section, we briefly outline the metaheuristic with
online learning (MOL) to solve the MHSBRP.

A. Algorithm Framework

A learning mechanism is embedded in the procedures of
iterative local search (ILS). In ILS, three PDPTW opera-
tors, SPI (Single Pair Insertion), SBR (Swap Pairs between
Routes) and WRI (Within Route Insertion) are used [27].
The operators have been successfully used to solve the multi-
school SBRP in [28] and [13]. In addition, a strategy for bus
type adjustment is employed, which could reduce the route
cost because of the selection of low-cost bus.

The online learning mechanism is used to guide the
process of local search. In classical ILS, the neighborhood
operators are implemented with a fixed or random sequence
in each search iteration. This means all the operators are
equally executed. In MOL, all operators are evaluated, and
the operator with a higher score will have a higher selection
possibility in the following iterations. The reinforcement
learning could improve the performance of ILS by adaptively
using neighborhood operators.

The framework of MOL is as follows. After input of the
problem instance and the number of loops, a feasible solution
is generated (line 1): each bus stop and its corresponding
school are constructed as a route; the initial solution is
constructed by greedily merging some routes. Line 4 selects
the to-be-called operator. For each bus stop, line 6 uses the
selected operator to search neighborhood solutions Stemp.
The current solution (Scur) and the current best solution
(Sbest) are updated in line 7 and line 8 respectively. Line
10 updates the score of each operator. Line 11 perturbs the
best solution by a ruin and recreation method [29] in order
to escape from local optimum.

In the framework of MOL, N represents a neighborhood
operator; NL, the collection of operators; NSL, the scoring
information of operators; NCL, information of successively
no-call operators; and R, the degree of perturbation.

Framework: MOL
Input:Instance, Loop
1. Scur=Initialize(Instance);
2. Sbest=Scur;
3. While(Loop>0){
4. N=SelectOperator(NSL, NCL);
5. Foreach(stop i in stops){
6. Stemp = Neighbor (Scur, N , i);
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7. Scur = BestAcceptance(Stemp, Scur);
8. Sbest = IsBetter(Sbest, Scur);
9. }//end foreach
10. EvaluateOperators(N , NSL, NCL);
11. Scur = Perturbation(Sbest, R);
12. Loop−−; }//end while
Output:the best solution: Sbest.

B. Online Learning Mechanism

The online learning mechanism in MOL consists of two
components: the evaluation and the selection. We evaluate
the operator’s performance by reinforcement learning, which
is an important method of machine learning [30]. To make it
more environment-adaptive, an action is rewarded when its
effect on the state is positive. In other words, if an operator
improves the current best solution, the operator is rewarded
scores. In each iteration, the operator’s performance is evalu-
ated by two parameters: the degree of improving the current
best solution and the computing time. The performance of
operator Ni in iteration t is generated by (16).

Pt(Ni) =

{
( It(Ni)
Tt(Ni)

+ 1)2, It(Ni)>0

0, otw
(16)

In (16), It(Ni)presents the improvement of the current
best solution by operator Ni in iteration t ; and Tt(Ni) is the
computing time of operator Ni in iteration t . The operator’s
performance is evaluated only when the operator improves
the current best solution.

The score of each operator is the accumulation of its
historical performance. Formula (17) generates the score of
operator Ni in iteration t.

St(Ni) =

k<t∑
k=0

akPt−k(Ni) (17)

In (17), a (ranging from 0 to 1) is the attenuation co-
efficient. It shows the weight of the operator’s evaluation
history in its score. When the value of a is 0, it shows only
the evaluation information of the latest iteration is taken into
consideration, and value 1 shows the operator’s evaluation
information in each iteration has the same weight in its final
score.

The selection of an operator takes into consideration
the operator’s score and its successive no-call times. The
operator with a higher score has a greater probability of
being selected. We adopt the roulette algorithm to choose
an operator in current iteration. Formula (18) shows the
selection probability of operator Ni in iteration t.

Probability(Ni)t =
St(Ni)∑n
j=1 St(Ni)

(18)

According to (18), some operators might not be called
because of their low scores. Although they cannot greatly
improve the current best solution, the call of them could
maintain the search diversity for the solution and benefit the
other operator’s performance. Therefore, we use NCL to
record the operator’s no-call times in MOL. When the no-call
times reach a threshold value, the operator will be called in
the next iteration. The initial value of NCL of each operator
is set to the threshold value, which aims to call every operator
in the beginning iterations to get the operator’s initial score.

C. Neighborhood Search Operators

In MOL, the route solution is gradually improved by
neighborhood search. In multi-school SBRP, when a stop
is moved from the route, neighborhood operators should
consider its corresponding school. As a result, the widely-
used neighborhood operators such as one-point move, two-
point exchange and 2-opt for vehicle routing are inapplicable.
We use three operators (SPI, SBR, and WRI) for PDPTW in
local search to move the pairs of stop and its corresponding
school [27].

The SPI on the route is shown in Fig 1. After the SPI
operation, the pair (P, S) to be removed on route r1 is moved
to the corresponding position on route r2.

r1

P S

r2

r1

P S

r2

SPI

depot route nodes SPI opera!on related nodes

Fig. 1. An example of SPI operation

The operation of SBR is shown in Fig 2, in which the pair
to be removed on route r1 is swapped with the pair to be
removed on route r2.

r1

Pi Si

r2

r1

Pi Si

r2

SBR

Pj Sj

Pj Sj

depot route nodes SBR opera!on related nodes

Fig. 2. An example of SBR operation

Fig 3 shows the operator’s WRI. The aim of changing the
position of the pairs on the same route is to reduce the total
travel distance and the total cost.

P S

P S

WRI

depot route nodes WRI opera!on related nodes

r

r

Fig. 3. An example of WRI operation

However, it requires attention when we move pair (P, S)
from route r1 to route r2 . If school S exists on r2 , only
bus stop P is moved. However, if school S serves other bus
stops on r1 , then S must be remained on r1 .

D. Bus Type Adjustment Strategy

Appropriate buses could reduce the total costs of route
solution. In MOL, we use a strategy of bus type adjustment
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to reduce the total costs. For neighborhood search operations,
there are several chances to reduce the bus cost. a) If two
routes can be merged, one bus will be saved. Even if a larger
bus is needed for the new route, the bus cost still could be
reduced significantly. b) When two routes are changed by SPI
or SBR operator, there is a chance to use one or two new
buses to reduce the total costs. However, we shall consider
the route load, bus capacity, and bus operating cost when
adjusting the bus type for a route. Route load represents the
maximum number of students on the school bus on a route.
In case that the route load is changed, the search operator
will adjust the bus type according to the bus capacity.

IV. COMPUTATIONAL RESULTS

The algorithm is programmed by C#, and the test uses
Core i7-4790, 8GB memory, Win7 X64. We tested the multi-
school SBRP instance set in [3], shown in Table II. The
characteristic of the distribution of school and stop is that
CSCB instances are centralized while RSRB instances are
scattering. The vehicle speed, the bus stops, and the service
time of school stop are the same as those in the set of
instances. The distance between two nodes is the Manhattan
distance. The bus type is the same as [13], including three
types : A , B , and C. The bus capacity is 50, 60, and 70

TABLE II
TEST INSTANCE INFORMATION

Instance stops schools students

CSCB01 250 6 3907
CSCB02 250 12 3204
CSCB03 500 12 6813
CSCB04 500 25 7541
RSRB01 250 6 3409
RSRB02 250 12 3670
RSRB03 500 12 6794
RSRB04 500 25 6805

respectively, and the fixed cost is 2500, 2800, and 3000
respectively. The cost is the total travel distance in miles.

A. Solution Results

Here are the settings of the algorithm parameters. The
max iteration is 150; the attenuation coefficient is 0.2; the
threshold value of operator’s no-call times is 6; ruin and
recreation of 25 stop nodes each perturbation, the acceptance
rules of neighborhood solution are bestmove (the best neigh-
borhood solution will be accepted). The student’s maximum
riding time (MRT): 2700 seconds and 5400 seconds. The
algorithm was tested in both mixed-load and single-load
operational modes. Every instance was run 10 times, and
the best solution (Sbest), the average solution (Savg), the
standard deviations (Dev) and the average computing time
(Tavg) were recorded. The results are shown in Table III.

There are several findings from Table III. First, MOL
has relatively stable performance as the average standard
deviation for mixed-load and single-load operational mode
is 1.55% and 1.51% respectively. Second, all the instances
can be solved efficiently. The average computing time for
each instance ranged between 47.10 and 258.85 seconds.
Third, lowering school bus service quality (changing MRT
from 2700s to 5400s) could reduce the total operational
cost, so the education authority could weigh between service
quality and total cost in operation. Fourth, mixed-load could
further reduce the total costs. Compared with single-load, the
average solution with all instances in mixed-load is improved
by 2.04%. Finally, compared with the single-load, the mixed-
load saves 3.3% cost on average in CSCB instance and
saves 0.4% cost on average in RSRB instance. The mixed-
load tends to be more effective when bus stops are located
relatively close together.

B. Comparison of algorithm effectiveness

The proposed MOL is compared with ILS in [13]. Al-
though the optimization is implemented by iteration search

TABLE III
TEST INSTANCE INFORMATION

Instance MRT
Mixed-load Single-load

Sbest Savg Dev/% Tavg /sec Sbest Savg Dev/% Tavg /sec

CSCB01 2700 75440.55 76786.47 1.27% 49.69 76567.29 79929.91 2.36% 47.10
CSCB02 2700 68928.44 72827.90 2.72% 56.00 73655.37 74395.47 1.37% 52.92
CSCB03 2700 138928.19 141921.23 1.24% 183.87 150221.13 153236.48 1.19% 170.81
CSCB04 2700 156101.54 158798.80 1.56% 191.48 157498.04 160922.62 0.98% 191.42
RSRB01 2700 74710.74 75837.91 1.43% 40.49 74437.35 76860.43 2.07% 39.08
RSRB02 2700 73619.83 74624.97 1.24% 47.10 73444.65 74328.18 1.09% 44.94
RSRB03 2700 141471.12 143815.65 1.29% 128.69 141713.45 144380.15 1.75% 132.41
RSRB04 2700 148552.13 151235.20 1.31% 164.60 152715.06 154659.97 0.98% 155.91
CSCB01 5400 65168.85 67862.37 2.19% 81.43 66734.43 68451.80 1.35% 69.06
CSCB02 5400 54789.18 56695.23 1.99% 80.23 57854.78 59060.61 1.02% 69.00
CSCB03 5400 109927.58 113109.36 1.62% 258.85 111635.90 117617.29 1.91% 241.10
CSCB04 5400 117651.15 118942.13 0.87% 232.45 118666.26 121085.43 1.71% 225.37
RSRB01 5400 67203.81 69496.95 1.93% 51.83 67907.61 69168.56 1.79% 46.07
RSRB02 5400 62930.14 64545.78 2.00% 54.63 62809.91 63645.64 1.64% 48.86
RSRB03 5400 131594.94 132524.03 0.64% 170.65 129333.39 133075.53 1.23% 156.17
RSRB04 5400 117437.17 120940.33 1.51% 200.64 119675.01 122680.64 1.78% 182.19
Average 100278.46 102497.77 1.55% 124.54 102179.35 104593.67 1.51% 117.02
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with the same neighborhood operators, the operators’ call
methods in each iteration are different. MOL employs on-
line learning to select operators, whereas ILS uses VND
in operator selection. There are also differences in initial
solution generation, bus type adjustment strategy, pertur-
bation approaches, neighborhood size, route structure and
the acceptance rules of neighborhood solutions. The two
algorithms were tested with identical software and hardware
environment, benchmark instances, and school bus type and
cost. Table IV and Table V show the solution results from
MOL and ILS with mixed-load and single-load respectively.
Column Sbest and Savg represent the best solution and the
average solution respectively; and Tavg indicates the average
computing time. Compared with the solutions from ILS,

Gap1/% and Gap2/% show the cost reduction of Sbest and
Savg respectively.

The results in Table IV and Table V show that the proposed
MOL outperforms ILS. For the 16 mixed-load instances,
MOL improves 14 best solutions and 15 average solutions.
For the 16 single-load instances, MOL improves 15 best
solutions and all average solutions. The costs are reduced
significantly for most instances. In addition, MOL is more
efficient than ILS in terms of computing time for the mixed-
load instances.

C. The effectiveness of learning mechanism

Four experiments were designed to analyze the effective-
ness of learning mechanism from different perspectives.

TABLE IV
COMPARISON OF MIXED-LOAD RESULTS FROM MOL AND ILS

Instance MRT
MOL ILS

Gap1/% Gap2/%
Sbest Savg Tavg /sec Sbest Savg Tavg /sec

CSCB01 2700 75440.55 76786.47 49.69 78206.83 81963.76 78.96 3.54% 6.32%
CSCB02 2700 68928.44 72827.90 56.00 70096.54 74876.08 90.45 1.67% 2.74%
CSCB03 2700 138928.19 141921.23 183.87 141227.16 148782.98 316.42 1.63% 4.61%
CSCB04 2700 156101.54 158798.80 191.48 157246.92 163395.87 252.84 0.73% 2.81%
RSRB01 2700 74710.74 75837.91 40.49 80059.15 85024.96 59.61 6.68% 10.81%
RSRB02 2700 73619.83 74624.97 47.10 75811.45 79991.72 62.29 2.89% 6.71%
RSRB03 2700 141471.12 143815.65 128.69 153119.55 174196.38 197.6 7.61% 17.44%
RSRB04 2700 148552.13 151235.20 164.60 153601.61 161501.74 225.94 3.29% 6.36%
CSCB01 5400 65168.85 67862.37 81.43 66911.91 72086.74 97.36 2.61% 5.86%
CSCB02 5400 54789.18 56695.23 80.23 56834.79 60285.96 94.82 3.60% 5.96%
CSCB03 5400 109927.58 113109.36 258.85 112928.49 114522.38 311.61 2.66% 1.23%
CSCB04 5400 117651.15 118942.13 232.45 113756.89 121735.01 273.37 -3.42% 2.29%
RSRB01 5400 67203.81 69496.95 51.83 72290.94 81602.47 51.68 7.04% 14.83%
RSRB02 5400 62930.14 64545.78 54.63 61349.26 63792.19 73.35 -2.58% -1.18%
RSRB03 5400 131594.94 132524.03 170.65 137510.73 145548.21 179.46 4.30% 8.95%
RSRB04 5400 117437.17 120940.33 200.64 121234.66 128363.54 244.34 3.13% 5.78%
Average 100278.46 102497.77 124.54 103261.68 109854.37 163.13 2.89% 6.70%

TABLE V
COMPARISON OF SINGLE-LOAD RESULTS FROM MOL AND ILS

Instance MRT
MOL ILS

Gap1/% Gap2/%
Sbest Savg Tavg /sec Sbest Savg Tavg /sec

CSCB01 2700 76567.29 79929.91 47.10 80856.87 85673.8 55.19 5.31% 6.70%
CSCB02 2700 73655.37 74395.47 52.92 74371.82 78141.87 61.91 0.96% 4.79%
CSCB03 2700 150221.13 153236.48 170.81 152354.28 163223.23 178.63 1.40% 6.12%
CSCB04 2700 157498.04 160922.62 191.42 162594.13 172144.24 173.07 3.13% 6.52%
RSRB01 2700 74437.35 76860.43 39.08 81670.15 88332.56 49.53 8.86% 12.99%
RSRB02 2700 73444.65 74328.18 44.94 78032.18 81694.04 51.93 5.88% 9.02%
RSRB03 2700 141713.45 144380.15 132.41 151705.6 169092.69 155.82 6.59% 14.61%
RSRB04 2700 152715.06 154659.97 155.91 160816.51 165525.1 166.82 5.04% 6.56%
CSCB01 5400 66734.43 68451.80 69.06 68698.92 72590.23 55.61 2.86% 5.70%
CSCB02 5400 57854.78 59060.61 69.00 57707.51 62262.367 58.13 -0.26% 5.14%
CSCB03 5400 111635.90 117617.29 241.10 119835.28 125401.31 164.34 6.84% 6.21%
CSCB04 5400 118666.26 121085.43 225.37 122147.47 128493.44 163.43 2.85% 5.77%
RSRB01 5400 67907.61 69168.56 46.07 72231.21 86489.16 37.92 5.99% 20.03%
RSRB02 5400 62809.91 63645.64 48.86 63919.06 67283.8 47.25 1.74% 5.41%
RSRB03 5400 129333.39 133075.53 156.17 134331.26 154683.54 138.93 3.72% 13.97%
RSRB04 5400 119675.01 122680.64 182.19 127013.53 131986.66 147.48 5.78% 7.05%
Average 102179.35 104593.67 117.02 106767.86 114563.63 106.62 4.30% 8.70%
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1) Comparison with RSH: To evaluate the effectiveness
of the learning mechanism, this paper compared MOL with
RSH. In the iterative process, RSH adopted random selection
operator, and the other parameters were set the same as
MOL. Each instance was run 10 times, and the best solution
Sbest, average solution Savg and average operation time
STavg/sec were counted. The test results of RSH and MOL
on benchmark instances were compared. Gap1 /% and gap2
/% represent the improvement of the best solution and aver-
age solution of MOL compared with RSH in each instance.
The test results of mixed-load and single-load operation
modes are shown in Table VI and Table VII respectively.

The results in Table VI and Table VII indicate the fol-
lowing: a) The overall performance of MOL is better than

RSH. The mean value of the best solution and the mean
value of the average solution of MOL are better than those
of RSH, and the average improvement degree is increased
by 0.93% and 0.79% respectively in the mixed-load mode,
and 0.72% and 0.65% respectively in the single-load mode.
Also, among the 32 test results, MOL outperforms RSH in
28 average solutions and 26 best solutions, improving the
average solution and best solution by 87.50% and 81.25%
respectively. b) The average operation time of MOL is
slightly higher than that of RSH, 17.26% higher in mixed-
load and 17.64% higher in single-load mode. This attributes
to the increase in the calls of operators with high time
complexity and the extra time cost brought about by online
learning mechanism.

TABLE VI
COMPARISON OF TEST RESULTS BETWEEN MOL AND RSH IN THE MIXED-LOAD

Instance MRT
MOL RSH

Gap1/% Gap2/%
Sbest Savg Tavg /sec Sbest Savg Tavg /sec

CSCB01 2700 75440.55 76786.47 49.69 76359.17 77782.93 39.67 1.22% 1.30%
CSCB02 2700 68928.44 72827.90 56.00 71452.67 73577.36 43.92 3.66% 1.03%
CSCB03 2700 138928.19 141921.23 183.87 138957.70 142236.05 152.23 0.02% 0.22%
CSCB04 2700 156101.54 158798.80 191.48 157003.25 160718.34 150.25 0.58% 1.21%
RSRB01 2700 74710.74 75837.91 40.49 75724.64 77198.95 30.69 1.36% 1.79%
RSRB02 2700 73619.83 74624.97 47.10 73294.88 74670.59 36.32 -0.44% 0.06%
RSRB03 2700 141471.12 143815.65 128.69 143797.62 146152.61 102.16 1.64% 1.62%
RSRB04 2700 148552.13 151235.20 164.60 150348.07 155164.25 132.40 1.21% 2.60%
CSCB01 5400 65168.85 67862.37 81.43 66503.39 67756.74 71.23 2.05% -0.16%
CSCB02 5400 54789.18 56695.23 80.23 54613.29 56272.13 69.66 -0.32% -0.75%
CSCB03 5400 109927.58 113109.36 258.85 110447.85 113163.33 231.75 0.47% 0.05%
CSCB04 5400 117651.15 118942.13 232.45 118400.23 119119.57 195.93 0.64% 0.15%
RSRB01 5400 67203.81 69496.95 51.83 68396.04 69611.07 41.80 1.77% 0.16%
RSRB02 5400 62930.14 64545.78 54.63 63075.75 64100.55 43.03 0.23% -0.69%
RSRB03 5400 131594.94 132524.03 170.65 132211.67 133751.08 138.04 0.47% 0.93%
RSRB04 5400 117437.17 120940.33 200.64 118849.63 121663.98 169.78 1.20% 0.60%
Average 100278.46 102497.77 124.54 101214.74 103308.72 103.05 0.93% 0.79%

TABLE VII
COMPARISON OF TEST RESULTS BETWEEN MOL AND RSH IN THE SINGLE-LOAD

Instance MRT
MOL RSH

Gap1/% Gap2/%
Sbest Savg Tavg /sec Sbest Savg Tavg /sec

CSCB01 2700 76567.29 79929.91 47.10 77406.31 80121.28 36.78 1.10% 0.24%
CSCB02 2700 73655.37 74395.47 52.92 73626.92 75058.27 41.73 -0.04% 0.89%
CSCB03 2700 150221.13 153236.48 170.81 151189.01 153959.32 135.20 0.64% 0.47%
CSCB04 2700 157498.04 160922.62 191.42 158721.17 162224.09 148.25 0.78% 0.81%
RSRB01 2700 74437.35 76860.43 39.08 75028.37 76932.19 30.23 0.79% 0.09%
RSRB02 2700 73444.65 74328.18 44.94 73276.55 74694.90 34.57 -0.23% 0.49%
RSRB03 2700 141713.45 144380.15 132.41 142960.50 145320.75 100.02 0.88% 0.65%
RSRB04 2700 152715.06 154659.97 155.91 153216.52 154640.33 130.35 0.33% -0.01%
CSCB01 5400 66734.43 68451.80 69.06 66847.65 68618.02 67.34 0.17% 0.24%
CSCB02 5400 57854.78 59060.61 69.00 57033.67 59110.62 62.81 -1.42% 0.08%
CSCB03 5400 111635.90 117617.29 241.10 116246.00 119355.45 198.53 4.13% 1.48%
CSCB04 5400 118666.26 121085.43 225.37 119184.79 123293.68 181.16 0.44% 1.82%
RSRB01 5400 67907.61 69168.56 46.07 67982.06 69246.06 41.38 0.11% 0.11%
RSRB02 5400 62809.91 63645.64 48.86 61640.91 64480.43 41.95 -1.86% 1.31%
RSRB03 5400 129333.39 133075.53 156.17 132061.75 133634.40 134.04 2.11% 0.42%
RSRB04 5400 119675.01 122680.64 182.19 120214.13 123625.77 157.81 0.45% 0.77%
Average 102179.35 104593.67 117.02 102914.77 105269.72 96.38 0.72% 0.65%
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TABLE VIII
THE RUNNING INFORMATION OF THREE OPERATION IN MOL AND RSH

Operator
MOL RSH

Nc Nt Ni Nm Nbm Nc Nt Ni Nm Nbm

SPI 87.86 69.56 23450.46 16702.13 163.90 49.78 39.76 19977.87 9875.83 123.47
SBR 39.61 39.07 2802.18 10798.39 75.16 50.04 47.96 3907.27 13363.81 100.97
WRI 22.53 1.07 2.82 406.59 0.47 50.18 2.34 7.11 899.91 1.23
Total 150 109.7 26255.46 27907.11 239.53 150 90.06 23892.25 24139.55 225.67

2) Convergence analysis: To verify the effectiveness of
our algorithm, MOL was compared with ILS with random
selection of operators (RSH). In each iteration of RSH, the
operator was randomly selected. The solution results show
that MOL not only increases the solution quality, but also
increases the speed of solution convergence. Fig 4 exhibits
the convergent curves of the averaged current best solution.
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Fig. 4. Convergence curves of two algorithms

3) Adaptability analysis of the learning mechanism: Table
VIII shows the running information of three operators in
MOL and RSH: the average call times of operators (Nc),
the average computing time (Nt) in seconds, the cumulative
improvement of current best solution (Ni), the average
move times (Nm), and the average update times of the
current best solution (Nbm). Table VIII indicates that online
learning significantly changes the operator’s call probability.
Furthermore, the accumulative improvement for current best
solution in MOL is 9% higher than that in RSH. Besides,
the operation times of move and bestmove in MOL increase
13.5% and 5.79% respectively than that in RSH.

Under the mixed-load and single-load operation modes,
the average call times of the operator when solving different
instances by MOL are shown in Fig 5 and Fig 6 respectively.
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Fig. 5. Average call times of operators in mixed-load
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Fig. 6. Average call times of operators in single-load

As can be seen from Fig 5 and Fig 6, the number of
operator calls varies in different instances. a) In all instances,
the average call of SPI operator is the most, followed by
SBR operator, and WRI operator is the least. This is because
SPI reduces vehicle numbers, and the fixed cost of vehicles
accounts for a large proportion of the total costs. The SBR
operator can reduce the cost by reducing the vehicle size
through the exchange of pairs between routes. WRI operator
adjusts the order of stations in the route to reduce some
variable costs. b) There are differences in average call times
of the three operators in different instances, which shows
the adaptability of the MOL and accounts for the stable
performance of the MOL. c) There is a positive correlation
between the call times of SBR operator and the number of
stops in the instance.

4) Influence analysis of attenuation coefficient: The effect
of attenuation coefficient was also tested. Table IX shows
the average results on all instances. Column SPI, SBR and
WRI indicate the average call times of the three operators
respectively. The different value of attenuation coefficient,
in general, has no significant effect on the solution quality.
However, the solution is better when a is set to 1 than the
other values.

TABLE IX
EFFECTS OF ATTENUATION COEFFICIENT ON MOL

a Sbest Savg SPI SBR WRI

0 101506.83 103578.26 98.58 29.31 22.11
0.2 101228.91 103545.72 87.86 39.61 22.53
0.4 101465.01 103650.37 85.51 41.95 22.54
0.6 101271.43 103673.98 86.17 41.20 22.64
0.8 101266.91 103611.35 86.82 40.69 22.49
1 101082.41 103601.07 86.16 41.27 22.57
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V. CONCLUSION

In this paper, an ILS metaheuristic with online learning
(MOL) was proposed to solve the MHSBRP. Three operators
SPI, SBR, and WRI are employed to search neighborhood
solutions for PDPTW. The performance of operators was
evaluated by the online mechanism in the metaheuristic
framework. In the proposed algorithm, the search operators
were selected according to their historical performance,
which was different from the sequential or random selection
of search operator in standard ILS.

The performance of the algorithm was tested on a set
of benchmark instances. The solution results show that the
MOL is effective and robust for solving the MHSBRP
instances. The MOL also significantly outperforms the ILS in
terms of solution quality and computation time. The compar-
ison between the ILS metaheuristics with and without online
learning shows that metaheuristics with online learning could
not only increase the solution quality, bus also increase the
speed of solution convergence.

Through experimental analysis, it is found that the MOL
with online learning mechanism positively affects the solu-
tion process in three aspects. a) It increases the convergence
speed of MOL as the evaluation and selection of operators
enables the competitive operators to be more frequently cho-
sen. b) It equips MOL with adaptability. In the experiment,
the number of calls of each operator varies in different in-
stances, and the average calls of operators are affected by the
bus stop density. This shows the distribution characteristics
of stops impacts the optimization ability of operators, and
the learning mechanism can dynamically adjust the number
of operator calls, so the MOL has self-adaptability. c) It
promotes the stability of MOL solution. The experimental
results show that both the average solution quality and the
number of optimal solutions are improved.

As for future work, we intent to test the algorithm on
more MHSBRP instances and other SBRP instances. The
evaluation model and selection rules are also critical issues
for developing more effective algorithms.
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