

Abstract—The simulated annealing algorithm is a stochastic

optimization method for solving optimization problems

associated with a large search space. The efficiency of the

algorithm depends on the adaptation of the cooling model.

Despite this, the main disadvantage of this algorithm is that it

does not take into account the state of the system while

searching. Thus, it is difficult to predict the system convergence

with the simulated annealing algorithm. However, neural

networks in particular continuous Hopfield networks have

proven their ability in the field of machine learning to make a

decision. In this paper, we introduce continuous Hopfield

networks to improve the convergence of the simulated annealing

algorithm. The experimental results show that the hybrid

approach produces a large number of stable sets.

Index Terms— Neural networks, continuous Hopfield

networks, simulated annealing algorithm

I. INTRODUCTION

imulated annealing (SA) is a heuristic method inspired by

thermodynamics, or more exactly, by static physics. It is

based on an analogy to the physical annealing of solids, which

involves heating a material at a high temperature and cooling

it very slowly in order to let the system reach its minimum

energy. If the cooling process is slow, a crystal structure is

formed from a network of well-ordered nodes.

The history of the simulated annealing method goes back

to the year 1953. At that time, N. Metropolis developed an

algorithm to simulate the establishment of equilibrium in a

system with several degrees of freedom and at a given

temperature [1]. In 1983, Kirkpatrick mimicked the physical

annealing behavior of solids to solve some optimization

problems [2].

Currently, the annealing method is used to solve many

optimization problems, like in economics, image processing

and in many other combinatorial problems. Often, the

simulated annealing method is used to train neural networks,

specifically the multilayer optimization problem of

perceptron [3].

Manuscript received August 29, 2020; revised January 27, 2021.
Mohammed El Alaoui obtained his PhD degree from University Sidi

Mohammed ben Abdellah, Fez, MAROCCO. Email:

(md.elalaoui@gmail.com).
Mohamed Ettaouil is a professor at the Faculty of Science and technology,

University Sidi Mohammed ben Abdellah, Fez, MAROCCO. Email:

(mohamedettaouil@yahoo.fr).

The advantage of the simulated annealing method lies in

the possibility of avoiding the local minima of the function to

be optimized and of continuing the search for the global

minimum. This is achieved through the adoption of an

important set of parameters that governs the convergence of

SA. This set includes the cooling model, the initial and the

final temperature. The cooling pattern may seem to be the

most important in this set. It drives the algorithm from an

initial state to another state. If the temperature drops quickly,

the algorithm gets stuck in a local minimum. However, with

a well-controlled temperature, the algorithm can avoid the

local minimum. The cooling model is widely studied by many

researchers [4]. Whereas, the main disadvantage of this

algorithm is that it does not take into account the state of the

system while searching. Thus, it is difficult to predict the

system convergence with the simulated annealing algorithm.

However, neural networks in particular continuous Hopfield

networks have proven their ability in the field of machine

learning to make a decision. In this paper, we introduce

continuous Hopfield networks to improve the convergence of

the simulated annealing algorithm.

Continuous Hopfield Networks (CHN) is a recurrent

neural network. CHN are the most successful approach in

many areas such as image processing and automatic

recognition [5]. The success of CHN is due to their ability to

adapt with many optimization issues. The main idea of our

approach is to adopt the behavior of continuous Hopfield

networks with simulated annealing to guarantee better

convergence.

This paper presents a new approach to improve the

convergence of the annealing algorithm with the use of CHN.

To evaluate the hybrid approach, we model the maximum

stable problem as a quadratic problem and then as a Hopfield

quadratic energy. Then we proceed to a process of combining

the two algorithms on different instances. The rest of this

paper is organized like this. First, Section 2 describes the

simulated annealing algorithm and continuous Hopfield

networks. In section 3, the hybrid approach is proposed for

the maximum stable set problem. Section 4 presents and

discusses the experimental results. Finally, we conclude the

article in section 5.

An Adaptive Hybrid Approach: Combining

Neural Networks and Simulated Annealing to

Calculate the Equilibrium Point in Max-stable

Problem

Mohammed El Alaoui, and Mohamed Ettaouil

S

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_06

Volume 48, Issue 4: December 2021

__

II. SIMULATED ANNEALING AND CONTINUOUS HOPFIELD

NETWORKS

This section presents the simulated annealing approach and

continuous Hopfield networks for the Max-stable problem.

We also present some cooling models for the simulated

annealing algorithm. Then, CHN is represented as a powerful

approach because it has a dual use, either as an associative

memory or as a tool to solve optimization problems. We also

discuss the necessary condition to find a point of equilibrium

for this network. First, we give a description of the simulated

annealing approach.

A. Simulated annealing

The annealing method is used to find the global minimum

of the function ()f x from a certain discrete or continuous

space S . The elements of the set S are states of an imaginary

physical system and the value of the function f is used as the

energy of the system ()E f x . At each instant, the

temperature of the system T is assumed to be regulated,

generally decreasing with time. The system passes from one

stage to another according to a generator family, generated by

x and T . This passage mainly uses the Metropolis rule to

decide whether a new candidate is accepted as a solution.

Indeed, the system in state i is characterized by energy
iE .

And a disturbance of the system generating a new energy

1iE 
 which is accepted if

1 0i iE E   . However, the success

of simulated annealing relies on accepting new states, even

when its energy
1iE 
 does not meet the condition

1 0i iE E   . In this case, the acceptance of the state 1i  is

done only under the probability 1exp i iE E
P

T





 
  

 
.where

T  is a control parameter, usually called temperature. In

summary, in the simulated annealing algorithm, the

acceptance of new solutions is governed by the rule:

1

1

1 0

exp

i i

i i

if E E

P
othe s

E E
r

T
wi e







 


   
 
 

 (1)

Figure 1 explains the behaviour of the simulated annealing

algorithm to determine the optimal solution. In addition, the

cooling models are responsible for the convergence of the

algorithm so that a neighbouring solution can be accepted.

Fig. 1. Energy of the system in state i and i+1

The energy iE and 1iE  specifically designates the value

that the objective function takes in iteration i and 1i  . As

shown in Figure 1, significantly worse solutions are accepted

than the good quality solution when the temperature is high.

On the other hand, when the temperature is low, the solutions

that improve the quality are the only ones accepted. Finally,

when the temperature tends to zero, new solutions are only

accepted if they improve on the highest quality solution found

by the algorithm.

Algorithm 1 shows the general structure of the simulated

annealing algorithm. In addition, the steps followed by the

algorithm to achieve its thermal stability for each temperature

value T before decreasing it according to a cooling model.

Algorithm 1 Simulated annealing algorithm

Input:

fT  Final temperature.

 s  Initial solution generated randomly.

 T  Initial temperature.

Start:

 The stopping criterion is false

 s Generate a neighboring solution of the current

 solution s .

    E E s E s  

 If 0E  then

 s s

 End if

 If random  0,1 exp
E

T

 
  

 
then

 s s

 End if

  T f T

End

Output
*s , where

*s is the best solution obtained.

The success of the simulated annealing algorithm depends in

part on how quickly the system is cooled. Very rapid cooling

may not allow the particles time to properly reorganize. This

can generate inconsistencies in the materials. For example, a

very sharp decrease in the temperature applied to a glass

could generate the presence of bubbles, which would make

the material more fragile and more likely to fracture.

However, using such slow cooling models promotes the

quality and hardness of the material. In short, materials of

high quality and hardness are sought after in the shortest

possible time. This combinatorial optimization process would

imply that very large temperature drops prevent the algorithm

from adequately exploring the space for possible solutions.

Thus, the simulated annealing algorithm will return poor

quality solutions, which could have been improved if the

temperature had been lowered in a well-controlled manner.

However, very slow cooling will result in longer run times for

the algorithm. In fact, the slower the cooling time of the

system, the better the chance of finding the best solutions.

One of the most important aspects of simulated annealing

is cooling models. In addition, a lot of research is being

carried out around this question. As already indicated, the

performance of the SA algorithm strongly depends on the

selected cooling model. A good model could help find good

solutions for various combinatorial optimization problems.

Many theoretical cooling models have been tested. Therefore,

Solution

Global minimum

Initial solution

Solution

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_06

Volume 48, Issue 4: December 2021

__

in many cases heuristic and empirical reasoning is used to

propose models to balance execution times with the quality

of the solutions obtained.

The geometric model,
1,0 1k kT T    , is most used to

perform cooling when applying the SA algorithm in various

optimization problems. Simplicity and its efficiency may be

the reasons for this preference [6].

A slower decrease in the geometric model ensures that the

system is more likely to reach equilibrium in each of the

temperature states.

The logarithmic model,
 

1
log 1

k

c
T

k
 


, is less frequent

than the geometric model. However, it has a theoretical

importance because it allows establishing rigorous proofs of

the convergence of the SA algorithm [7]. Subsequently, the

Lundy-Mees model is based on the idea that the temperature

can be decreased from the previous temperature, according to

the following model: 1
1

k

k

k

T
T

T
 


with the parameter

0

0. .

f

f

T T

M T T



 [8].

0T is the initial temperature,
fT is the final temperature and

M is the total number of iterations.

The main mission of each model is to cool the system from

the initial temperature
0T to a final temperature

fT .

B. Continuous Hopfield Network

Continuous Hopfield Networks is a fully connected neural

network with a symmetrical matrix of connections. In the

process of convergence, the dynamics of these networks

converge towards one of the equilibrium positions. These

equilibrium positions are determined in advance during the

learning process. These are local minima of the functional

energy of the network. Such a network can be used both as an

associative memory and to solve certain optimization

problems [9]. Unlike many neural networks, which operate

until a response is received after a certain number of

iterations, Hopfield networks operate until equilibrium is

reached when the next state of the network is the same as the

previous one.

Continuous Hopfield Networks are made up of n

interconnected neurons with an activation function called

hyperbolic tangent. The dynamics of CHN is described by the

following differential equation:

bdu u

Tv i
dt 

    (2)

The neuron input vector  iv v and the neuron output

 iu u with 1 i n  and  0,1iu 

The matrix of weights is given by  ,i jT T with1 i n  ,

1 j n  and
bi is the neuron bias.

The output of each neuron is calculated by the following

formula:

0

0

1
1 tanh , 0

2

i

i

u
v u

u

  
      

  
 (3)

Where
0u is a parameter used to control the gain of the

enable function.

Hopfield proved that the symmetry of the zero-diagonal

matrix T is a sufficient condition for the existence of the

Lyapunov function [10], therefore, the existence of the

equilibrium point is guaranteed. Continuous Hopfield

Networks will solve combinatorial problems that have an

energy function. The next step is to discretize the continuous

Hopfield lattice with the Euler method. In the second step, we

present a modelling of the maximum stable set problem as a

0-1 quadratic programming. From this model, we use the

dynamics of continuous Hopfield networks for the

improvement of the convergence of the simulated annealing

method.

III. PROPOSED HYBRID APPROACH

The hybrid approach combines CHN and simulated

annealing. The hybrid approach process has two phases. The

first phase corresponds to a quadratic modelization of CHN

for the max-stable problem like an energy function. The

second phase corresponds to incorporating the CHN in the

simulated annealing method. First, we begin the presentation

of the MSP problem and the formulation of the energy

function associated with this problem. Then, we select a

practical setting of this function. Next, a search algorithm

based on the simulated annealing incorporated with the CHN

is shown.

A. Quadratic program for max-stable

The max-stable problem can be represented as an

undirected graph  ,G V E with  1 2, , , nV v v v . A stable

set of a graph  ,G V E is a subset S of V such that the

sub graph generated by S does not contain any arc.

The problem of the maximal stable set (MSSP) consists in

finding a stable set in the graph G of maximal cardinality α

(G). Besides its theoretical interest, the MSSP problem arises

in information retrieval, experimental design and computer

vision applications [11].

The stable set problem is strong NP-hard, and even

difficult to approximate [12]. The MSSP problem can be

solved by using polynomial time algorithms for special

classes such as perfect graphs, graphs with long odd cycles

and graphs of stars [13]. But, the existence of a polynomial

time algorithm for arbitrary graphs seems unlikely.

Different approaches have been discussed in the literature

to exactly solve the maximum stable set problem. Carrahan

and Pardalos propose an implicit enumeration technique [14].

Gruber and Rendl have reported computational results for

different stable set linear programming relaxations [15]. An

effective evolution of the taboo research approach is

presented in the original work of Friden, Hertz and de Werra

[16].

To solve the MSSP problem via the proposed approach, it

must be expressed as a linear assignment problem with a

quadratic constraint. Let S V be a stable set of nodes. For

each node
iv of the graph G , we introduce the binary variables

ix such that:

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_06

Volume 48, Issue 4: December 2021

__

 1

0

i

i

if v S
x

otherwise


 


 (4)

Two adjacent nodes
iv and

jv cannot be in the set S :

  , 0i j i jv v E x x   (5)

The constraints can be expressed in the following form:

1 1

() 0

1 (,)

0

n n

ij i j

i j

i j

ij

h x b x x

if v v E
with b

otherwise

 

 


 



 (6)

The objective function of the mathematical programming

model is:
1

()
n

i

i

f x x


  . Consequently, the MSSP problem

can be expressed in the following algebraic form:

 
 

 

1

1 1

()

0,1

n

i

i

n n

ij i j

i j

n

Min f x x

sibject to
QP

h x b x x

x



 


 




 
 








 (7)

The formulation of the energy function for a maximum

stable problem is done as follows:

 

1 1 1 1

1
() 1

2

n n n n

i ij i j i i

i i j i

E v v b v v v v  
   

       (8)

The weights of the matrix are given by the following

formulation:

 2ij ij ijT b     (9)

The Kronecker symbol is given as follows:

 1

0
ij

if i j

if i j



 


 (10)

The parameters ,  and  must be chosen so that the

equilibrium point of the Hopfield network associated with the

MSP is achieved. The setting procedure is obtained from the

partial derivative of the energy function:

 

1

1 2
n

ij j i

ii

E
b v v

v
  




    


 (11)

The parameterization is determined by the hyper plane

method [9]. Before processing, certain conditions are

necessary to simplify the determination of these parameters:

0 , 0   . To minimize the objective function, we impose

the following constraint: 0  .

B. Hybrid approach

Using just one method to solve a complex problem does

not always lead to success. In a hybrid architecture that

combines several paradigms, the effectiveness of one

approach can compensate for the weakness of another.

By combining two approaches, we can get around the

drawbacks inherent in each of them. One of the promising

directions for the creation of hybrid systems is the joint use

of technologies such as continuous Hopfield networks and

simulated annealing. We propose the following algorithm for

the hybrid approach.

Algorithm 2 Proposed algorithm

Input:

 The graph (,)G V E

 The weight matrix and bias vector

 Use of Euler's method for discretization.


iu initial solution generated randomly.

 ()f T is the cooling model that describes the process of

transforming a system from an initial state to an end state.

Output:

 Maximum stable problem set

Start:

 The stopping criterion is false

  1()i iE E u E u  

 If 0E  then

1 ()i i iu u hf u  

 () tanh()i if u T u I  

 End if

 If random  
 

0,1 exp
E

f T

 
   

 
 then

1 ()i i iu u hf u  

 End if

End.

The physical analogy used to justify simulated annealing

suggests that the cooling rate is low enough to distribute the

probabilities of the current state of being close to

thermodynamic equilibrium at all times. Unfortunately,

relaxation time, the time for equilibrium to be re-established

after temperature changes, is highly dependent on energy

function and current temperature. In the proposed algorithm,

the relaxation time also depends on the cooling model.

Together these parameters are generally provided as black

box functions for the proposed algorithm. Therefore, the ideal

cooling rate cannot be determined in advance and must be

adjusted empirically for each task. The proposed algorithm to

solve the problem connects on the one hand to the cooling

system according to the research progress graph. On the other

hand, the proposed algorithm combines the operation of

continuous Hopfield networks so that the output of each

neuron is calculated based on the other neurons. This gives

consistency between all the states of the system.

IV. SIMULATION RESULTS

In the first experiment, we evaluate the efficiency of three

cooling models. Each model is associated with its own

parameter. All of these parameters , c and  are determined

by experience. The best value of each parameter will be

recorded to study the convergence of the simulated annealing

method.

Table 1 summarizes the cooling models implemented in the

simulated annealing algorithm in the context of the maximum

stable problem. Likewise, it shows the parameters used in

each model.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_06

Volume 48, Issue 4: December 2021

__

TABLE I

COOLING MODELS AND PARAMETER VALUES USED

Model Form parameter

Geometric 1k kT T  0.99 

Logarithmic 1
log(1)

k

c
T

k
 



3.5c 

Lundy-Mees 1
1

k

k

k

T
T

T
 



0

0. .

f

f

T T

M T T





The values of these parameters are used to study the

operation of the simulated annealing method for the

maximum stable problem.

Fig. 2. The behaviour of three cooling models

Figure 2 shows the results of the Geometric, Logarithmic

and Lundy-Mees model with the use of the parameters

mentioned in Table 1. The Logarithmic model requires a

large and impractical number of iterations for the temperature

to become cold, i.e. from the initial temperature
0T to the

final temperature
fT . Despite the importance of the

Geometric model to converge towards an optimal solution,

but this requires a higher number of iterations. Faced with the

drawbacks of other models, the Lundy-Mees model is

represented as the best cooling model in terms of

convergence.

In order to show the practical interest of the hybrid

approach proposed in this article. We worked on a series of

experiments to solve the problem of max stable sets. Most of

the graphs are taken from the 2nd DIMACS Challenge [17].

These graphs have been provided as test problems to

resolve the maximum click problem. We took the

complement of these graphs and applied our maximum stable

ensemble approach. The results are provided in table II. The

result was recorded using a desktop computer (Intel Core i7,

2.9 GHz and 8 GB of RAM) running the Java programming

language.

The initial states are generated randomly:

51

0.999 10i

n i
x t

n

 
  (12)

Where 1, ,i n and t is a random uniform variable in the

interval  0,1 . Recall that, n is the number of the nodes.

𝛼1(𝐺) : The size of the stable set obtained by hybrid approach

combined with the Geometric model.

𝛼2(𝐺) : The size of the stable set obtained by hybrid approach

combined with the Logarithmic model.

𝛼3(𝐺) : The size of the stable set obtained by hybrid

approach combined with the Lundy &Mees model.

To achieve these results, the machine required 500 steps with

the hybrid approach (HA). This table shows that the result is

better when the hybrid approach is combined with the Lundy

&Mees model. In fact, the system (hybrid approach + Lundy

&Mees) produces a large number of stable sets comparing

with other geometric and logarithmic models. Furthermore,

by comparing the convergence of the algorithm of the hybrid

approach combined with the Lundy &Mees model, we can

note that the system cools in the first iterations and converges

quickly when comparing itself with the other models.

This reflects the effectiveness of the hybrid approach

combined with Lundy &Mees.

Now we turn to the solution of the proposed approach with

the use of different cooling models. For a good visualization,

it is important to take into account some essential aspects,

such as the number of nodes, the number of edges and the

maximum number of the stable set. The diagrams, shown in

figure 3 and 4, capture a comparison between the different

instance types.

Geometric Logarithmic

Lundy-Mees

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450 500

te
m
p
e
ra
tu
re

Iter

Geometric

Logarithmic

Lundy-Mees

TABLE II

INSTANCES FOR THE MAXIMUM STABLE PROBLEM.

Instance 𝑉 |𝐸| 𝛼(𝐺) 𝛼1(𝐺) 𝛼2(𝐺) 𝛼3(𝐺)

brock200_2 200 9 876 12 10 5 10

brock200_4 200 13 089 17 17 9 17

brock400_2 400 59 786 29 20 11 25

brock400_4 400 59 765 33 33 17 33

brock800_4 800 207 643 26 26 13 26

gen200_p0.9_44 200 17 910 44 38 10 44

gen200_p0.9_55 200 17 910 55 55 22 22

gen400_p0.9_55 400 71 820 55 55 10 55

gen400_p0.9_75 400 71 820 75 75 36 75

hamming10-4 1 024 434 176 40 20 22 30

hamming8-4 256 20 864 16 10 3 10

keller4 171 9 435 11 11 6 11

keller5 776 225 990 27 23 19 27

p_hat300-1 300 10 933 8 8 2 8

p_hat300-3 300 33 390 36 36 22 36

p_hat700-1 700 60 999 11 11 4 11

p_hat700-2 700 121 728 44 20 13 26

p_hat1500-1 1 500 284 923 12 12 12 12

DSJC1000_5 1 000 499 652 15 15 2 15

DSJC500_5 500 125 248 13 13 8 13

MANN_a27 378 70 551 126 126 20 126

MANN_a45 1 035 533 115 345 311 238 345

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_06

Volume 48, Issue 4: December 2021

__

Fig. 3. Instances of 200 nodes

Fig. 4. Instances of 400 nodes

This new approach outperforms the results achieved by

other methods in almost all instances with execution time

taken into consideration. Undoubtedly, the way the elements

of a graph are organized influences the execution time. For

instances of 200 and 400 nodes shown in figure 3 and 4

respectively, the calculation time is strictly related to the

structure of each graph. Another point that can be observed is

that the calculation time is closely related to the maximum

number of the stable set and the density of the instance.

V. CONCLUSION

In this paper, a hybrid simulated annealing approach

combined with continuous Hopfield networks is presented.

This approach introduced better performance than other

methods’ in large-scale test problems. This study has shown

experimentally that in large-scale problems, optimization by

the proposed approach gives good results, in addition to the

fact that the proposed approach takes into account the state of

the system during convergence. This is achieved with

simulated annealing hybridization and continuous Hopfield

gratings. This hybridization makes it possible to control the

convergence towards an optimal solution. In the next

perspective, this approach will be applied to the constraint

programming problem and the view selection problem for

query optimization in databases.

REFERENCES

 [1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller, “Equation of state calculations by fast computing

machines,” J. Chem. Phys., vol. 21, no. 6, pp. 1087–1092, 1953, doi:

10.1063/1.1699114.
 [2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

simulated annealing,” Science (80-.)., vol. 220, no. 4598, 1983.

 [3] P. A. Castillo, J. J. Merelo, J. González, V. Rivas, and G. Romero,
“SA-prop: Optimization of multilayer perceptron parameters using

simulated annealing,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 1606, pp.
661–670, 1999, doi: 10.1007/BFb0098224.

 [4] Y. Nourani and B. Andresen, “A comparison of simulated annealing
cooling strategies,” J. Phys. A. Math. Gen., vol. 31, no. 41, pp. 8373–

8385, 1998, doi: 10.1088/0305-4470/31/41/011.

 [5] P. Campadelli, D. Medici, and R. Schettini, “Color image
segmentation using Hopfield networks,” Image Vis. Comput., vol. 15,

no. 3, pp. 161–166, 1997, doi: https://doi.org/10.1016/S0262-

8856(96)01121-3.
 [6] D. Henderson, S. H. Jacobson, and A. W. Johnson, “The Theory and

Practice of Simulated Annealing BT - Handbook of Metaheuristics,”

F. Glover and G. A. Kochenberger, Eds. Boston, MA: Springer US,
2003, pp. 287–319.

 [7] Y. Nourani and B. Andresen, “A comparison of simulated annealing

cooling strategies,” J. Phys. A. Math. Gen., vol. 31, no. 41, pp. 8373–
8385, 1998, doi: 10.1088/0305-4470/31/41/011.

 [8] K. A. Dowsland, “Some experiments with simulated annealing

techniques for packing problems,” Eur. J. Oper. Res., vol. 68, no. 3,
pp. 389–399, 1993, doi: https://doi.org/10.1016/0377-

2217(93)90195-S.

 [9] J. J. Hopfield and D. W. Tank, “‘Neural’ computation of decisions in
optimization problems.,” Biol. Cybern., vol. 52, no. 3, pp. 141–152,

1985, doi: 10.1007/BF00339943.

[10] F. H. Clarke, Y. S. Ledyaev, and R. J. Stern, “Asymptotic Stability
and Smooth Lyapunov Functions,” J. Differ. Equ., vol. 149, no. 1, pp.

69–114, 1998, doi: https://doi.org/10.1006/jdeq.1998.3476.

[11] L. Babel, “Finding maximum cliques in arbitrary and in special
graphs,” Computing, vol. 46, no. 4, pp. 321–341, 1991, doi:

10.1007/BF02257777.

[12] J. Håstad, “Clique is hard to approximate within n1-ε,” Acta Math.,
vol. 182, no. 1, pp. 105–142, 1999, doi: 10.1007/BF02392825.

[13] Liancui Zuoy, Bitao Zhang, and Shaoqiang Zhang, “The k-Path

Vertex Cover in Product Graphs of Stars and Complete Graphs,”
IAENG International Journal of Applied Mathematics, vol. 46, no. 1,

pp. 97-103, 2016.

[14] R. Carraghan and P. M. Pardalos, “An exact algorithm for the
maximum clique problem,” Oper. Res. Lett., vol. 9, no. 6, pp. 375–

382, 1990, doi: https://doi.org/10.1016/0167-6377(90)90057-C.

[15] G. Gruber and F. Rendl, “Computational Experience with Stable Set
Relaxations,” SIAM J. Optim., vol. 13, no. 4, pp. 1014–1028, Jan.

2003, doi: 10.1137/S1052623401394092.

[16] C. Friden, A. Hertz, and D. de Werra, “STABULUS: A technique for
finding stable sets in large graphs with tabu search,” Computing, vol.

42, no. 1, pp. 35–44, 1989, doi: 10.1007/BF02243141.

[17] “Center for Discrete Mathematics and Theoretical Computer
Science,” 1992.

http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/cl

ique/.

HA+geometric

HA+logarithmic

HA+Lundy

0

20000

40000

60000

80000

100000

number of edges

HA+geometric HA+logarithmic
HA+LundyTime(ms)

HA+geometric

HA+logarithmic

HA+Lundy

0

10000

20000

30000

40000

50000

60000

number of edges

HA+geometric HA+logarithmic

HA+LundyTime(ms)

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_06

Volume 48, Issue 4: December 2021

__

