
 

Abstract—The simulated annealing algorithm is a stochastic 

optimization method for solving optimization problems 

associated with a large search space. The efficiency of the 

algorithm depends on the adaptation of the cooling model. 

Despite this, the main disadvantage of this algorithm is that it 

does not take into account the state of the system while 

searching. Thus, it is difficult to predict the system convergence 

with the simulated annealing algorithm. However, neural 

networks in particular continuous Hopfield networks have 

proven their ability in the field of machine learning to make a 

decision. In this paper, we introduce continuous Hopfield 

networks to improve the convergence of the simulated annealing 

algorithm. The experimental results show that the hybrid 

approach produces a large number of stable sets. 

 
Index Terms— Neural networks, continuous Hopfield 

networks, simulated annealing algorithm 

I.  INTRODUCTION 

imulated annealing (SA) is a heuristic method inspired by 

thermodynamics, or more exactly, by static physics. It is 

based on an analogy to the physical annealing of solids, which 

involves heating a material at a high temperature and cooling 

it very slowly in order to let the system reach its minimum 

energy. If the cooling process is slow, a crystal structure is 

formed from a network of well-ordered nodes. 

The history of the simulated annealing method goes back 

to the year 1953. At that time, N. Metropolis developed an 

algorithm to simulate the establishment of equilibrium in a 

system with several degrees of freedom and at a given 

temperature [1]. In 1983, Kirkpatrick mimicked the physical 

annealing behavior of solids to solve some optimization 

problems [2]. 

Currently, the annealing method is used to solve many 

optimization problems, like in economics, image processing 

and in many other combinatorial problems. Often, the 

simulated annealing method is used to train neural networks, 

specifically the multilayer optimization problem of 

perceptron [3]. 
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The advantage of the simulated annealing method lies in 

the possibility of avoiding the local minima of the function to 

be optimized and of continuing the search for the global 

minimum. This is achieved through the adoption of an 

important set of parameters that governs the convergence of 

SA. This set includes the cooling model, the initial and the 

final temperature. The cooling pattern may seem to be the 

most important in this set. It drives the algorithm from an 

initial state to another state. If the temperature drops quickly, 

the algorithm gets stuck in a local minimum. However, with 

a well-controlled temperature, the algorithm can avoid the 

local minimum. The cooling model is widely studied by many 

researchers [4]. Whereas, the main disadvantage of this 

algorithm is that it does not take into account the state of the 

system while searching. Thus, it is difficult to predict the 

system convergence with the simulated annealing algorithm. 

However, neural networks in particular continuous Hopfield 

networks have proven their ability in the field of machine 

learning to make a decision. In this paper, we introduce 

continuous Hopfield networks to improve the convergence of 

the simulated annealing algorithm. 

Continuous Hopfield Networks (CHN) is a recurrent 

neural network. CHN are the most successful approach in 

many areas such as image processing and automatic 

recognition [5]. The success of CHN is due to their ability to 

adapt with many optimization issues. The main idea of our 

approach is to adopt the behavior of continuous Hopfield 

networks with simulated annealing to guarantee better 

convergence. 

This paper presents a new approach to improve the 

convergence of the annealing algorithm with the use of CHN. 

To evaluate the hybrid approach, we model the maximum 

stable problem as a quadratic problem and then as a Hopfield 

quadratic energy. Then we proceed to a process of combining 

the two algorithms on different instances. The rest of this 

paper is organized like this. First, Section 2 describes the 

simulated annealing algorithm and continuous Hopfield 

networks. In section 3, the hybrid approach is proposed for 

the maximum stable set problem. Section 4 presents and 

discusses the experimental results. Finally, we conclude the 

article in section 5.  

 

 

 

 

An Adaptive Hybrid Approach: Combining 

Neural Networks and Simulated Annealing to 

Calculate the Equilibrium Point in Max-stable 

Problem 

Mohammed El Alaoui, and Mohamed Ettaouil 

S 

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_06

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



 

II.  SIMULATED ANNEALING AND CONTINUOUS HOPFIELD 

NETWORKS 

This section presents the simulated annealing approach and 

continuous Hopfield networks for the Max-stable problem. 

We also present some cooling models for the simulated 

annealing algorithm. Then, CHN is represented as a powerful 

approach because it has a dual use, either as an associative 

memory or as a tool to solve optimization problems. We also 

discuss the necessary condition to find a point of equilibrium 

for this network. First, we give a description of the simulated 

annealing approach. 

A.  Simulated annealing 

The annealing method is used to find the global minimum 

of the function ( )f x from a certain discrete or continuous 

space S . The elements of the set S are states of an imaginary 

physical system and the value of the function f is used as the 

energy of the system ( )E f x . At each instant, the 

temperature of the system T is assumed to be regulated, 

generally decreasing with time. The system passes from one 

stage to another according to a generator family, generated by

x and T . This passage mainly uses the Metropolis rule to 

decide whether a new candidate is accepted as a solution. 

Indeed, the system in state i is characterized by energy
iE . 

And a disturbance of the system generating a new energy 

1iE 
 which is accepted if 

1 0i iE E   . However, the success 

of simulated annealing relies on accepting new states, even 

when its energy 
1iE 
 does not meet the condition

1 0i iE E   . In this case, the acceptance of the state 1i  is 

done only under the probability 1exp i iE E
P

T





 
  

 
.where

T  is a control parameter, usually called temperature. In 

summary, in the simulated annealing algorithm, the 

acceptance of new solutions is governed by the rule: 
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 (1) 

Figure 1 explains the behaviour of the simulated annealing 

algorithm to determine the optimal solution. In addition, the 

cooling models are responsible for the convergence of the 

algorithm so that a neighbouring solution can be accepted. 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. Energy of the system in state i and i+1 

The energy iE  and 1iE   specifically designates the value 

that the objective function takes in iteration i  and 1i  . As 

shown in Figure 1, significantly worse solutions are accepted 

than the good quality solution when the temperature is high. 

On the other hand, when the temperature is low, the solutions 

that improve the quality are the only ones accepted. Finally, 

when the temperature tends to zero, new solutions are only 

accepted if they improve on the highest quality solution found 

by the algorithm. 

Algorithm 1 shows the general structure of the simulated 

annealing algorithm. In addition, the steps followed by the 

algorithm to achieve its thermal stability for each temperature 

value T  before decreasing it according to a cooling model. 

Algorithm 1     Simulated annealing algorithm 

Input:  

         
fT  Final temperature. 

          s  Initial solution generated randomly. 

         T  Initial temperature. 

Start: 

         The stopping criterion is false 

         s Generate a neighboring solution of the current   

                 solution s . 

            E E s E s    

                    If 0E  then 

                         s s   

                    End if 

                    If random  0,1 exp
E

T

 
  

 
then 

                         s s   

                    End if 

                    T f T  

End 

Output
*s , where 

*s is the best solution obtained. 

 

The success of the simulated annealing algorithm depends in 

part on how quickly the system is cooled. Very rapid cooling 

may not allow the particles time to properly reorganize. This 

can generate inconsistencies in the materials. For example, a 

very sharp decrease in the temperature applied to a glass 

could generate the presence of bubbles, which would make 

the material more fragile and more likely to fracture. 

However, using such slow cooling models promotes the 

quality and hardness of the material. In short, materials of 

high quality and hardness are sought after in the shortest 

possible time. This combinatorial optimization process would 

imply that very large temperature drops prevent the algorithm 

from adequately exploring the space for possible solutions. 

Thus, the simulated annealing algorithm will return poor 

quality solutions, which could have been improved if the 

temperature had been lowered in a well-controlled manner. 

However, very slow cooling will result in longer run times for 

the algorithm. In fact, the slower the cooling time of the 

system, the better the chance of finding the best solutions. 

One of the most important aspects of simulated annealing 

is cooling models. In addition, a lot of research is being 

carried out around this question. As already indicated, the 

performance of the SA algorithm strongly depends on the 

selected cooling model. A good model could help find good 

solutions for various combinatorial optimization problems. 

Many theoretical cooling models have been tested. Therefore, 
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in many cases heuristic and empirical reasoning is used to 

propose models to balance execution times with the quality 

of the solutions obtained. 

The geometric model,
1,0 1k kT T    , is most used to 

perform cooling when applying the SA algorithm in various 

optimization problems. Simplicity and its efficiency may be 

the reasons for this preference [6]. 

A slower decrease in the geometric model ensures that the 

system is more likely to reach equilibrium in each of the 

temperature states. 

The logarithmic model,
 

1
log 1

k

c
T

k
 


, is less frequent 

than the geometric model. However, it has a theoretical 

importance because it allows establishing rigorous proofs of 

the convergence of the SA algorithm [7].  Subsequently, the 

Lundy-Mees model is based on the idea that the temperature 

can be decreased from the previous temperature, according to 

the following model: 1
1

k

k

k

T
T

T
 


with the parameter 

0

0. .

f

f

T T

M T T



 [8]. 

0T is the initial temperature, 
fT is the final temperature and 

M is the total number of iterations. 

The main mission of each model is to cool the system from 

the initial temperature 
0T to a final temperature

fT .  

B.  Continuous Hopfield Network 

Continuous Hopfield Networks is a fully connected neural 

network with a symmetrical matrix of connections. In the 

process of convergence, the dynamics of these networks 

converge towards one of the equilibrium positions. These 

equilibrium positions are determined in advance during the 

learning process. These are local minima of the functional 

energy of the network. Such a network can be used both as an 

associative memory and to solve certain optimization 

problems [9]. Unlike many neural networks, which operate 

until a response is received after a certain number of 

iterations, Hopfield networks operate until equilibrium is 

reached when the next state of the network is the same as the 

previous one. 

Continuous Hopfield Networks are made up of n  

interconnected neurons with an activation function called 

hyperbolic tangent. The dynamics of CHN is described by the 

following differential equation: 

 
bdu u

Tv i
dt 

     (2) 

The neuron input vector  iv v and the neuron output 

 iu u  with 1 i n  and  0,1iu   

The matrix of weights is given by  ,i jT T with1 i n  , 

1 j n  and 
bi  is the neuron bias. 

The output of each neuron is calculated by the following 

formula: 

 

0

0

1
1 tanh , 0

2

i

i

u
v u

u

  
      

  
 (3) 

Where 
0u is a parameter used to control the gain of the 

enable function. 

Hopfield proved that the symmetry of the zero-diagonal 

matrix T is a sufficient condition for the existence of the 

Lyapunov function [10], therefore, the existence of the 

equilibrium point is guaranteed. Continuous Hopfield 

Networks will solve combinatorial problems that have an 

energy function. The next step is to discretize the continuous 

Hopfield lattice with the Euler method. In the second step, we 

present a modelling of the maximum stable set problem as a 

0-1 quadratic programming. From this model, we use the 

dynamics of continuous Hopfield networks for the 

improvement of the convergence of the simulated annealing 

method. 

III.  PROPOSED HYBRID APPROACH 

The hybrid approach combines CHN and simulated 

annealing. The hybrid approach process has two phases. The 

first phase corresponds to a quadratic modelization of CHN 

for the max-stable problem like an energy function. The 

second phase corresponds to incorporating the CHN in the 

simulated annealing method. First, we begin the presentation 

of the MSP problem and the formulation of the energy 

function associated with this problem. Then, we select a 

practical setting of this function. Next, a search algorithm 

based on the simulated annealing incorporated with the CHN 

is shown. 

A.  Quadratic program for max-stable  

The max-stable problem can be represented as an 

undirected graph  ,G V E with  1 2, , , nV v v v . A stable 

set of a graph  ,G V E is a subset S  of V  such that the 

sub graph generated by S does not contain any arc. 

The problem of the maximal stable set (MSSP) consists in 

finding a stable set in the graph G of maximal cardinality α 

(G). Besides its theoretical interest, the MSSP problem arises 

in information retrieval, experimental design and computer 

vision applications [11]. 

The stable set problem is strong NP-hard, and even 

difficult to approximate [12]. The MSSP problem can be 

solved by using polynomial time algorithms for special 

classes such as perfect graphs, graphs with long odd cycles 

and graphs of stars [13]. But, the existence of a polynomial 

time algorithm for arbitrary graphs seems unlikely. 

Different approaches have been discussed in the literature 

to exactly solve the maximum stable set problem. Carrahan 

and Pardalos propose an implicit enumeration technique [14]. 

Gruber and Rendl have reported computational results for 

different stable set linear programming relaxations [15]. An 

effective evolution of the taboo research approach is 

presented in the original work of Friden, Hertz and de Werra 

[16]. 

To solve the MSSP problem via the proposed approach, it 

must be expressed as a linear assignment problem with a 

quadratic constraint. Let S V  be a stable set of nodes. For 

each node
iv of the graph G , we introduce the binary variables 

ix such that: 
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 1

0

i

i

if v S
x

otherwise


 


 (4) 

Two adjacent nodes 
iv  and 

jv  cannot be in the set S : 

  , 0i j i jv v E x x    (5) 

The constraints can be expressed in the following form: 

 

1 1

( ) 0

1 ( , )

0

n n

ij i j

i j

i j

ij

h x b x x

if v v E
with b

otherwise

 

 


 



 (6) 

The objective function of the mathematical programming 

model is:
1

( )
n

i

i

f x x


  . Consequently, the MSSP problem 

can be expressed in the following algebraic form: 

 

 
 

 

1

1 1

( )

0,1

n

i

i

n n

ij i j

i j

n

Min f x x

sibject to
QP

h x b x x

x



 


 




 
 








 (7) 

The formulation of the energy function for a maximum 

stable problem is done as follows: 

 
 

1 1 1 1

1
( ) 1

2

n n n n

i ij i j i i

i i j i

E v v b v v v v  
   

        (8) 

The weights of the matrix are given by the following 

formulation: 

 2ij ij ijT b      (9) 

The Kronecker symbol is given as follows: 

 1

0
ij

if i j

if i j



 


  (10) 

The parameters ,   and  must be chosen so that the 

equilibrium point of the Hopfield network associated with the 

MSP is achieved. The setting procedure is obtained from the 

partial derivative of the energy function: 

 
 

1

1 2
n

ij j i

ii

E
b v v

v
  




    


   (11) 

The parameterization is determined by the hyper plane 

method [9]. Before processing, certain conditions are 

necessary to simplify the determination of these parameters: 

0 , 0   . To minimize the objective function, we impose 

the following constraint: 0  . 

B.  Hybrid approach  

Using just one method to solve a complex problem does 

not always lead to success. In a hybrid architecture that 

combines several paradigms, the effectiveness of one 

approach can compensate for the weakness of another. 

By combining two approaches, we can get around the 

drawbacks inherent in each of them. One of the promising 

directions for the creation of hybrid systems is the joint use 

of technologies such as continuous Hopfield networks and 

simulated annealing. We propose the following algorithm for 

the hybrid approach. 

 

Algorithm 2     Proposed algorithm 

Input:  

 The graph ( , )G V E  

 The weight matrix and bias vector 

 Use of Euler's method for discretization. 

 
iu initial solution generated randomly. 

 ( )f T is the cooling model that describes the process of 

transforming a system from an initial state to an end state. 

Output: 

 Maximum stable problem set 

Start: 

          The stopping criterion is false 

           1( )i iE E u E u    

          If 0E   then 

                   
1 ( )i i iu u hf u    

                   ( ) tanh( )i if u T u I    

          End if 

          If random  
 

0,1 exp
E

f T

 
   

 
 then 

                   
1 ( )i i iu u hf u    

          End if 

End. 

 

The physical analogy used to justify simulated annealing 

suggests that the cooling rate is low enough to distribute the 

probabilities of the current state of being close to 

thermodynamic equilibrium at all times. Unfortunately, 

relaxation time, the time for equilibrium to be re-established 

after temperature changes, is highly dependent on energy 

function and current temperature. In the proposed algorithm, 

the relaxation time also depends on the cooling model. 

Together these parameters are generally provided as black 

box functions for the proposed algorithm. Therefore, the ideal 

cooling rate cannot be determined in advance and must be 

adjusted empirically for each task. The proposed algorithm to 

solve the problem connects on the one hand to the cooling 

system according to the research progress graph. On the other 

hand, the proposed algorithm combines the operation of 

continuous Hopfield networks so that the output of each 

neuron is calculated based on the other neurons. This gives 

consistency between all the states of the system. 

IV.  SIMULATION RESULTS 

In the first experiment, we evaluate the efficiency of three 

cooling models. Each model is associated with its own 

parameter. All of these parameters , c and  are determined 

by experience. The best value of each parameter will be 

recorded to study the convergence of the simulated annealing 

method. 

Table 1 summarizes the cooling models implemented in the 

simulated annealing algorithm in the context of the maximum 

stable problem. Likewise, it shows the parameters used in 

each model. 
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TABLE I 

COOLING MODELS AND PARAMETER VALUES USED 

Model Form parameter  

Geometric 1k kT T   0.99   

Logarithmic 1
log( 1)

k

c
T

k
 



 

3.5c   

Lundy-Mees 1
1

k

k

k

T
T

T
 


 

0

0. .

f

f

T T

M T T



  

 

The values of these parameters are used to study the 

operation of the simulated annealing method for the 

maximum stable problem. 

 

 
Fig. 2. The behaviour of three cooling models 

Figure 2 shows the results of the Geometric, Logarithmic 

and Lundy-Mees model with the use of the parameters 

mentioned in Table 1. The Logarithmic model requires a 

large and impractical number of iterations for the temperature 

to become cold, i.e. from the initial temperature 
0T  to the 

final temperature
fT . Despite the importance of the 

Geometric model to converge towards an optimal solution, 

but this requires a higher number of iterations. Faced with the 

drawbacks of other models, the Lundy-Mees model is 

represented as the best cooling model in terms of 

convergence. 

In order to show the practical interest of the hybrid 

approach proposed in this article. We worked on a series of 

experiments to solve the problem of max stable sets. Most of 

the graphs are taken from the 2nd DIMACS Challenge [17]. 

These graphs have been provided as test problems to 

resolve the maximum click problem. We took the 

complement of these graphs and applied our maximum stable 

ensemble approach. The results are provided in table II. The 

result was recorded using a desktop computer (Intel Core i7, 

2.9 GHz and 8 GB of RAM) running the Java programming 

language. 

The initial states are generated randomly: 

 
51

0.999 10i

n i
x t

n

 
    (12) 

Where 1, ,i n  and t is a random uniform variable in the 

interval  0,1 . Recall that, n is the number of the nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝛼1(𝐺) : The size of the stable set obtained by hybrid approach 

combined with the Geometric model. 

𝛼2(𝐺) : The size of the stable set obtained by hybrid approach 

combined with the Logarithmic model. 

𝛼3(𝐺) : The size of the stable set obtained by hybrid 

approach combined with the Lundy &Mees model. 

To achieve these results, the machine required 500 steps with 

the hybrid approach (HA). This table shows that the result is 

better when the hybrid approach is combined with the Lundy 

&Mees model. In fact, the system (hybrid approach + Lundy 

&Mees) produces a large number of stable sets comparing 

with other geometric and logarithmic models. Furthermore, 

by comparing the convergence of the algorithm of the hybrid 

approach combined with the Lundy &Mees model, we can 

note that the system cools in the first iterations and converges 

quickly when comparing itself with the other models. 

This reflects the effectiveness of the hybrid approach 

combined with Lundy &Mees. 

Now we turn to the solution of the proposed approach with 

the use of different cooling models. For a good visualization, 

it is important to take into account some essential aspects, 

such as the number of nodes, the number of edges and the 

maximum number of the stable set. The diagrams, shown in 

figure 3 and 4, capture a comparison between the different 

instance types. 
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TABLE II 

INSTANCES FOR THE MAXIMUM STABLE PROBLEM. 

Instance 𝑉 |𝐸| 𝛼(𝐺) 𝛼1(𝐺) 𝛼2(𝐺) 𝛼3(𝐺) 

brock200_2 200 9 876 12 10 5 10 

brock200_4 200 13 089 17 17 9 17 

brock400_2 400 59 786 29 20 11 25 

brock400_4 400 59 765 33 33 17 33 

brock800_4 800 207 643 26 26 13 26 

gen200_p0.9_44 200 17 910 44 38 10 44 

gen200_p0.9_55 200 17 910 55 55 22 22 

gen400_p0.9_55 400 71 820 55 55 10 55 

gen400_p0.9_75 400 71 820 75 75 36 75 

hamming10-4 1 024 434 176 40 20 22 30 

hamming8-4 256 20 864 16 10 3 10 

keller4 171 9 435 11 11 6 11 

keller5 776 225 990 27 23 19 27 

p_hat300-1 300 10 933 8 8 2 8 

p_hat300-3 300 33 390 36 36 22 36 

p_hat700-1 700 60 999 11 11 4 11 

p_hat700-2 700 121 728 44 20 13 26 

p_hat1500-1 1 500 284 923 12 12 12 12 

DSJC1000_5 1 000 499 652 15 15 2 15 

DSJC500_5 500 125 248 13 13 8 13 

MANN_a27 378 70 551 126 126 20 126 

MANN_a45 1 035 533 115 345 311 238 345 
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Fig. 3. Instances of 200 nodes 

 
Fig. 4. Instances of 400 nodes 

This new approach outperforms the results achieved by 

other methods in almost all instances with execution time 

taken into consideration. Undoubtedly, the way the elements 

of a graph are organized influences the execution time. For 

instances of 200 and 400 nodes shown in figure 3 and 4 

respectively, the calculation time is strictly related to the 

structure of each graph. Another point that can be observed is 

that the calculation time is closely related to the maximum 

number of the stable set and the density of the instance. 

V.  CONCLUSION 

In this paper, a hybrid simulated annealing approach 

combined with continuous Hopfield networks is presented. 

This approach introduced better performance than other 

methods’ in large-scale test problems. This study has shown 

experimentally that in large-scale problems, optimization by 

the proposed approach gives good results, in addition to the 

fact that the proposed approach takes into account the state of 

the system during convergence. This is achieved with 

simulated annealing hybridization and continuous Hopfield 

gratings. This hybridization makes it possible to control the 

convergence towards an optimal solution. In the next 

perspective, this approach will be applied to the constraint 

programming problem and the view selection problem for 

query optimization in databases. 
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