
Generating Similar Images Using Bag Context
Shape Grammars

Blessing Ogbuokiri Member, IAENG, and Mpho Raborife

Abstract—This paper presents four methods of generating an
infinite number of similar images in a controlled manner using
Bag Context Shape Grammars. Bag Context Shape Grammars
are a class of shape grammars that uses context to control
the application of a rule during derivation. These Bag Context
Shape Grammar methods of image generation can be useful in
generating similar images for application areas where similar
images are needed, such as distractors for visual password
scheme, decorative arts, CAPTCHA, and others.

Index Terms—Shape Grammar, Bag Context Grammar, Bag
Context Shape Grammar, Image Generation, Image Generation
Methods, Image Similarity.

I. INTRODUCTION

A shape grammar is a class of context free grammars in
formal languages that use spatial rules to generate images.
Shape grammars have been studied for over two decades [1],
[2], [3], [4], and have been applied mostly in architectural
building plans, decorative art, engineering and product de-
signs [5], [6].

Most shape grammar systems fail to generate only similar
images in a controlled manner [7], [8], [9], [10]. For a shape
grammar to generate similar images, it requires users to gen-
erate different images and manually select the similar images.
It is difficult to know if the next image to be generated will
be similar to a selected image [11], [12]. Existing researches
that use shape grammars for the generation of images cannot
regulate how similar images can be generated in a controlled
manner [7], [8], [1], [2], [3], [9], [4], [10].

However, research has shown that control or regulation can
be added to the context free grammar rules and thus to the
derivation process using bag context [13], [12]. Bag context
can be said to be a technique used to control when a context
free grammar rule can be applied during a derivation [12].
This type of technique, when added to shape grammar rules,
can also be used to produce or generate a gallery of images
in a regulated manner. This technique is called Bag Context
Shape Grammars (BCSGs) [14], [15].

BCSGs belong to the class of grammars that use context to
regulate the application of context free rules [14]. In BCSGs,
the application of a shape grammar (context free) rule is
controlled by a special vector of integers called the bag,
which changes during the derivation of an image [14]. A rule
in the grammar can only be applied if the bag at that point

Manuscript received September 14th, 2020; revised July 11, 2021.
This research was supported by the Department of Science and Technol-

ogy (DST) and the Council for Scientific and Industrial Research (CSIR)
Inter–bursary support programme, South Africa.

Blessing Ogbuokiri holds a Ph.D.in Computer Science at the School of
Computer Science and Applied Mathematics, University of the Witwater-
srand, Johannesburg, South Africa. E-mail: ogbuokiriblessing@gmail.com.

Mpho Raborife is a Senior Lecturer at the Department of Applied
Information Systems, University of Johannesburg, South Africa. E-mail:
mraborife@uj.ac.za.

is within the range defined by the lower and upper bounds
of the rule. When a rule is applied, it causes the bag’s values
to change by adding the bag adjustment, which is part of the
rule [14], [16], [15].

This paper, therefore, considers four methods of similar
image generation using BCSGs. Images are considered sim-
ilar when they are generated with the same grammar and
they share some resemblance in appearance, such as colour
or shape without being identical [15].

The four methods are as follows:
• Generation of images with variation: The variation here

is the generation of images with a slight difference
either in the structure or in the colour placement.

• Generation of images with sub–images.
• Generation of images with the same building levels but

a different colour variation, and
• Generation of images with different building levels but

a different colour variation.
The building level is the number of times shapes are added

to generate an image or a sub–image from the beginning
of the generation process. These methods of similar image
generation are achievable with BCSGs.

The remainder of this paper is organized in the following
relevant sections. Section II presents the BCSGs, followed
by Section III that presents the four methods of similar
image generation using BCSGs. Finally, Section IV is the
conclusion and future work.

II. BAG CONTEXT SHAPE GRAMMARS

The formal definition of BCSGs and example are adopted
from [14], [17], and [16]. First, we present some notation
and terms used in this section.

A. Notations and Terms

The symbol N represents the set of natural numbers {0,
1, 2, . . .}. N+ represents the set {1, 2, . . .}. For k∈ N+, the
set {1, 2, . . . , k} is denoted by [k]. Z represents the set of
integers {. . . , -2, -1, 0, 1, 2, . . .}, then Z2 = {(x, y) | x, y ∈
Z}. Z∞ represents Z ∪ {-∞, ∞}. If I = [k], then elements
of ZI

∞ are written as k−tuples. If we have a vector of the
form (k, k, . . . , k), then we denote it by k. For example, the
vector (3, 3, . . . , 3) will be denoted by 3.

A point, (x, y) in Z2 is a position determined by a pair
(x, y), where x, y ∈ Z. We denote a point by p. A line, l,
is a finite length [18], [19]. In this part, a line segment, l̄, is
determined by any pair of two distinct points (p1, p2) on a
line together with all the points of the line between p1 and
p2, where p1 and p2 are called the endpoints [20], [21]. A
shape, σ, is defined by the area enclosed by a finite set of line
segments. A label can be denoted by any of the lowercase
or uppercase letters, a–z and A–Z, respectively.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



A labelled shape is a pair (A, σ), where A is the label of
the shape taken from the uppercase or lowercase letters and
the symbol σ is as defined above. A grid is a coordinate plane
consisting of a space of small squares, with a horizontal (x)
axis and vertical (y) axis. Every labelled shape is presented in
a unit square on the grid. The initial shape is usually labelled
S. The labelled shape (A, σ), is denoted by (A, (x, y)) in
the rest of this work. Where (x, y) ∈ Z2 denotes the lower
lefthand corner of the unit square the shape, σ, will be drawn.

A bag context shape grammar rule is commonly expressed
in the form in Rule 1,
(A, (x, y)) −→{(A1, (x1, y1)), (A2, (x2, y2)), . . . ,

(Ai, (xi, yi))} (Lb, Ub; δ)
(Rule 1)

where A is a variable (uppercase label) and (x, y) ∈ Z2 is as
defined above. The arrow “−→” is interpreted as “transformed
to”, A1, A2 . . . Ai represent variable(s) and terminal(s) (lowercase
labels), for i ∈ N+ and (x1, y1), (x2, y2), . . . , (xi, yi) ∈ Z2. Lb,
Ub represent the lower and upper bounds respectively, and δ is the
bag adjustment.

The interpretation is as follows: a rule as in Rule 1 can be applied
to a developing image if the developing image contains the variable
A. Then, we take the set difference of the developing image and
the variable A and take the set union of the developing image and
{(A1, (x1, y1)), (A2, (x2, y2)), . . . , (Ai, (xi, yi))} provided the
bag, β is within the range, Lb ≤ β ≤ Ub.

The number (n) of times a rule (r) is applied during the
generative process is denoted by r(n). For instance, 2(5) means
that rule 2 is applied five times. The operations of shape union and
difference treat shapes in the same basic way as the set-theoretic
operations of union and difference treat sets. For visualisation
purposes, every terminal is associated with a shape and the shape
is filled with a chosen colour. The image is rendered to any size
according to what is needed.

B. Formal Definition of Bag Context Shape Grammars
The definition of bag context shape grammars and example are

taken from [14], [17], and [16].

Definition 1 A BCSG, G = (VM, VT, R, (S, (x, y)), I , β0), has
a finite alphabet V of labels, consisting of disjoint subsets VM of
variables and VT of terminals. R is the set of rules, where every rule
is of the form (A, (x, y)) −→ {(A1, (x1, y1)), (A2, (x2, y2)), . . . ,
(Ai, (xi, yi))} (Lb, Ub ; δ), where A ∈ VM, {A1, A2, . . . , Ai}
⊆ V and (x, y), (x1, y1), . . . , (xi, yi) ∈ Z2 ∀ i ∈ N+, Lb, Ub ∈
ZI
∞, and δ is the bag adjustment, δ ∈ ZI . (S, (x, y)) is the initial

labelled shape, with S ∈ VM. I is the finite bag index set of the
form [k] and β0 is the initial bag, β0 ∈ ZI .

Definition 2 A pictorial form or evolving image is any set (com-
position) of labelled shapes in the plane denoted by Π . If Π is a
pictorial form, we denote by l(Π) the set of labels used in Π .

Definition 3 Let a configuration be a pair (Π,β) where
Π is pictorial form and β is the bag. For a BCSG G and
configurations (Π,β) and (Γ, β′), there is a derivation step
from (Π,β) to (Γ, β′), if there is a rule (s, (x, y)) −→
{(s1, (x1, y1)), (s2, (x2, y2)), . . . , (si, (xi, yi))} (Lb, Ub

; δ) in R, where Π contains a labelled shape (s, (x, y)):
s ∈ VM with Lb ≤ β ≤ Ub. Γ = (Π \ {(s, (x, y))}) ∪
{(s1, (x1, y1)), (s2, (x2, y2)), . . . , (si, (xi, yi))} and β′ = β+δ.

We denote the derivation step by (Π , β) =⇒ (Γ , β′). This
simply means that (Γ , β′) is directly derived from (Π , β). If there
is a sequence of zero or more derivation steps from (Π , β) to (Γ ,
β′), then we denote that by (Π , β) =⇒∗ (Γ , β′). We now say
that (Γ , β′) is derived from (Π , β).

Definition 4 An image is a pictorial form Π with l(Π) ⊆ VT and
the bag, β.

Definition 5 The gallery G(G) generated by a BCSG G is
the set of images, Π , derivable from the initial labelled
shape (S, (x, y)) and the initial bag β0, represented as:
G(G) = {Π : ((S, (x, y)), β0) =⇒∗ (Π,β), for some β ∈
ZI
∞ and l(Π) ⊆ VT }.

Next, we demonstrate BCSG in Example II.1. Example II.1
generates images with the following: three legs of equal length and
a spine. The second leg of the letter E to be generated divides the
spine into an upper and a lower half which are the same length.
See Fig. 1.

Example II.1 Let GE−bag = (VM , VT , R, (S, (x, y)),
{1, 2, 3, 4}, 0), where VM = {S, A, B, C, D, E }, VT =
{ d }, (S, (x, y)) = (S, (0, 0)), and R is shown in Fig. 2.

Some of the images in the gallery produced by GE−bag when
rendered using square shapes with the label d associated with dark
colour are shown in Fig. 1. The images were scaled to the size as
in Fig. 1 for presentation purposes.

(a) (b)

(c) (d)

Fig. 1: Some images in G(GE−bag) [14], [17]

The strategy here is that the first, third, and fourth bag positions
are used to control how the first, second and third legs grow. The
second bag position is used to control the upper and lower spines
of the letter E. The first (top) leg of the letter E is formed before
any other part. The reason for this is that the number of times the
rule that generates the top leg is applied is used to control the other
legs. The upper spine is formed immediately after the top leg. The
second leg is formed after the upper spine formation. Then the lower
spine is formed followed by the third leg formation. The second leg
must be exactly at half the spine which makes the upper and lower
spines to be the same length. The three legs must also be the same
length.

Next, we explain how the rules in Fig. 2 are applied to form the
image in Fig. 1(a).

To achieve the strategy, the derivation starts with the initial
labelled shape in the pictorial form, Π = {(S, (x, y))}. The
application of Rule 2 of Fig. 2 replaces the initial labelled shape
(S, (x, y)) with the shapes labelled (d, (x, y)), (A, (x+1, y)) and
(B, (x, y− 1)) in the set. The bag adjustment, (1, 1, 0, 0) is added
to the bag, (0, 0, 0, 0) which is (0 + 1, 0 + 1, 0 + 0, 0 + 0) then
the bag becomes (1, 1, 0, 0).

We can apply Rule 3 twice because the bag at each application
is within the defined range. That is, the bag is greater than or equal
to the lower bound, (1, 1, 0, 0) and less than or equal to the upper
bound, ∞. The bag adjustment, (1, 0, 0, 0) is added to the bag at
each application of Rule 3. This is followed by the application of
Rule 4 because it is also within the defined range.

At this point, the bag is (2, 0, 0, 1). We apply Rule 5 twice to
form the upper spine; the bag is (2, 2, 0, 1). Rule 6 is then applied
to begin the formation of the second leg and the lower spine; the
bag adjustment, (0, 0, 0, 1) is added to the bag, (2, 2, 0, 1) then
the bag becomes (2, 2, 0, 2).

We further apply Rule 9 twice and Rule 10 once to form the
second leg. At this point, the bag adjustment, (0, 0, 0, 1) is added to

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y)), (B, (x, y − 1))}(0, 0; (1, 1, 0, 0)) (Rule 2)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}((1, 1, 0, 0),∞; (1, 0, 0, 0)) | (Rule 3)

{(d, (x, y))}((2, 1, 0, 0), (∞,∞,∞, 1); (−1,−1, 0, 1)) (Rule 4)
(B, (x, y)) −→ {(d, (x, y)), (B, (x, y − 1))}((1, 0, 0, 1), (∞,∞,∞, 1); (0, 1, 0, 0)) | (Rule 5)

{(d, (x, y)), (C, (x+ 1, y)), (D, (x, y − 1))}
((1, 2, 0, 1), (∞,∞, 0, 1); (0, 0, 0, 1)) (Rule 6)

(D, (x, y)) −→ {(d, (x, y)), (D, (x, y − 1))}((0, 1, 1, 3), (0,∞,∞, 3); (0,−1, 0, 0)) | (Rule 7)
{(d, (x, y)), (E, (x+ 1, y))}((0, 0, 1, 3), (∞, 0,∞, 3); (0, 0, 0, 1)) (Rule 8)

(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))}((1, 1, 0, 2), (∞,∞,∞, 2); (−1, 0, 1, 0)) | (Rule 9)
{(d, (x, y))}((0, 1, 2, 2), (0,∞,∞, 2); (0, 0, 0, 1)) (Rule 10)

(E, (x, y)) −→ {(d, (x, y)), (E, (x+ 1, y))}((0, 0, 1, 4), (∞,∞,∞, 4); (1, 0,−1, 0)) | (Rule 11)
{(d, (x, y))}((1, 0, 0, 4), (∞,∞, 0, 4); 0) (Rule 12)}

Fig. 2: The set of rules for GE−bag in Example II.1. [14]

the bag, (0, 2, 2, 2) the bag becomes (0, 2, 2, 3). We apply Rule 7
twice followed by Rule 8 because the bag at each application is
within the defined range. At this point, the bag adjustment, (0, 0,
0, 1), is added to the bag, (0, 0, 2, 3) then the bag becomes (0, 0,
2, 4) and the lower spine is formed.

Finally, we apply Rule 11 twice and Rule 12 once to form the
third leg. The bag adjustment, (0, 0, 0, 0) is added to the bag,
(2, 0, 0, 4), the bag becomes (2, 0, 0, 4). At this point, the picture
formation is completed and the letter E is generated (see Fig. 1(a)).

We can also generate more images by repeating the process and
applying Rules 3 and 5 as long as they are within the defined range
at each application. This is because the number of times Rule 3
is applied determines the number of times Rules 9 and 11 will
be applied and the number of times Rule 5 is applied determines
the number of times Rule 7 will be applied with the help of the
bag. Then, the process can be terminated with Rules 4, 10 and 12
respectively in order to form a complete picture (see Figs. 1(b)–(d)).

An illustration of one of the derivations of GE−bag using the
picture in Fig. 1(a) is given in Fig. 3. The derivation has the lower
lefthand corner of the initial shape S start at x, y = 0. The derivation
is summarised in Table I showing the operations in the bag when
an adjustment is made.

TABLE I: The bag during the derivation in Fig. 3.

Rules The bag (β) The bag adjustment (δ)
2 0 (1, 1, 0, 0)

3(2) (1, 1, 0, 0) (1, 0, 0, 0)
4 (3, 1, 0, 0) (-1, -1, 0, 1)

5(2) (2, 0, 0, 1) (0, 1, 0, 0)
6 (2, 2, 0, 1) (0, 0, 0, 1)

9(2) (2, 2, 0, 2) (-1, 0, 1, 0)
10 (0, 2, 2, 2) (0, 0, 0, 1)

7(2) (0, 2, 2, 3) (0, -1, 0, 0)
8 (0, 0, 2, 3) (0, 0, 0, 1)

11(2) (0, 0, 2, 4) (1, 0, -1, 0)
12 (2, 0, 0, 4) 0

Next, we present the methods of similar image generation.

III. METHODS OF SIMILAR IMAGE GENERATION USING
BCSGS

In this section, we demonstrate the four methods of similar
image generation using BCSGs. These methods have become very
necessary as the existing researches that use shape grammars for

the generation of images cannot regulate how similar images can
be generated in a controlled manner.

These methods are a generation of images with colour variation,
generation of images with sub–images, generation of images with
the same building levels but different colour variations, and gener-
ation of images with different building levels but a different colour
variation.

A. Generation of Images with Colour Variation
Given an image in a BCSG generated gallery, there are many

colours on the image. At all times during the derivation of the
image, a colour must dominate a region of the image.

To achieve this method, consider a gallery that consists of
images where each colour fills or dominates an entire row, see
Example III.1.

Example III.1 Let GCarpet−A = (VM , VT , R, S, {1, 2, 3}, 0),
where VM = {S, A, B, C}, VT = {d, w}, (S, (x, y)) = (S, (0, 0)),
and R is the set in Fig. 5.

We use the first and second bag positions to control the variables
A−C to ensure a colour dominates a row at a time. The third bag
position ensures the number of rows is exactly the same as the
number of columns. Some images generated using this example
are shown in Fig. 4.

(a) (b)

(c) (d)

Fig. 4: Some of the images in G of GCarpet−A in Exam-
ple III.1.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



{(S, (0, 0))} 2
=⇒ {(d, (0, 0)), (A, (1, 0)), (B, (0,−1))}

3(2),4
===⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (B, (0,−1))}
5(2),6
===⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (C, (1,−3)), (D, (0,−4))}
9(2),10
====⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (d, (1,−3)), (d, (2,−3)), (d, (3,−3)), (D, (0,−4))}
7(2),8
===⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (d, (1,−3)), (d, (2,−3)), (d, (3,−3)), (d, (0,−4)),

(d, (0,−5)), (d, (0,−6)), (E, (1,−6))}
11(2),12
====⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (d, (1,−3)), (d, (2,−3)), (d, (3,−3)), (d, (0,−4)),

(d, (0,−5)), (d, (0,−6)), (d, (1,−6)), (d, (2,−6)),

(d, (3,−6))}

Fig. 3: A derivation of the picture in Fig. 1(a) for GE−bag [14].

R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}(0, 0; (1, 0, 1)) (Rule 13)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}((1, 0, 1), (∞, 0,∞); (1, 0, 1)) | (Rule 14)

{(d, (x, y)), (B, (x, y − 1))}((2, 0, 2), (∞, 0,∞); (0, 0,−1)) (Rule 15)
(B, (x, y)) −→ {(B, (x− 1, y)), (w, (x, y))}((1, 0, 0), (∞,∞,∞); (−1, 1, 0)) | (Rule 16)

{(w, (x, y)), (C, (x, y − 1))}((0, 1, 1), (0,∞,∞); (0, 0,−1)) | (Rule 17)
{(w, (x, y))}((0, (0,∞, 0); 0) (Rule 18)

(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))}((0, 1, 1), (∞,∞,∞); (1,−1, 0)) | (Rule 19)
{(d, (x, y)), (B, (x, y − 1))}((1, 0, 1), (∞,∞,∞); (0, 0,−1)) | (Rule 20)
{(d, (x, y))}((0, 0, 0), (∞, 0, 0); 0) (Rule 21)}
Fig. 5: The set of rules for GCarpet−A in Example III.1.

The strategy in this example is that the number of times Rule 14
of Fig. 5 is applied determines the size of the image. Then, only
one colour is allowed to dominate a row at a time.

To achieve the strategy, the application of Rule 13 of Fig. 5 starts
the derivation. Then, Rule 14 is applicable as long as the bag at
each application is within the defined range. That is, the bag is
greater than or equal to the lower bound, (1, 0, 1) and less than or
equal to the upper bound, (∞, 0, ∞). The bag adjustment, (1, 0,
1) is added to the bag which automatically increments the first and
third bag positions by 1 at each application. This is to control the
variables, while the number of rows and columns are also kept in
check.

The application of Rule 15 adds the bag adjustment, (0, 0, -1) to
the bag which automatically decrements the third bag position by
1. This also begins the formation of a new row. Then, Rules 16 and
17 followed by Rules 19 and 20 are applicable as long as the bag
at each application is within the range. This process continues until
the third bag position is 0, then, any of Rule 18 or 21 of Fig. 5 is
applicable to complete the formation of the image. This strategy is
sufficient to generate the images in Fig. 4. Next is the method of
generating images with different parts.

B. Generation of Images with Sub-Images
Given a gallery of images generated by BCSG. There is another

image in the upper right or upper left or lower right or lower left
parts of the image called a sub–image.

In order to achieve this method, consider a gallery of images
that consists of carpets with light or dark colour on the upper right
and lower left parts. The top left part of each image in the gallery
consists of dark and light colours. Each colour dominates a row.
This feature is replicated on the lower right part of the image, see
Fig. 6. We demonstrate this process in Example III.2.

Example III.2 Let GCarpet−B = (VM , VT , R, S,
{1, 2, 3, 4, 5}, 0), where VM = {S, A, B, C, A′, A′′}, VT

= {d, w}, (S, (x, y)) = (S, (0, 0)), and R is the set in Fig. 7.
Some images in G produced by GCarpet−B are shown in Fig. 6.

The strategy here is that the variables A, A′, and A′′ in
Example III.2 are used for the upper left part of the image. The
variables B and C can be interchangeably used for the lower left
and upper right parts respectively or the upper right part can also be
mirrored on the lower left part depending on which rule is applied
during derivation. Meanwhile, the lower right part of the image is
a reflection of the upper left part. The derivation starts from the
upper left part to the lower left part then to the upper right and

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}(0, 0; (1, 0, 1, 0, 0)) (Rule 22)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}((1, 0, 1, 0, 0), (∞, 0,∞, 0, 0); (1, 0, 1, 0, 0)) | (Rule 23)

{(b, (x, y)), (B, (x+ 1, y), (A′, (x− 1, y))}
((1, 0, 1, 0, 0), (∞, 0,∞,∞, 0); (0, 0,−1, 1, 0)) (Rule 24)

{(b, (x, y)), (C, (x+ 1, y), (A′, (x− 1, y))}
((1, 0, 1, 0, 0), (∞, 0,∞,∞, 0); (0, 0,−1, 1, 0)) (Rule 25)

(A′, (x, y)) −→ {(A′, (x− 1, y)), (w, (x, y))}
((1, 0, 0, 0, 0), (∞,∞,∞,∞, 0); (−1, 1, 0, 0, 0)) | (Rule 26)

{(w, (x, y)), (A′′, (x, y − 1))}
((0, 1, 1, 0, 0), (0,∞,∞,∞, 0); (0, 0,−1, 1, 0)) | (Rule 27)

{(d, (x, y)), (B, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); 0) | (Rule 28)
{(w, (x, y)), (C, (x, y − 1))}((0, 1, 0, 0, 0), (0,∞, 0,∞, 0); 0) | (Rule 29)
{(d, (x, y))}(0, (0,∞, 0,∞,∞); 0) (Rule 30)

(A′′, (x, y)) −→ {(d, (x, y)), (A′′, (x+ 1, y))}((0, 1, 0, 0, 0),∞; (1,−1, 0, 0, 0)) | (Rule 31)
{(d, (x, y)), (A′, (x, y − 1))}((1, 0, 1, 0, 0),∞; (0, 0,−1, 1, 0)) | (Rule 32)
{(d, (x, y)), (C, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); 0) | (Rule 33)
{(d, (x, y)), (B, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); 0) | (Rule 34)
{(d, (x, y))}(0, (∞, 0, 0,∞,∞); 0) (Rule 35)

(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))}
((0, 1, 0, 0, 0), (∞,∞,∞,∞, 0); (1,−1, 0, 0, 0)) | (Rule 36)

{(C, (x− 1, y)), (d, (x, y))}
((1, 0, 1, 0, 1), (∞,∞,∞,∞, 1); (−1, 1, 0, 0, 0)) | (Rule 37)

{(d, (x, y)), (C, (x, y − 1))}
((0, 1, 0, 1, 1), (0,∞,∞,∞, 1); (0, 0, 1,−1,−1)) | (Rule 38)

{(d, (x, y)), (C, (x, y − 1))}
((1, 0, 0, 1, 0), (∞, 0,∞,∞, 0); (0, 0, 1,−1, 1)) | (Rule 39)

{(w, (x, y)), (A′′, (x, y − 1))}
((0, 1, 0, 0, 1), (0,∞, 0,∞, 1); (0, 0, 0, 0,−1)) (Rule 40)

{(w, (x, y)), (A′, (x, y − 1))}
((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); (0, 0, 0, 0, 0)) (Rule 41)

{(d, (x, y))}(0, (0,∞,∞, 0,∞); (0, 0, 0, 0,−1)) (Rule 42)
(B, (x, y)) −→ {(w, (x, y)), (B, (x+ 1, y))}

((0, 1, 0, 0, 0), (∞,∞,∞,∞, 0); (1,−1, 0, 0, 0)) | (Rule 43)
{(B, (x+ 1, y), (w, (x, y)))}

((1, 0, 1, 0, 1), (∞,∞,∞,∞, 1); (−1, 1, 0, 0, 0)) | (Rule 44)
{(w, (x, y)), (B, (x, y − 1))}

((1, 0, 0, 0, 0), (∞, 0,∞,∞, 0); (0, 0,−1, 1, 1)) | (Rule 45)
{(w, (x, y)), (B, (x, y − 1))}

((0, 1, 1, 0, 1), (0,∞,∞,∞, 1); (0, 0,−1, 1,−1)) | (Rule 46)
{(d, (x, y))}(0, (0,∞,∞, 0,∞); (0, 0, 0, 0,−1)) (Rule 47)
{(w, (x, y)), (A′′, (x, y − 1))}((0, 1, 0, 0, 1), (0,∞, 0,∞, 1); (0, 0, 0, 0,−1)) (Rule 48)
{(w, (x, y)), (A′, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); (0, 0, 0, 0, 0)) (Rule 49)}

Fig. 7: The set of rules for GCarpet−B in Example III.2.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



(a) (b)

(c) (d)

Fig. 6: Some of the images in G of GCarpet−B of Exam-
ple III.2.

lower right parts of the image respectively. The size of the upper
left parts of the image determines the size of the other three parts
of the image. See Fig. 6.

To achieve the strategy, the first and second bag positions are
used to control the light and dark colours respectively. The third
bag position is used to ensure the number of rows is equal to the
number of columns. The fourth and fifth bag positions are used to
control the lower left, upper right and lower right part of the image
respectively. The lower right part mimics the upper left part of the
image. Such that, the number of light and dark colours in the upper
left part is exactly the same in the lower right part. The size of
the upper left part is duplicated on the lower left part with a dark
or light colour. Then, the lower left part of the image is mirrored
on the upper right part of the image with the same or an opposite
colour depending on which rule is applied.

The application of Rule 23 of Fig. 7 after Rule 22 starts the
formation of the upper left part of the image. The bag adjustment,
(1, 0, 1, 0, 0) is added to the bag as long as the bag at each
application is within the range, this continues until Rule 24 or 25
is applied. The application of Rule 24 or 25 begins the formation
of a new row and creates room for the formation of the upper right
part. Any of Rules 26–35 is applicable as long as the bag at each
application is within the range. This process will form the upper left
part of the image, then, begins the formation of the lower left part
with the application of Rule 33 or 34. If Rule 33 is applied, then,
Rules 36–42 are applicable when the bag is within the range at each
application. On the other hand, if Rule 34 is applied, then, Rules 43–
49 are applicable. The lower left part formation is completed by the
application of Rule 42 or 47.

The formation of the upper right part begins with the application
of Rule 36 or 43 of Fig. 7. The bag adjustment, (1, -1, 0, 0, 0)
is added to the bag until the second bag position is 0. Then any
of Rules 37–39 or 44–46 is applicable as long as the bag at each
application is within the range. This process continues until the
third bag position is 0, then, the upper right part is complete. The
formation of the lower right part begins with the application of any
of Rule 40, 42, 48 or 49, as long as the bag is within the range.
At this point, any of Rules 26–35 is now applicable as long as the
bag at each application is within the range as usual. This process
continues until the lower right part formation is complete. Then the
entire image formation is now complete. This strategy is sufficient
to generate the images in Fig. 6. Next is the method of generating
similar images by controlling the building levels and colour.

Example III.3 We extend Example III.2 to generate a gallery of
images that consists of light or dark colour on the top right and
lower left corners. The top left corner of each image in the gallery
consists of dark and light colours, such that each colour dominates
a row. The lower right corner of the image consists of light and
dark colours, such that no colour dominates a row. Hence the upper
left and lower right corners (parts) of the image are not the same,
see Figure 8.

Let GCarpet−C = (VM , VT , R, S, {1, 2, 3, 4, 5}, 0), where VM

= {S, A, B, C, D, A′, A′′, D′}, VT = {d, w}, (S, (x, y)) =
(S, (0, 0)), and R is the set in Figures 9(a) and (b) respectively.

Some images in G produced by GCarpet−C are shown in Fig-
ure 8.

(a) (b)

(c) (d)

Fig. 8: Some of the images in G of GCarpet−C of Exam-
ple III.3.

The strategy in Example III.3 follows the same process of the
formation of the upper left, lower left, and upper right corners
of the images in Example III.2. On the lower right corner of
Example III.3 generated images, no colour is allowed to dominate
a row or column, see Figure 8.

To achieve the strategy, the fifth bag position is used to control
when to apply a dark or light colour. When the fifth bag position
is 1 then a dark colour can be applied otherwise a light colour is
applied. This ensures no colour is repeated immediately on a row
or column after a rule that contains the colour has been applied.
The lower right corner of the image is formed after all the other
parts of the image have been completed. If the fifth bag position is
1 when the upper right corner of the image is formed then Rule 73
is applicable followed by Rules 82–85. If the fifth bag position is
0 when the upper right corner of the image is formed then Rule 75
is applicable followed by Rules 76–79.

This process continues until the third bag position is 0. The third
bag position ensures the number of rows is equal to the number of
columns. Then the process can be terminated by the application
of any of the Rules 80, 81, 86, or 87 of Figure 9 as long as the
bag is within the range at the time of application. This strategy is
sufficient to generate the images in Figure 8.

C. Generation of Images with the Same Building Levels but
Different Colour Variations

In a gallery of images generated by BCSG, there are many colour
placements. A colour must dominate a part of the images. The
number of times a shape is added to generate the images or part(s)
of the images in the gallery must remain the same.

This can be achieved by limiting the number of some of the lower
and upper bounds of the rules to the desired number. We Consider
a grammar that some of the lower bounds or upper bounds are
limited to 24 in order to enable the generation of images with a
different colour place but the same building level, see Fig. 10. We
demonstrate this method in Example III.4.

Example III.4 Let a BCSG, GSameBuild = (VM , VT , R, S,
{1, 2, 3, 4, 5}, 0), where VM = {S, A, B, C, D, A′, A′′, D′,
D′′}, VT = {d, w}, (S, (x, y)) = (S, (0, 0)), and R is the set in
Fig. 11. Some images in G produced by GSameBuild are shown in
Fig. 10.

.
The strategy in Example III.4 is that the first and second bag

positions are used to control the colours. The third bag position

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}(0, 0; (1, 0, 1, 0, 0)) (Rule 50)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}((1, 0, 1, 0, 0), (∞, 0,∞, 0, 0); (1, 0, 1, 0, 0)) | (Rule 51)

{(b, (x, y)), (B, (x+ 1, y), (A′, (x− 1, y))}
((1, 0, 1, 0, 0), (∞, 0,∞,∞, 0); (0, 0,−1, 1, 0)) (Rule 52)

{(b, (x, y)), (C, (x+ 1, y), (A′, (x− 1, y))}
((1, 0, 1, 0, 0), (∞, 0,∞,∞, 0); (0, 0,−1, 1, 0)) (Rule 53)

(A′, (x, y)) −→ {(A′, (x− 1, y)), (w, (x, y))}
((1, 0, 0, 0, 0), (∞,∞,∞,∞, 0); (−1, 1, 0, 0, 0)) | (Rule 54)

{(w, (x, y)), (A′′, (x, y − 1))}
((0, 1, 1, 0, 0), (0,∞,∞,∞, 0); (0, 0,−1, 1, 0)) | (Rule 55)

{(w, (x, y)), (B, (x, y − 1))}((0, 1, 0, 0, 0), (0,∞, 0,∞, 0); 0) | (Rule 56)
{(w, (x, y)), (C, (x, y − 1))}((0, 1, 0, 0, 0), (0,∞, 0,∞, 0); 0) (Rule 57)

(A′′, (x, y)) −→ {(d, (x, y)), (A′′, (x+ 1, y))}((0, 1, 0, 0, 0),∞; (1,−1, 0, 0, 0)) | (Rule 58)
{(d, (x, y)), (A′, (x, y − 1))}((1, 0, 1, 0, 0),∞; (0, 0,−1, 1, 0)) | (Rule 59)
{(d, (x, y)), (B, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); 0) | (Rule 60)
{(d, (x, y)), (C, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); 0) (Rule 61)

(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))}
((0, 1, 0, 0, 0), (∞,∞,∞,∞, 0); (1,−1, 0, 0, 0)) | (Rule 62)

{(C, (x− 1, y)), (d, (x, y))}
((1, 0, 1, 0, 1), (∞,∞,∞,∞, 1); (−1, 1, 0, 0, 0)) | (Rule 63)

{(d, (x, y)), (C, (x, y − 1))}
((0, 1, 0, 1, 1), (0,∞,∞,∞, 1); (0, 0, 1,−1,−1)) | (Rule 64)

{(d, (x, y)), (C, (x, y − 1))}
((1, 0, 0, 1, 0), (∞, 0,∞,∞, 0); (0, 0, 1,−1, 1)) | (Rule 65)

{(d, (x, y))}(0, (0,∞,∞, 0,∞); (0, 0, 0, 0,−1)) | (Rule 66)
{(w, (x, y)), (D′, (x, y − 1))}

((0, 1, 0, 0, 1), (0,∞, 0,∞, 1); (0, 0, 0, 0,−1)) | (Rule 67)
{(w, (x, y)), (D, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); (0, 0, 0, 0, 1)) (Rule 68)

(B, (x, y)) −→ {(w, (x, y)), (B, (x+ 1, y))}
((0, 1, 0, 0, 0), (∞,∞,∞,∞, 0); (1,−1, 0, 0, 0)) | (Rule 69)

{(B, (x+ 1, y), (w, (x, y)))}
((1, 0, 1, 0, 1), (∞,∞,∞,∞, 1); (−1, 1, 0, 0, 0)) | (Rule 70)

{(w, (x, y)), (B, (x, y − 1))}
((1, 0, 0, 0, 0), (∞, 0,∞,∞, 0); (0, 0,−1, 1, 1)) | (Rule 71)

{(w, (x, y)), (B, (x, y − 1))}
((0, 1, 1, 0, 1), (0,∞,∞,∞, 1); (0, 0,−1, 1,−1)) | (Rule 72)

{(w, (x, y)), (D′, (x, y − 1))}
((0, 1, 0, 0, 1), (0,∞, 0,∞, 1); (0, 0, 0, 0,−1)) | (Rule 73)

{(d, (x, y))}(0, (0,∞,∞, 0,∞); (0, 0, 0, 0,−1)) | (Rule 74)
{(w, (x, y)), (D, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); (0, 0, 0, 0, 1)) (Rule 75)}

Fig. 9: (a) The set of rules for GCarpet−C.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



R =
{

(D, (x, y)) −→ {(D, (x− 1, y)), (d, (x, y))}
((1, 0, 0, 0, 1), (∞,∞,∞,∞, 1); (−1, 1, 0, 0,−1)) | (Rule 76)

{(D, (x− 1, y)), (w, (x, y))}
((1, 0, 0, 0, 0), (∞,∞,∞,∞, 0); (−1, 1, 0, 0, 1)) | (Rule 77)

{(b, (x, y)), (D′, (x, y − 1))}
((0, 1, 0, 1, 1), (0,∞,∞, 1, 1); (0, 0, 1,−1,−1)) | (Rule 78)

{(w, (x, y)), (D′, (x, y − 1))}
((0, 1, 0, 0, 0), (0,∞,∞,∞, 0); (0, 0, 1,−1, 1)) | (Rule 79)

{(w, (x, y))}(0, (∞,∞,∞, 0, 0); 0) | (Rule 80)
{(d, (x, y))}((0, 0, 0, 0, 1), (∞,∞,∞, 0, 1); 0) (Rule 81)

(D′, (x, y)) −→ {(b, (x, y)), (D′, (x+ 1, y))}
((0, 1, 0, 1, 0), (∞,∞,∞, 0); (1,−1, 0, 0, 1)) | (Rule 82)

{(w, (x, y)), (D′, (x+ 1, y))}
((0, 1, 1, 0, 1), (∞,∞,∞,∞, 1); (1,−1, 0, 0,−1)) | (Rule 83)

{(w, (x, y)), (D, (x, y − 1)), }
((1, 0, 0, 0, 0), (∞, 0,∞,∞, 0); (0, 0, 1,−1, 1)) | (Rule 84)

{(d, (x, y)), (D, (x, y − 1))}
((1, 0, 1, 1, 1), (∞, 0,∞,∞, 1); (0, 0, 1,−1,−1)) | (Rule 85)

{(w, (x, y))}(0, (∞,∞, 0, 0, 0); 0) | (Rule 86)
{(d, (x, y))}((0, 0, 0, 0, 1), (∞,∞,∞, 0, 1); 0) (Rule 87)}
Fig. 9: (b) The set of rules for GCarpet−C.

(a) (b)

(c) (d)

Fig. 10: Some of the images in G of GSameBuild in Exam-
ple III.4.

ensures the number of rows and columns are the same. The fourth
and fifth bag positions are used to control the parts of the image.

Observe that the highest value for some of the upper bounds in
Fig. 11 is limited to 24, the same as the highest value for some of
the lower bounds. Particularly, the first position of the lower bound
in Rule 90 of Fig. 11. This helps to keep the images in Fig. 10 at the
same building levels during derivation while the colour placement
is different depending on the particular rule that is applied. Next,
is the method of generating similar images with different building
levels and colour variation.

More example of the above method in Section III-C is shown in
Example III.5.

Example III.5 Let a BCSG, GSameBuild−2 = (VM , VT , R, S,
{1, 2, 3, 4, 5}, 0), where VM = {S, A, B, C, D, A′, A′′, D′,
D′′}, VT = {d, w}, (S, (x, y)) = (S, (0, 0)), and R is equivalent
to the set in Fig. 11 with some upper bound kept at 66. Some images
in G produced by GSameBuild−2 are shown in Fig. 12.

(a) (b)

(c) (d)

Fig. 12: Some of the images in G of GSameBuild−2 in
Example III.5.

D. Generation of Images with Different Building Levels and
Different Colour Variations

In this method, all images in a gallery generated by BCSG has a
variation in the colour placements. A colour is allowed to dominate
a part of the images. The number of times a shape is added to
generate the images in the gallery should not be the same.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}(0, 0; (1, 0, 1, 0, 0)) (Rule 88)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}

((1, 0, 1, 0, 0), (24, 0, 24, 0, 0); (1, 0, 1, 0, 0)) | (Rule 89)
{(b, (x, y)), (B, (x+ 1, y), (A′, (x− 1, y))}

((24, 0, 1, 0, 0), (24, 0, 24, 24, 0); (0, 0,−1, 1, 0)) | (Rule 90)
{(b, (x, y)), (C, (x+ 1, y), (A′, (x− 1, y))}

((24, 0, 1, 0, 0), (24, 0, 24, 24, 0); (0, 0,−1, 1, 0)) (Rule 91)
(A′, (x, y)) −→ {(A′, (x− 1, y)), (w, (x, y))}

((1, 0, 0, 0, 0), (24, 24, 24, 24, 0); (−1, 1, 0, 0, 0)) | (Rule 92)
{(w, (x, y)), (A′′, (x, y − 1))}

((0, 1, 1, 0, 0), (0, 24, 24, 24, 0); (0, 0,−1, 1, 0)) | (Rule 93)
{(w, (x, y)), (B, (x, y − 1))}((0, 1, 0, 0, 0), (0, 24, 0, 24, 0); 0) | (Rule 94)
{(w, (x, y)), (C, (x, y − 1))}((0, 1, 0, 0, 0), (0, 24, 0, 24, 0); 0) (Rule 95)

(A′′, (x, y)) −→ {(d, (x, y)), (A′′, (x+ 1, y))}((0, 1, 0, 0, 0), 24; (1,−1, 0, 0, 0)) | (Rule 96)
{(d, (x, y)), (A′, (x, y − 1))}((1, 0, 1, 0, 0), 24; (0, 0,−1, 1, 0)) | (Rule 97)
{(d, (x, y)), (B, (x, y − 1))}((1, 0, 0, 0, 0), (24, 0, 0, 24, 0); 0) (Rule 98)
{(d, (x, y)), (C, (x, y − 1))}((1, 0, 0, 0, 0), (24, 0, 0, 24, 0); 0) (Rule 99)

(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))}
((0, 1, 0, 0, 0), (24, 24, 24, 24, 0); (1,−1, 0, 0, 0)) | (Rule 100)

{(C, (x− 1, y)), (d, (x, y))}
((1, 0, 1, 0, 1), (24, 24, 24, 24, 1); (−1, 1, 0, 0, 0)) | (Rule 101)

{(d, (x, y)), (C, (x, y − 1))}
((0, 1, 0, 1, 1), (0, 24, 24, 24, 1); (0, 0, 1,−1,−1)) | (Rule 102)

{(d, (x, y)), (C, (x, y − 1))}
((1, 0, 0, 1, 0), (24, 0, 24, 24, 0); (0, 0, 1,−1, 1)) | (Rule 103)

{(w, (x, y)), (D, (x, y − 1))}
((0, 1, 0, 0, 0), (0, 24, 0, 24, 1); (0, 0, 0, 0,−1)) | (Rule 104)

{(d, (x, y))}(0, (0, 24, 24, 0, 24); (0, 0, 0, 0,−1)) (Rule 105)
(B, (x, y)) −→ {(w, (x, y)), (B, (x+ 1, y))}

((0, 1, 0, 0, 0), (24, 24, 24, 24, 0); (1,−1, 0, 0, 0)) | (Rule 106)
{(B, (x+ 1, y), (w, (x, y)))}

((1, 0, 1, 0, 1), (24, 24, 24, 24, 1); (−1, 1, 0, 0, 0)) | (Rule 107)
{(w, (x, y)), (B, (x, y − 1))}

((1, 0, 0, 0, 0), (24, 0, 24, 24, 0); (0, 0,−1, 1, 1)) | (Rule 108)
{(w, (x, y)), (B, (x, y − 1))}

((0, 1, 1, 0, 1), (0, 24, 24, 24, 1); (0, 0,−1, 1,−1)) | (Rule 109)
{(w, (x, y)), (D, (x, y − 1))}

((0, 1, 0, 0, 0), (0, 24, 0, 24, 1); (0, 0, 0, 0,−1)) | (Rule 110)
{(d, (x, y))}(0, (0, 24, 24, 0, 24); (0, 0, 0, 0,−1)) (Rule 111)}

Fig. 11: (a) The set of rules for GSameBuild in Example III.4.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



R =
{

(D, (x, y)) −→ {(d, (x, y)), (D, (x+ 1, y))}
((0, 1, 0, 1, 0), (24, 24, 24, 24, 0); (1,−2, 1,−2, 1)) | (Rule 112)

{(w, (x, y)), (D, (x+ 1, y))}
((0, 1, 0, 1, 1), (24, 24, 24, 24, 1); (1,−2, 1,−2,−1)) | (Rule 113)

{(b, (x, y)), (D′, (x, y − 1)), (C, (x+ 1, y))}
((1, 0, 1, 0, 0), (24, 0, 24, 0, 1); (0, 0,−1, 1, 1)) | (Rule 114)

{(w, (x, y)), (D′, (x, y − 1)), (B, (x+ 1, y))}
((1, 0, 1, 0, 1), (24, 0, 24, 0, 1); (0, 0,−1, 1,−1)) (Rule 115)

(D′, (x, y)) −→ {(D′, (x− 1, y)), (b, (x, y))}
((1, 0, 0, 1, 0), (24, 24, 24, 24, 0); (−1, 1, 0, 0, 1)) | (Rule 116)

{(D′, (x− 1, y)), (w, (x, y))}
((1, 0, 0, 1, 1), (24, 24, 24, 24, 1); (−1, 1, 0, 0,−1)) | (Rule 117)

{(w, (x, y)), (D′′, (x, y − 1)), }
((0, 1, 1, 0, 1), (0, 24, 24, 24, 1); (0, 0,−1, 1,−1)) | (Rule 118)

{(d, (x, y)), (D′′, (x, y − 1))}
((0, 1, 1, 0, 0), (0, 24, 24, 24, 0); (0, 0,−1, 1, 1)) | (Rule 119)

{(b, (x, y)), (C, (x, y − 1))}
((0, 1, 0, 0, 0), (0, 24, 0, 24, 0); 0) | (Rule 120)

{(w, (x, y)), (B, (x, y − 1))}
((0, 1, 0, 0, 1), (0, 24, 0, 24, 1); 0) (Rule 121)

D′′, (x, y)) −→ {(b, (x, y)), (D′′, (x− 1, y))}
((0, 1, 0, 1, 0), (24, 24, 24, 24, 0); (1,−1, 0, 0, 1)) | (Rule 122)

{(w, (x, y)), (D′′, (x− 1, y))}
((0, 1, 0, 1, 1), (24, 24, 24, 24, 1); (1,−1, 0, 0,−1)) | (Rule 123)

{(b, (x, y)), (D′, (x, y − 1))}
((1, 0, 1, 0, 0), (24, 0, 24, 0, 1); (0, 0,−1, 1, 1)) | (Rule 124)

{(w, (x, y)), (D′, (x, y − 1))}
((1, 0, 1, 0, 1), (24, 0, 24, 0, 1); (0, 0,−1, 1,−1)) | (Rule 125)

{(b, (x, y)), (B, (x, y − 1))}
((0, 1, 0, 0, 0), (0, 24, 0, 24, 0); 0) | (Rule 126)

{(w, (x, y)), (C, (x, y − 1))}
((0, 1, 0, 0, 1), (0, 24, 0, 24, 1); 0) (Rule 127)}

Fig. 11: (b) The set of rules for GSameBuild in Example III.4.

To achieve this method, consider a gallery of images with a
variation in colour, such that the number of the light colour on the
upper part of the image is half the number of the light colour on
the lower part of the images. The difference between the images
is the variations in the building levels and colour placement, see
Fig. 13. We demonstrate this method in Example III.6.

Example III.6 Let GDiffBuild = (VM , VT , R, S,
{1, 2, 3, 4, 5}, 0), where VM = {S, A, B, C}, VT = {d,
w}, (S, (x, y)) = (S, (0, 0)), and R is the set in Fig. 14.

The strategy in Example III.6 is that the first and second bag
positions are used to control the variables A–C which help to keep
colour on a row. The third bag position is used to ensure the number
of rows is the same as the number of columns. The fourth and fifth
bag positions are used to ensure the number of the light colour on
the lower left part of the last dark row of the image is twice the
number of the light colour on the upper right part of the first dark

row of the image. This is achieved by limiting some of the lower
bounds to 30 and some of the upper bounds in the rules to 35.
Particularly, Rules 130, 131, and 133 of Fig. 14.

This means that Rules 131 and 133 of Fig. 14 can only be
applied when the values in the bag positions one and three are 30
respectively. This will help to generate only images that are similar
to the images in Fig. 13.

Some images in G produced by GDiffBuild in Example III.6 are
shown in Fig. 13.

We repeat the approach used to generate the images in Figure 13
in Example III.7.

Example III.7 Let GDiffBuild−2 = (VM , VT , R, S,
{1, 2, 3, 4, 5}, 0), where VM = {S, A, B, C}, VT = {d,
w}, (S, (x, y)) = (S, (0, 0)), and R is equivalent to the set in
Fig. 14 with some of the upper bound set to 20, 30, 80, and 90
respectively.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}(0, 0; (1, 0, 1, 0, 0)) (Rule 128)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))} (Rule 129)

((1, 0, 1, 0, 0), (35, 0, 35, 0, 0); (1, 0, 1, 0, 0)) | (Rule 130)
{(w, (x, y)), (B, (x, y − 1))}

((30, 0, 30, 0, 0), (35, 0, 35, 35, 35); (0, 0,−1, 1, 0)) | (Rule 131)
{(w, (x, y)), (A, (x+ 1, y))} (Rule 132)

((30, 0, 30, 0, 0), (35, 0, 35, 35, 35); (1, 0, 1, 1, 0)) (Rule 133)
(B, (x, y)) −→ {(B, (x− 1, y)), (w, (x, y))} (Rule 134)

((1, 0, 0, 0, 0), (35, 35, 35, 35, 0); (−1, 1, 0, 0, 0)) | (Rule 135)
{(w, (x, y)), (C, (x, y − 1))} (Rule 136)

((0, 1, 1, 1, 0), (0, 35, 35, 35, 0); (0, 0,−1, 0, 0)) (Rule 137)
(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))} (Rule 138)

((0, 1, 1, 1, 0), ((35, 35, 35, 35, 0)); (1,−1, 0, 0, 0)) | (Rule 139)
{(d, (x, y)), (B, (x, y − 1))} (Rule 140)

((1, 0, 1, 1, 0), ((35, 0, 35, 35, 0)); (0, 0,−1, 0, 0)) | (Rule 141)
{(w, (x, y)), (C, (x+ 1, y))} (Rule 142)

((0, 1, 0, 1, 0), (35, 35, 0, 35, 35); (0,−1, 0,−1, 1)) | (Rule 143)
{(w, (x, y)), (C, (x+ 1, y))} (Rule 144)

((0, 1, 0, 0, 1), (35, 35, 0, 0, 35); (0,−1, 0, 0,−1)) | (Rule 145)
{(d, (x, y)), (C, (x+ 1, y))} (Rule 146)

((0, 1, 0, 0, 0), (35, 35, 0, 0, 0); (0,−1, 0, 0, 0)) | (Rule 147)
{(d, (x, y))}(0, 0; 0) (Rule 148)}

Fig. 14: The set of rules for GDiffBuild in Example III.6.

(a) (b)

(c) (d)

Fig. 13: Some of the images in G of GDiffBuild in Exam-
ple III.6.

Some images in G produced by GDiffBuild−2 in Example III.7
are shown in Fig. 15.

Next, we adjust the set in Fig. 14 to generate the type of images
in Fig.16, see Example III.8.

Example III.8 Let GDiffBuild−3 = (VM , VT , R, S,
{1, 2, 3, 4, 5}, 0), where VM = {S, A, B, C}, VT = {d,
w}, (S, (x, y)) = (S, (0, 0)), and R is equivalent to the set in
Fig. 14 with some of the upper bound set to 40, 60, 70, and 80
respectively.

(a) (b)

(c) (d)

Fig. 15: Some of the images in G of GDiffBuild−2 in Exam-
ple III.7.

Some images in G produced by GDiffBuild−3 in Example III.8
are shown in Fig. 16.

IV. CONCLUSION AND FUTURE WORK

In this paper, BCSGs was presented with an example to show
how they can generate images. Further, the four BCSG methods
of generating similar images were demonstrated. These methods
include the generation of images with colour variation and the
generation of images with different parts. Others are, generation
of similar images with the same building level but different colour

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



(a) (b)

(c) (d)

Fig. 16: Some of the images in G of GDiffBuild−3 in Exam-
ple III.8.

placement and generation of similar images with different building
levels but different colour placement, these were achieved by
limiting some of the lower and upper bounds of a given set of
rules.

It was observed that existing shape grammars lacked the capacity
to control the generation of similar images in these manners. With
the above methods of similar image generation using BCSGs, it
is possible to know the next similar image to be generated to a
selected image, which other shape grammars lack the ability to do.

In the future, we intend to demonstrate the power of these
methods by showing how they can be used to generate similar
images in application areas where the use of similar images is
needed, such as the generation of distractor images for visual
password scheme, decorative art, CAPTCHA, etc.

REFERENCES

[1] G. Stiny, “Introduction to shape and shape grammars,” Environment
and Planning B, vol. 7, no. 3, pp. 343–351, 1980.

[2] ——, “What is a design?” Environment and Planning B, vol. 17, pp.
97–103, 1990.

[3] ——, “Weights,” Environment and Planning B, vol. 19, pp. 413–430,
1992.

[4] G. Stiny and W. J. Mitchell, “The Palladian grammar,” Environment
and Planning B: Planning and Design, vol. 5, no. 1, pp. 5–18, 1978.

[5] S. Ahmad and S. Chase, “Transforming grammars for goal driven
style innovation,” in Predicting the future, Proceedings of the 25th
Conference on Education in Computer Aided Architectural Design in
Europe (eCAADe), Frankfurt am Main, Germany, 2007, pp. 879–886.

[6] S. Arida, “Volkswagen Beetle Grammar. Computational design, Final
MSc project, Massachusetts Institute of Technology (MIT),” 2002.

[7] T. W. Knight, “Color grammars: the representation of form and color
in design,” Leonardo, vol. 26, pp. 117–124, 1993.

[8] ——, “Shape grammar and color grammar in design,” Environment
and Planning B: Urban Analytics and City Science, vol. 21, no. 6, pp.
705–735, 1994.

[9] G. Stiny, “How to calculate with shapes,” Formal engineering design
synthesis, vol. 19, pp. 13–27, 2001.

[10] R. Stouffs, “Description grammars : A general notation,” Environment
and Planning B: Urban Analytics and City, vol. 45, no. 1, pp. 106–
123, 2016.

[11] N. Jingili, S. Ewert, and I. Sanders, “Measuring perceptual similarity
of syntactically generated pictures,” in 8th International Conference
on Simulation and Modelling Methodologies, Technology and Ap-
plication (SIMULTECH), 30 July, Porto, Portugal, 2018, accessi-
ble http://insticc.org/node/TechnicalProgram/simultech/ presentation-
Details/69065, [Last accessed 20-March-2019].

[12] S. Ewert, N. Jingili, L. Mpota, and I. Sanders, “Bag context
picture grammars,” Journal of Computer Languages, 2019, doi:
https://doi.org/10.1016/j.cola.2019.04.001.

[13] F. Drewes, C. du Toit, S. Ewert, B. van der Merwe, and A. P.
van der Walt, “Bag context tree grammars,” Developments in Language
Theory, vol. 4036, pp. 226–237, 2006.

[14] B. Ogbuokiri and M. Raborife, “Bag context shape grammars,” IAENG
Journal of Computer Science, vol. 47, no. 1, pp. 75–86, 2020.

[15] ——, “The similarity of images generated by bag context
shape grammars,” in Proceedings of the 2020 International
SAUPEC/RobMech/PRASA Conference. Cape Town, 29–31 January,
2020, pp. 1–6.

[16] ——, “Bag context shape grammar implementation: From theory to
useable software,” Computer-Aided Design and Applications, vol. 17,
no. 3, pp. 548–574, 2019.

[17] B. Ogbuokiri, “Generation of similar images using bag context shape
grammars,” PhD Thesis submitted to the School of Computer Science
and Applied Mathematics, University of the Witwatersrand, Johannes-
burg. SA, 2020.

[18] C. Anthony and D. Robert, Foundation Maths, 6th ed. Edinburgh
Gate, United Kingdom: Pearson Education Limited, 2016.

[19] C. Khalil and B. A. Jacques, “The maximum (k,m)-subsets problem is
in the class nexp,” IAENG International Journal of Computer Science,
vol. 48, no. 2, pp. 451–455, 2021.

[20] Z. Tiefeng, “Application of a new model for complex systems,”
Engineering Letters, vol. 29, no. 2, pp. 471–476, 2021.

[21] H. M. Wali, “Compactness of hausdorff fuzzy metric spaces,” IAENG
International Journal of Applied Mathematics, vol. 51, no. 1, pp. 17–
24, 2021.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_14

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 




