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Abstract—An event-triggered based on prescribed perfor-
mance control (PPC) for the tracking control problem of strict-
feedback uncertain nonlinear systems with input saturation
constraint is studied. First, a smooth nonlinear function is
introduced to approximate the saturation function. Secondly,
the PPC design process of a class of uncertain nonlinear
systems and a new error transformation function are designed
to guarantee the output of the system does not violate the
set constraints of the preset functions. Thirdly, an event-
triggered based on adaptive PPC for a class of uncertain
nonlinear systems is implemented. It makes all closed-loop
signals in the system uniformly ultimately bounded (UUB).
Finally, an example is given to demonstrate the effectiveness
of the proposed method.

Index Terms—Nonlinear systems, event-triggered control
(ETC), prescribed performance control (PPC), unknown control
direction

I. INTRODUCTION

IN the past several decades, adaptive control based on
backstepping technique has been one of the most com-

monly used nonlinear system design methods. This method
provides a general iterative construction tool for design-
ing controllers, and some significant control schemes have
been developed [1]–[6]. Since the nonlinear systems contain
unknown terms, neural networks [7]–[10] and fuzzy logic
systems [11]–[14] have been widely applied to the control
design for uncertain nonlinear systems.

Recently, a new method called prescribed performance
control (PPC) has become a research hotspot. In practical
control systems, PPC not only guarantees the stability of
the nonlinear system but also guarantees the transient and
steady state operation of the system [15]–[18]. For the strict-
feedback nonlinear system with uncertain multi-input and
multi-output, in [15], Malek et al. designed an adaptive
tracking controller to make the tracking error converge to
its predefined boundary. In [16], an adaptive fuzzy controller
with prescribed constraint for a class of nonlinear strictly
feedback nonlinear systems has been designed by using fuzzy
approximation. In [17], Zhang et al. realized the control
of the nonlinear feedback system with unknown direction
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by using the preset performance, rather than using the
neural/fuzzy system to approximate the results, which greatly
reduced the computational complexity.

Remarkably, data transmission is accomplished through
periodic sampling in the framework of classical sample-data
control. Unfortunately, the network resources are limited, and
the periodic transmission scheme causes a large amount of
communication resources waste and increases the operating
cost of the system. Therefore, a new control approach called
event trigger control (ETC) [19]–[23] has been proposed to
solve the above problems. ETC has made significant progress
in recent years [24]–[27]. In [24], Xing et al. designed new
design methods based on fixed threshold strategy, relative
threshold strategy and switching threshold strategy. In [26],
the results of [24] were extended to the event triggering
control problem of uncertain nonlinear systems with actuator
failure.

In addition, the control problem of saturated nonlinear
systems has been taken concerned by researchers [28]–
[31]. In [31], Wang et al. designed an adaptive tracking
controller for a class of pure-feedback stochastic nonlinear
systems with input saturation. They solved the problem of
non-differential saturation nonlinearity by using a smooth
nonlinear function.

Inspired by the work in [16], [24] and [31], we design
an event-triggered with fixed threshold strategy based on
adaptive PPC for a class of uncertain nonlinear systems with
input saturation. The main contributions of this work are
summarized as follows:

(1) A new error transformation function is used for the first
time to generalize an adaptive tracking control scheme for
a class of strict-feedback uncertain nonlinear systems with
input saturation constraints, where the problems of PPC and
ETC are considered simultaneously.

(2) Compared with PPC results in [16], this paper extends
the conclusion to strict feedback systems with unknown
disturbances and input saturation.

The rest of this paper is as follows: Section II introduces
the unknown nonlinear system function, saturation function,
new error transformation function and some preliminary
contents. In Section III, backstepping technology is used
to design the fixed threshold policy event-triggered adaptive
controller. The simulation studies are carried out in Section
IV to verify the effectiveness of the proposed method.
Finally, Section V concludes the paper.

II. SYSTEM DESCRIPTIONS AND BASIC KNOWLEDGE

Consider a single-input and single-output (SISO) strick-
feedback nonlinear system with unknown control directions
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and unknown disturbances by the form
ẋi = fi(x̄i) + hi(x̄i)xi+1(t) + λi(t)

ẋn = fn(x̄n) + hn(x̄n)u(t) + λn(t)

y = x1

(1)

where x̄i = [x1, x2, · · · , xi]T ∈ Ri (i = 1, 2, · · · , n)
indicates the system state vector, y ∈ R is the system
output. fi(·) : Ri → R and hi(·) : Ri → R are unknown
smooth functions, λi(t) show the unknown perturbation and
|λi(t)| < λ̄i, i = 1, 2, · · · , n, where λ̄i are unknown positive
constant, and u(t) denotes the actual control input subject
to stochastic saturation nonlinearity, and S(v) represents
the actuator saturation nonlinearity operator with unknown
constants umax > 0 and umin < 0, described by

u(t) = S(v) =

 umax, v ≥ umax

v, umin < v < umax

umin, v ≤ umin

(2)

where v is the input signal of the saturation nonlinearity
system. From (2), when v(t) = umax or v(t) = umin, there
exist two sharp corners. In order to construct control input
signal directly by the backstepping technique. As in [32],
S(v) can be approximated by the sum of a smooth function
G(v) and an approximation error g(v), where G(v) can be
defined as

G(v) =

{
umax ∗ tanh( v

umax
), v ≥ 0

umin ∗ tanh( v
umin

), v < 0

=


umax ∗

e
v

umax − e
−v
umax

e
v

umax + e
−v
umax

, v ≥ 0

umin ∗
e

v
umin − e

−v
umin

e
v

umin + e
−v
umin

, v < 0

(3)

Then, S(v) in (2) can be given by:

u = S(v) = G(v) + g(v) = Gσ(v)v + g(v) (4)

where Gσ(v) = (∂G(v)/∂v)|v = vσ , and vσ = σv, (0 <
σ < 1). In addition, according to g(v) = S(v) − G(v) is a
bounded function, the following formula is established

|g(v)| = |S(v)−G(v)|
≤ max{umax(1− tanh(1)),

umin(1− tanh(1))}
= D

(5)

Substituting (4) into (1) results in

ẋi = fi(x̄i) + hi(x̄i)xi+1(t) + λi(t)

ẋn = fn(x̄n) + hn(x̄n)Gσv + hn(x̄n)g(v)

+ λn(t)

(6)

Assumption 1: For the functions hi(1 ≤ i ≤ n),
there exist unknown positive constants b and bM
such that

0 < b ≤ |hi| ≤ bM <∞ (7)

Apparently, hi are strictly either positive or negative. Without
loss of generality, it is further assumed that 0 < b ≤ hi ≤
bM .

Assumption 2: The function Gσ in (6) is bounded by

0 < Gm ≤ Gσ < 1 (8)

where Gm is an unknown positive constant.
Remark 1: As stated in [32], the limitation in (8) was

recommended. In many physical processes and systems, the
actual control input signal v must be finite , so Assumption
2 is legitimate.

Remark 2: According to Assumptions 1 and 2, it produces
0 < bm ≤ hi, 0 < bm ≤ hiGσ (i = 1, 2, . . . , n− 1), where
bm = min {b, bGm}.

Lemma 1: [31] The desired signal yr(t) and ẏr(t), ÿr(t),
· · ·, yr(n)(t) (n ∈ R+) are continuous, bounded and known.

In this note, the fuzzy logic system is applied to estimate
the function f(x) defined on some compact sets. The fuzzy
logic system can be written as

y(x) = W Tψ(x) (9)

where W is a collection of points for a fuzzy membership
function, ψ(x) is the set of maximum operation of fuzzy
set. If all memberships are chosen as Gaussian functions,
the following lemma holds.

Lemma 2: [33] Let the continuous function f(x) defined
on a compact set Ω. Then, for any given positive constant
ε > 0, there exists a fuzzy logic system (9) such that

sup
x∈Ω

∣∣f(x)−W Tψ(x)
∣∣ ≤ ε

Lemma 3: [34] For ∀(x, y) ∈ R2, we have:

xy ≤ βp

p
|x|p +

1

qβq
|y|q (10)

where the positive constants β > 0, p > 1, q > 1,
furthermore, p and q satisfy (p− 1)(q − 1) = 1.

III. CONTROLLER DESIGN

A. Prescribed performance control

The state errors are defined as follows:

z1 = x1 − yr,
zi = xi − αi−1, i = 2, 3, · · · , n

(11)

where yr is the desired trajectory and αi(i = 2, . . . , n)
denote virtual control law, which are used to stabilize each
backstepping design step. In order to accomplish prescribed
performance control (PPC) for each tracking trajectory error
zi, the convergence domain function is defined as

%1 = (%0 − %∞)e−ξt + %∞, (12)

with %0 > %∞, where %0 describing the initial value, %∞ is
the maximum allowed steady state error and ξ representing
minimum speed of convergence, all of them are predefined
positive constants. In order to stabilize (1) and guarantee
|zi(0)| < |%0| can constrained the transient and steady
state bounds for the output tracking error zi, the new error
transformations is expressed as
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η1 = ln(
%1 + z1

%1 − z1

) (13)

Remark 3: The hyperbolic tangent function tanh−1(x) =
1
2 ln(1 + x/1− x) is used to design the new error transfor-
mations η1. According to the properties of tanh−1(·), if
η1

2(t) is bounded, then inequality |z1(t)| < %1(t) hold-
s. The tracking error z1 is constrained by the prescribed
performance function %1, and the transient and steady state
performance can be guaranteed with the desired trajectory
yr(t). This also means that the design of the Lyapunov
function in the form of (18) is reasonable.
The virtual control law α1 is defined as

α1=− η1

φ1

(a1 +
1

2
+

1

2C2
1

θ̂ψT1 (Z1)ψ1(Z1)) (14)

where Z1 = [x1, yr, ẏr, %1, %̇1], α1 is the function of
[x1, θ̂, yr, ẏr, %1, %̇1]

αi = − (ai +
1

2
)zi −

1

2C2
i

ziθ̂ψ
T
i (Zi)ψi(Zi)

αn = − (an +
1

2d2
)zn −

1

2C2
n

znθ̂ψ
T
n (Zn)ψn(Zn)

(15)

where ai, Ci(i = 1, 2, ..., n) and d are positive design
constants, Zi = [x̄n, θ̂, yr, ẏr · · · y(i)r , %1, %̇1 · · · %(i)1 ], αi are
the functions of [x̄n, θ̂, yr, ẏr · · · y(i)r , %1, %̇1 · · · %(i)1 ], θ̂ is the
estimate value of the adaptive law θ, which is specified as

θ= max
1≤i≤n

{
‖W ∗

i ‖
2

bm

}
(16)

θ̂ can be updated by

˙̂θ =
ε

2C2
1

η2
1ψ

T
1 ψ1 +

n∑
i=2

ε

2C2
i

z2
i ψ

T
i ψi − δθ̂ (17)

where ε and δ are positive design constants.

B. Event-triggered controller design

In this subsection, an adaptive fuzzy control design pro-
cedure based on backstepping technique will be proposed.
Furthermore, an event-triggered adaptive controller will be
presented.

Step 1: A positive definite Lyapunov is defined as follows:

V1 =
1

2
η2

1 +
bm
2ε
θ̃2 (18)

By combining (6), (13), (14) and (17), the derivative of V1(t)
can be obtained

V̇1 = η1φ1(f1 + h1x2 + λ1 − ẏr −
%̇1z1

%1

)− bm
ε
θ̃

˙̂
θ

(19)

Based on Lemma 3, it is not hard to obtain that η1φ1λ1 ≤
η21φ

2
1/2 + λ̄1/2. Using this inequality into (19) gives

V̇1 ≤ η1φ1(f1 + h1x2 +
η1φ1

2
− ẏr −

%̇1z1

%1

)

+
λ̄2

1

2
− bm

ε
θ̃

˙̂
θ

≤ η1φ1h1x2 + η1F1 +
λ̄2

1

2
− bm

ε
θ̃

˙̂
θ

(20)

where F1 = φ1[f1 + (η1φ1/2)− ẏr − (%̇1z1/%1)]. Since F1

contains the unknown function f(x̄1), F1 cannot be directly
used to construct virtual control signal α1. By employing a
fuzzy logic system WT

1 ψ1(Z1) to approximate F1, F1 can
be expressed as

F1 = W ∗T
1 ψ1(Z1) + τ1(Z1), |τ1(Z1)| ≤ ε̄1 (21)

where τ1(Z1) is the approximation error and ε̄1 is an
unknown positive constant. By Lemma 3, one has

η1F1 ≤
bm

2C2
1

η2
1

∥∥W ∗T
1

∥∥2

bm
ψT1 ψ1 +

C2
1

2
+
η2

1

2
+
ε̄2

1

2

≤ bm
2C2

1

η2
1θψ

T
1 ψ1 +

C2
1

2
+
η2

1

2
+
ε̄2

1

2
(22)

Based on (14), we can have

η1φ1α1 = −a1h1η
2
1 −

η2
1h1

2
− η2

1

2C2
1

h1θ̂ψ
T
1 ψ1

≤ −a1bmη
2
1 −

η2
1bm
2
− bm

2C2
1

η2
1 θ̂ψ

T
1 ψ1

(23)

Then, one can deduce from (20), (22), and (23) that

V̇1 ≤ η1φ1h1z2 +
bm

2C2
1

η2
1ψ

T
1 ψ1 +

C2
1

2
+
η2

1

2
+
ε̄2

1

2

− a1bmη
2
1 −

η2
1bm
2
− bm

2C2
1

η2
1 θ̂ψ

T
1 ψ1

+
λ̄2

1

2
− bm

ε
θ̃

˙̂
θ

≤ −a1bmη
2
1 + η1φ1h1z2

+
bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1 − ˙̂

θ) + ∆1

(24)

where

∆1 =
C2

1

2
+
λ̄21
2

+
ε̄21
2

Step 2: Similarly, the virtual control signal α2 will be
constructed to control the system. According to z2 = x2−α1,
we can define the Lyapunov function as follows:

V2=V1 +
1

2
z2

2 (25)
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By substituting (11) and (24), we obtain the time derivative
of V2 as

V̇2 ≤ −a1bmη
2
1 +

bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1 − ˙̂

θ) + ∆1

+ z2[h1η1φ1 + f2 + h2x3 +
z2

2

− ∂α1

∂x1

(f1 + h1x2) + z2(
∂α1

∂x1

)2

−
1∑

k=0

∂α1

∂%
(k)
1

%
(k+1)
1 −

1∑
k=0

∂α1

∂y
(k)
d

y
(k+1)
d

− ∂α1

∂θ̂

ε

2C2
1

η2
1ψ

T
1 ψ1 −

∂α1

∂θ̂

ε

2C2
1

z2
2ψ

T
2 ψ2

+
∂α1

∂θ̂
δθ̂]− ∂α1

∂θ̂
z2

n∑
l=3

ε

2C2
l

z2
l ψ

T
l ψl

+
λ̄2

2

2
+
λ̄2

1

4
(26)

Therefore, we can rewrite (26) as

V̇2 ≤ −a1bmη
2
1 +

bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1 − ˙̂

θ)

+ ∆1 −
∂α1

∂θ̂
z2

n∑
l=3

ε

2C2
l

z2
l ψ

T
l ψl

+ z2(h2z3 + h2α2 + F2) +
λ̄2

2

2
+
λ̄2

1

4

(27)

where

F2 = η1h1φ1 + f2 +
z2

2
− ∂α1

∂x1

(f1 + h1x2)

+ z2(
∂α1

∂x1

)2 −
1∑

k=0

∂α1

∂%
(k)
1

%
(k+1)
1

−
1∑

k=0

∂α1

∂y
(k)
d

y
(k+1)
d − ∂α1

∂θ̂

ε

2C2
1

ζ2
1ψ

T
1 ψ1

− ∂α1

∂θ̂

ε

2C2
1

z2
2ψ

T
2 ψ2 +

∂α1

∂θ̂
δθ̂

Similarly, based on (22), the following result holds

V̇2 ≤ −a1bmη
2
1 +

bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1 − ˙̂

θ)

+ ∆1 −
∂α1

∂θ̂
z2

n∑
l=3

ε

2C2
l

z2
l ψ

T
l ψl

+ h2z2z3 − bma2z
2
2 −

bm
2
z2

2

− bm
2C2

1

z2
2 θ̂ψ

T
2 ψ2 +

bm
2C2

1

z2
2θψ

T
2 ψ2

+
C2

2

2
+
z2

2

2
+
ε̄2

2

2
+
λ̄2

2

2
+
λ̄2

1

4

(28)

Then, (28) can be rewritten as

V̇2 ≤ −a1bmη
2
1 − a2bmz

2
2

+ h2z2z3 −
∂α1

∂θ̂
z2

n∑
l=3

ε

2C2
l

z2
l ψ

T
l ψl

+
bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1

+
ε

2C2
l

z2
l ψ

T
l ψl −

˙̂
θ) + ∆1 + ∆2

(29)

where

∆2 =
C2

2

2
+
ε̄2

2

2
+
λ̄2

2

2
+
λ̄2

1

4
(30)

Step i (i = 3, 4, · · · , n−1): Based on step 2, the iterative
method can be used to obtain

V̇i−1 ≤ −a1bmη
2
1 −

i−1∑
k=2

akbmz
2
k +

i−1∑
k=1

∆k

+ hi−1zi−1zi +
bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1

+
i−1∑
k=2

ε

2C2
k

z2
kψ

T
k ψk −

˙̂
θ)

−
i−2∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i

ε

2C2
l

z2
l ψ

T
l ψl

(31)

where

∆i =
C2
i

2
+
ε̄2
i

2
+
λ̄2
i

2
+

i−1∑
k=1

k∑
l=1

λ̄2
l

4
(32)

we can take the Lyapunov function as follows

Vi = Vi−1 +
z2
i

2
(33)
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and then taking the time derivative of Vi yields

V̇i ≤ −a1bmη
2
1 −

i−1∑
k=2

akbmz
2
k +

i−1∑
k=1

∆k

+
bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1 +

i−1∑
k=2

ε

2C2
k

z2
kψ

T
k ψk

− ˙̂
θ)−

i−2∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i+1

ε

2C2
l

z2
l ψ

T
l ψl

− ∂αi−1

∂θ̂
zi

n∑
l=i+1

ε

2C2
l

z2
l ψ

T
l ψl

+ zi[hi−1zi−1

− ε

2C2
i

ziψ
T
i ψi

i−2∑
k=1

∂αk

∂θ̂
zk+1 + fi

+ hixi+1 +
zi
2

−
i−1∑
k=1

∂αi−1

∂xk
(fk + hkxk+1)

+ zi

i−1∑
k=1

(
∂αi−1

∂xk
)
2

−
i−1∑
k=0

∂αi−1

∂%
(k)
1

%
(k+1)
1

−
i−1∑
k=0

∂αi−1

∂y
(k)
d

y
(k+1)
d

− ∂αi−1

∂θ̂

ε

2C2
1

η2
1ψ

T
1 ψ1

− ∂αi−1

∂θ̂

i∑
k=2

ε

2C2
k

z2
kψ

T
k ψk

+
∂αi−1

∂θ̂
δθ̂] +

λ̄2
i

2
+

i−1∑
k=1

λ̄2
k

4

(34)

Then, we can write

V̇i ≤ −a1bmη
2
1 −

i−1∑
k=2

akbmz
2
k +

i−1∑
k=1

∆k

+
bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1

+
i−1∑
k=2

ε

2C2
k

z2
kψ

T
k ψk −

˙̂
θ)

−
i−1∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i+1

ε

2C2
l

z2
l ψ

T
l ψl

+ zi(hixi+1 + Fi) +
λ̄2
i

2
+

i−1∑
k=1

λ̄2
k

4

where

Fi = hi−1zi−1 −
ε

2C2
i

ziψ
T
i ψi

i−2∑
k=1

∂αk

∂θ̂
zk+1 + fi

−
i−1∑
k=1

∂αi−1

∂xk
(fk + hkxk+1)

+ zi

i−1∑
k=0

(
∂αi−1

∂xk
)
2

−
i−1∑
k=1

∂αi−1

∂%
(k)
1

%
(k+1)
1

−
i−1∑
k=0

∂αi−1

∂y
(k)
d

y
(k+1)
d − ∂αi−1

∂θ̂

ε

2C2
1

η2
1ψ

T
1 ψ1

− ∂αi−1

∂θ̂

i∑
k=2

ε

2C2
k

z2
kψ

T
k ψk +

∂αi−1

∂θ̂
δθ̂

Similarly, according to (22) and (32), it produces

V̇i ≤ −a1bmη
2
1 −

i∑
k=2

akbmz
2
k +

i∑
k=1

∆k + zizi+1

+
bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1 +

i∑
k=2

ε

2C2
k

z2
kψ

T
k ψk −

˙̂
θ)

−
i−1∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i+1

ε

2C2
l

z2
l ψ

T
l ψl

(35)

Remark 4: This paper only designs one adaptive law ˙̂
θ

in each step of virtual control input, which is similar to
literature [31]. This greatly reduces computational complex-
ity. Because of the term (∂αi−1/∂θ̂)

˙̂
θ contains the terms

zi+1, · · · , zn, the fuzzy logic system Wi
Tψi(Zi) can not be

directly used to approximate it. To overcome this difficulty,
we divided the therm (∂αi−1/∂θ̂)

˙̂
θ into two parts in (34):

(∂αi−1/∂θ̂)[(ε/2C
2
1 )η21ψ

T
1 ψ1+

∑i
k=2 (ε/2C2

k)z2kψ
T
k ψk−δθ̂]

and (∂αi−1/∂θ̂) [
∑n
k=i+1 (ε/2C2

k)z2kψ
T
k ψk]. The first term

can be summed up in the package function Fi, and the second
part will be dealt with in the later design steps.

Step n: The event triggering mechanism is used to design
the actual controller v(t) in step n. Now, select the Lyapunov
function candidate Vn as

Vn = Vn−1 +
z2
n

2
(36)
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The derivative of Vn can be obtained

V̇n ≤ −a1bmη
2
1 −

n−1∑
k=2

akbmz
2
k +

n−1∑
k=1

∆k

+
bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1

+
n−1∑
k=2

ε

2C2
k

z2
kψ

T
k ψk −

˙̂
θ)

+ zn[hn−1zn−1

− ε

2C2
n

znψ
T
nψn

n−1∑
k=1

∂αk

∂θ̂
zk+1 + fn

+ hnGσv + hng +
zn
2

−
n−1∑
k=1

∂αn−1

∂xk
(fk + xk+1)

+ zn

n−1∑
k=1

(
∂αn−1

∂xk
)
2

−
n−1∑
k=0

∂αi−1

∂%
(k)
1

%
(k+1)
1

−
n−1∑
k=0

∂αn−1

∂y
(k)
d

y
(k+1)
d − ∂αn−1

∂θ̂
δθ̂]

+
λ̄2
n

2
+

n−1∑
k=1

λ̄2
k

4

(37)
Therefore, we can rewrite (37) as

V̇n ≤ −a1bmη
2
1 −

n−1∑
k=2

akbmz
2
k +

n−1∑
k=1

∆k

+
bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1

+
n−1∑
k=2

ε

2C2
k

z2
kψ

T
k ψk −

˙̂
θ)

+ zn(hnGσv + hng + Fn)

+
λ̄2
n

2
+

n−1∑
k=1

λ̄2
k

4

(38)

where

Fn = hn−1zn−1 −
ε

2C2
n

z2
nψ

T
nψn

n−1∑
k=1

∂αk

∂θ̂
zk+1

+ fn +
zn
2
−

n−1∑
k=1

∂αn−1

∂xk
(fk + hkxk+1)

+ zn

n−1∑
k=1

(
∂αn−1

∂xk
)
2

−
n−1∑
k=0

∂αn−1

∂%
(k)
1

%
(k+1)
1

−
n−1∑
k=0

∂αn−1

∂y
(k)
d

y
(k+1)
d − ∂αn−1

∂θ̂
δθ̂

Next, the adaptive controller is given as

ω(t) = αn − µ̄ tanh

(
znµ̄

γ

)
(39)

The triggering event is defined as

v(t) = ω(ts), ∀t ∈ [ts, ts+1) , p ∈ Z+

ts+1 = inf
{
t ∈ R+ ||ev(t)| ≥ µ

} (40)

where µ, γ and µ̄ > µ are all ensure positive constant, and
the measurement error is given as

ev(t) = ω(t)− v(t) (41)

Similar to the analysis of [24], the inequality |ω(t)− v(t)| ≤
µ holds for the time t ∈ [ts, ts+1), so there exists a
continuous function χ(t), which satisfies |χ(t)| ≤ 1 with
χ(ts) = 0 and χ(ts+1) = ±1, the following expression holds

v(t) = ω(t)− χ(t)µ (42)

Remark 5: µ is the fixed threshold. The value of µ needs
to make the system stable and has the least number of events
triggered at the same time

By taking (6), (11), (39) and v(t) = ω(t) − χ(t)µ into
consideration, one has

V̇n ≤ −a1bmη
2
1 −

n−1∑
k=2

akbmz
2
k +

n∑
k=1

∆k

+
bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1 +

n−1∑
k=2

ε

2C2
k

z2
kψ

T
k ψk

− ˙̂
θ) + znhnGσαn + znhng +

bm
2C2

n

z2
nθψ

T
nψn

+ znhnGσ

(
−µ̄ tanh

(
znµ̄

γ

)
− χ(t)µ

)
(43)

Note that the hyperbolic tangent function tanh(·) has the
following property [35]:

0 ≤ |ι| − ι tanh

(
ι

γ

)
≤ 0.2785γ (44)

where γ > 0 and ι ∈ R, eventually we can get

V̇n ≤ −a1bmη
2
1 −

n−1∑
k=2

akbmz
2
k +

n∑
k=1

∆k

+
bm
ε
θ̃(

ε

2C2
1

η2
1ψ

T
1 ψ1

+
n−1∑
k=2

ε

2C2
k

z2
kψ

T
k ψk −

˙̂
θ)

+ znhnGσαn + znhng

+
bm

2C2
n

z2
nθψ

T
nψn + 0.2785γhnGσ

(45)
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By using the virtual control law αn and Lemma 3, it is easy
to obtain the following inequalities

znhnGσαn ≤ −anbmzn2 − hnGσz
2
n

2d2

− bm
2C2

n

z2
nθ̂ψ

T
nψn

(46)

znhng ≤
hnGσz

2
n

2d2
+
bMd

2ḡ2

2bm
(47)

where d > 0 is a design parameter. Combing (45) with (47)
and (46), together with the fact θ̃θ̂ ≤ (−1/2)θ̃2 + (1/2)θ2

result in

V̇n ≤ −a1bmη
2
1 −

n∑
k=2

akbmz
2
k −

bmδ

2ε
θ̃2 + ρ0 (48)

where ρ0 = (bmδ/2ε)θ
2 +

∑n
k=1 ∆k + 0.2785γdM +

bM/d
2ḡ22bm. Defining γ0 = min{2bmai, δ, i =

1, 2, · · · , n}, (48) can be rewritten as

V̇n ≤ γ0V + ρ0 (49)
Theorem 1: Consider the uncertain nonlinear systems (1),

the adaptive law (16) and the event-trigger mechanism (40)
controller. If the assumptions 1-3 are satisfied, then the inter-
execution intervals {ts+1 − ts} for ∀s ∈ Z+ are lower
bounded by a positive constant t∗ > 0 such that Zeno-
behavior does not occur.

Proof 1: In order to prove that there exists a constant t∗ >
0 such that {ts+1− ts} ≥ t∗,∀s ∈ Z+, by recalling ev(t) =
ω(t)− v(t),∀t ∈ (ts, ts+1), we obtain

d

dt
|ev| =

d

dt
(ev ∗ ev)

1
2 = sign(ev)ėv ≤ |ω̇| (50)

It can be seen from (39) that ω̇(t) is a function of the
variables, x, θ̂ and ψ(Zn), where x and θ̂ have been proved to
be bounded, and ψ(Zn) is a differentiable Gauss function, so
ω̇(t) must be a continuous function. Hence, there must exist
a constant ω̄ > 0 such that |ω̇(t)| < ω̄. From ev(ts) = 0
and limt→ ts+1

ev(t) = µ, we obtain that the lower bound
of inter-execution interval t∗ must satisfy t∗ ≥ m/s, the
Zeno-behavior [36] is successfully avoided.

The proof of the Theorem is therefore completed.
Remark 6: Based on the above proof, the designed adap-

tive controller (14)-(15) with parameter update law (17)
and trigger mechanism (39), (40) not only ensures that
the tracking error does not violate the preset performance
function, but also ensures that all signals of the closed-
loop system are bounded, and also realizes the event trigger
mechanism well.

IV. SIMULATION

In this section, the effectiveness of the proposed control
method is verified by the following numerical simulation
example.

A second-order nonlinear system with unknown control
direction is considered as follows:

ẋ1 = x2 + λ1,

ẋ2 = A cos(x1) +Bu+ λ2,

y = x1

(51)
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Fig. 1. Desired signal yr(t) and system output y(t) .
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Fig. 2. System state x2.

where x1 and x2 are the state variables, y is the system
output, λ1 and λ2 are the disturbance, and u is the actual
control input, which defined in (2). And the nonsymmetrical
input saturation limits are chosen as umax = 500 and
umin = −400, respectively.

To verify the tracking performance of the proposed al-
gorithm, the reference signal is chosen as yr = sin(t).
The parameters of the prescribed performance function %1
is specified as %0 = 1, %∞ = 0.04 and ` = 0.4. The control
parameters are selected as A = 9, B = 0.9, C1 = 50,
C2 = 50, a1 = 100, a2 = 70, d = 1, ε = 1, δ = 1,
γ = 10, µ = 0.1, µ̄ = 7.The disturbances are taken as
λ1 = 0.5, λ2 = 0.8. The initial conditions are taken as
[x1(0), x2(0)]

T
= [0.2− 0.5]

T and θ̂(0) = 0. The simulation
results are shown by Figs. 1-8. Desired signal yr(t) and
system output y(t) are shown in Fig. 1. Fig. 2 displays the
system state x2. The tracking error of the proposed method
is presented in Fig. 3. The bounded curve of adaptive rate θ̂
is shown in Fig. 4. The trajectories of event-triggered control
signal v(t) and continuous control signal ω(t) are shown in
Fig. 5. Figs. 6 and 7 show the event-triggered control input
v(t) and the saturated control input u(t), respectively. The
time intervals of each event are shown in Fig. 8.
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Fig. 3. Tracking error z1 under the prescribed performance constraint %1.
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Fig. 4. Adaptive law θ̂.
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Fig. 5. The trajectories of event-triggered control signal v(t) and contin-
uous control signal ω(t).

V. CONCLUSION

In this paper, a new control scheme based on event
triggering is designed for strictly feedback uncertain nonlin-
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Fig. 6. Event-triggered control signal v(t).
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Fig. 7. Actual control signals u(t) with saturation constraints.
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Fig. 8. Time interval of triggering events.

ear systems with input saturation constraints. The unknown
function is approximated by adaptive fuzzy control, a new
error exchange function is proposed, and the tracking error
is constrained by the preset constraint function. An event-
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triggered fixed threshold strategy is designed, which is
theoretically and experimentally proved to be feasible and
effective. How to extend the algorithm to nonaffine stochastic
nonlinear control system and other event triggering strategies
will be a further topic.
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