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Abstract—The total variation (TV) regularization technique
is a popular method for magnetic resonance imaging (MRI)
reconstruction. In this paper, the generalized minimax concave
(GMC) penalty function is used to construct a nonconvex
regularized MRI model, which can effectively prevent the
systematic underestimation characteristic of the standard TV
regularization. In addition, the cost function can maintain
convexity under certain conditions. To solve the new non-convex
model, we describe a symmetric alternating direction method
of multipliers (S-ADMM) algorithm, which is faster than the
original ADMM. The experiment results show the effectiveness
of the proposed model and algorithm.

Index Terms—MRI reconstruction, ADMM, TV regulariza-
tion, minimax-concave penalty.

1. INTRODUCTION

THE properties of non-radiation and non-ionizing make
magnetic resonance imaging (MRI) have attracted con-

siderable attention in the fields of medical. However, several
constraints, such as nuclear relaxation times, signal to noise,
power absorption, and so on, make MRI be a time consume
procedure. Moreover, the longer the MRI, the more uncom-
fortable the patient will be, and the higher the possibility of
artifacts will increase. Therefore, to cut back the acquisition
time of MRI, a lot of techniques [1]-[6] have been developed.
Among them, compressed sensing technology is particularly
prominent and outstanding [5]-[6], since it is more likely
to reconstruct the exact signal than the traditional Shannon-
Nyquist sampling criterion demands when the signal is
sparse, and some assumptions are met. Compressed sensing
has become the focus of the MRI community since the
invention of the pioneering work compression sensing MRI
[7]-[8].

In MRI field, researchers commonly formulate the data
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acquisition as

y = RF︸︷︷︸
A

x + ε = Ax + ε (1.1)

where x and ε are the desired MR image and
noise/disturbance, respectively; R and F denote the under-
sampling operator and the Fourier operator, respectively; y
represents the undersampled k-space measurement, and its
scale is much smaller than that of x. MR image reconstruc-
tion aims to revover x from y. Compressed sensing based
reconstruction techniques commonly model the reconstruc-
tion as

min
x
λ‖x‖TV +

1

2
‖y −Ax‖22, (1.2)

where ‖x‖TV = ‖Dx‖1 (D is finite difference operator),
λ > 0 is the regularization parameter. If the matrix A satisfies
some certain conditions, the classical TV regularization is
described as a convex optimization problem with `1-norm
regularization [6]. The minimizer of cost function is unique.
However, the use of `1-norm regularization suffers from two
limitations [9]-[10]: 1) the estimation for large coefficients
may be biased, 2) it is unable to recover a signal by the least
measurements. Therefore, many non-convex regularizations
have been developed for dealing with these issues [11]-[20].
For instance, the `p-norm regularization was studied in [11]-
[15], and its significantly better recovery performance than
`1-regularization was verified. A kernel norm model [16] and
`1-`2 model [17] is considered to deal with color image
restoration, respectively. Inspired by the Moreau envelope
and minimax-concave penalty, a nonseparable non-convex
TV regularization was proposed in [18] and extended in
[19]-[20]. Unfortunately, these non-convex regularizations
cannot be directly applied to MRI models [22]. Based on
the generalization of the minimax-concave (GMC) penalty,
this paper proposes a non-convex regularization, particularly
for MRI model. Under mild assumptions, the proposed non-
convex regularization can keep convexity, and make the
loss function be convex. Therefore, the corresponding MRI
model can be solved by some popular convex optimiza-
tion algorithms, which is another focus of researchers for
MR image reconstruction [23]-[39]. Many fast algorithms
have been developed using the structure and regularizers of
the system model in MRI, such as augmented lagrangian
methods (ALM) [23]-[24], primal-dual methods [25]-[26],
splitting methods [27]-[29], the fast iterative soft threshold-
ing algorithm (FISTA) [30]-[32], regularized Hermitian &
skew-Hermitian splitting (RHSS) [33], alternating direction
method of multipliers (ADMM) algorithm [34]-[38] etc. For
more detailed discussion, please see [39]. In this paper, we
will solve the proposed model by ADMM, which is simple
in structure similar to the ALM and equivalent to some other
splitting algorithms under certain conditions.
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The main contribution of this article can be summarized
as following: 1) We construct a more accurate MRI re-
construction non-convex model via generalized minimax-
concave (GMC) penalty function. The most important feature
of the new model follows “convex non-convex” property,
that is, although the GMC penalty is non-convex, it’s easy
to show the penalty maintain the convexity of the objective
function under certain conditions. 2) To solve the proposed
model, we introduce symmetric ADMM method with large
step sizes. By choosing some appropriate values of (r, s),
the symmetric ADMM method is better than the original
ADMM. 3) In order to evaluate the performance, a number
of experiments are carried out with different sampling masks
and MR datasets.

The rest of this paper is organized as follows. Section
2 introduces the non-convex MRI reconstruction model. In
Section 3, a new symmetric ADMM algorithm is present-
ed. Section 4 contains experimental results. At last, some
conclusions are made in Section 5.

2. NON-CONVEX MRI RECONSTRUCTION MODEL

In this section, we recalled the definition of minimax-
concave (MC) function, and defined the generalized
minimax-concave (GMC) function. Second, we defined GM-
CTV regularization using the GMC penalty. Finally, we
proposed a non-convex regularization model for MRI recon-
struction and showed its properties.

Definition 2.1. [18] The MC function φ : R → R is
defined as {

φ(x) = |x| − s(x),

s(x) = min
v∈R

{
|v|+ 1

2 (x− v)2
}
.

(2.3)

The function s(x) is also called Huber function. The
Fig.1(a) illustrates the function φ(x) corresponding to s(x).
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Fig. 1. MC and GMC penalty function

Definition 2.2. For ∀b ∈ R, the GMC penalty function
φb : R→ R can be expressed as

{
φb(x) = |x| − sb(x),

sb(x) = min
v∈R

{
|v|+ 1

2b
2(x− v)2

}
.

(2.4)

From the definition of the GMC penalty function and
the description of Fig.1(b), naturally, we consider replacing
x with gradient Dx in equation (2.4), which leads to our
definition of GMCTV as follows.

Definition 2.3. For ∀b, the GMC penalty function of non-
convex TV regularizer: ‖x‖GMCTV : RN → R

‖x‖GMCTV = Ψ(x) = ‖Dx‖1 − sb(x),

sb(x) = min
v∈RN

{
‖v‖1 + b2

2 ‖Dx− v‖22
}
,

(2.5)

where D is the first-order difference matrix.

For the function sb(x), it has the following properties.

Propsition 2.1. Let α ≥ 0, the function sb(x) is convex,
differentiable and satisfies

0 6 sb(x) 6 ‖Dx‖1 ∀x ∈ RN . (2.6)

Proof: 1) It’s easy to see that the function sb(x) is convex
from the definition. Furthermore, we can obtain the function
sb(x) is differentiable in view of the issue [18].
2) Obviously, sb(x) ≥ 0 is true. From (2.5), for all v, we
can obtain

sb(x) 6 ‖v‖1 + (b2/2)‖Dx− v‖22.

Let v = Dx, it implies that sb(x) 6 ‖Dx‖1, i.e., the
inequality (2.6) holds. �

Then, we consider the following formulation for MRI

min
x
λΨ(x) +

1

2
‖y −Ax‖22, (2.7)

where Ψ(x) is given by (2.5), λ > 0 is called regularization
parameter. For Ψ(x) is non-convex, the model (2.7) is non-
convex model. If the parameter b is correctly limited, the
model (2.7) has the following characteristics:

Theorem 2.1. Let λ > 0, α > 0 , define Gb(x) as

Gb(x) =
1

2
‖y −Ax‖22 + λΨ(x), (2.8)

if ATA− λb2DTD � 0, then Gb(x) is convex.
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Proof: The cost function can be expressed as

Gb(x) =
1

2
‖y −Ax‖22 + λ‖Dx‖1 − λsb(x)

=
1

2
‖y −Ax‖22 + λ‖Dx‖1

− λmin
v

{
‖v‖1 +

b2

2
‖Dx− v‖22

}
= max

v

{1

2
‖y −Ax‖22 + λ‖Dx‖1

− λ‖v‖1 −
λb2

2
‖Dx− v‖22

}
= max

v

{1

2
xT (ATA− λb2DTD)x

+ λ‖Dx‖1 + g(x,v)
}

=
1

2
xT (ATA− λb2DTD)x

+ λ‖Dx‖1 + max
v

g(x,v),

where g(x,v) is affine of x, which implies maxv g(x,v)
is convex. Hence, if ATA − λb2DTD � 0 holds, the cost
function Gb(x) is a convex function. �

3. PROPOSED ALGORITHM

We rewrite the problem (2.7) as following:{
min
x
λ(‖Dx‖1 −min

v
{‖v‖1+

α
2 ‖Dx− v‖22}) + 1

2‖y −Ax‖22,
(3.9)

where α = b2 ≥ 0. The problem (3.9) can be equivalently
expressed as

min
x
λΨ(z) +

1

2
‖y −Ax‖22, s.t z = Dx. (3.10)

Hence, the augmented Lagrangian function of (3.10) can be
written as{

L(x, z,w) = λΨ(z) + 1
2‖y −Ax‖22

−wT(z −Dx) + ρ
2‖z−Dx‖22,

(3.11)

where Ψ(z) = ‖z‖1 − minv{‖v‖1 + α
2 ‖z− v‖22}, w is

a Lagrange multiplier and ρ > 0 is a penalty parameter.
According to the standard ADMM, the iterative scheme of
the problem (3.10) can be expressed as solving the following
sub-problems

xk+1 = argminL(x, zk,wk)

= argminx{ 12‖y −Ax‖22 + wkTDx

+ ρ
2‖z

k −Dx‖22
}
,

zk+1 = argminL(xk+1, z,wk)

= argminz{λΨ(z)−wkTz

+ ρ
2‖z−Dxk+1‖22

}
,

wk+1 = wk − ρ(Dxk+1 − zk+1).

(3.12)

As analyzed in [40], the primal variables x and z should be
treated fairly. Hence, we consider using symmetric ADMM
(S-ADMM ) to solve the problem (3.10). Since Lagrange
multipliers are updated twice at each iteration, its perfor-
mance is often better than that of the original ADMM

method. The S-ADMM iterative scheme for (3.10) can be
written as

xk+1 = argminL(x, zk,wk)

= argminx{ 12‖y −Ax‖22 + wkTDx

+ρ
2‖z

k −Dx‖22
}
,

wk+ 1
2 = wk − sρ(Dxk+1 − zk),

zk+1 = argminL(xk+1, z,wk+ 1
2 )

= argminz{λΨ(z)−w(k+ 1
2 )Tz

+ρ
2‖z−Dxk+1‖22

}
,

wk+1 = wk+ 1
2 − rρ(Dxk+1 − zk+1),

(3.13)

where the feasible region of s, r is

(s, r) ∈ D =

{
s ∈ (−1, 1), r ∈

(
0,

1 +
√

5

2

)
& r + s > 0, |s| < 1 + r − r2

}
.

Now, we show how to solve the subproblems in (3.13).
For x-minimization step, the optimization subproblem for
xk+1 can be solved via the first-order optimality optimality
conditions,

xk+1 = (ρDTD + ATA)−1Ŵk, (3.14)

where Ŵk = (ρDTzk + ATy −DTwk). In the field of M-
RI, A = RF ( F is the Fourier operator such that F = F−1

), and DTD is circulate matrix which can diagonalize via
Fourier transform. For simplicity, we can get the optimal
solution of xk+1 through two Fourier transforms.

For z-minimization sub-problem:

zk+1 = minz{λΨ(z)− λw(k+ 1
2 )Tz

+
λρ

2
‖z−Dxk+1‖22}

= minz{Ψ(z)

+
ρ

2
‖z− (Dxk+1 +

wk+ 1
2

ρ
)‖22}

(3.15)

Follows the reference [18], we can write the iteration proce-
dure below

tk = Dxk+1 + wk+ 1
2

ρ

+ α
ρ

(
zk − tvd(zk; 1/α)

)
zk+1 = tvd(tk; 1

ρ )

(3.16)

where α is nonconvexity parameter,

tvd(y;λ) = min
x
{λ‖x‖1 +

1

2
‖y − x‖22}. (3.17)

As shown in theorem 2.1, the convexity of the objective
function is controlled by the value of α. For problem (3.17),
we can use iterative shrinkage threshold algorithm (ISTA)
[30]-[31] to solve.

Now, we propose an iterative algorithm for solving the
problem (3.10). Since the GMCTV regular term is used
in the model (3.10) and the symmetry property is used in
the algorithm, we call this algorithm the symmetrization-
GMCTV method (S-GMCTV).

Algorithm (S-GMCTV):
Step 0: Initialization and date.
Input parameters α ≥ 0, ρ > 0, λ > 0, (r, s) ∈ D, the

tolerance ε > 0. Given (x, z,w) := (x0, z0,w0), let k := 0;
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Step 1: Compute the new iterate by (3.18);
xk+1 = (ATA + ρDTD)−1Ŵk,

wk+ 1
2 = wk − rρ(Dxk+1 − zk),

zk+1 = tvd(tk; 1
ρ ),

wk+1 = wk+ 1
2 − sρ(Dxk+1 − zk+1),

(3.18)

where Ŵk = (ρDTzk + ATy −DTwk),

tk = Dxk+1 + wk+ 1
2

ρ + α
ρ

(
zk − tvd(zk; 1/α)

)
.

Let w̃k+1 = (xk+1, zk+1,wk+1).
Step 2: If ‖w̃k − w̃k+1‖22 ≤ ε, STOP; otherwise let k =:

k + 1. Go back to step 1.
Note: If s = 0, r = 1, the S-ADMM is the classical

ADMM algorithm. The performance of the algorithm can be
improved by selecting an appropriate (s, r) ∈ D value.

4. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed S-GMCTV method through some numerical exper-
iments, and compare the proposed method with those of
classic TV [34] and MCTV [22]. All of our test experiments
are performed on MATLAB R2015a on the PC with Intel(R)
Core(TM) 2.2 GHz CPU and and 8.0 GB RAM.

MRI test images recovery performance was evaluated by
peak signal-to-noise ratio (PSNR) and relative error (RE),
which are respectively defined as

PSNR = 10lg

(
‖x− x‖22
‖xk − x‖22

)
,RE =

∥∥xk − x
∥∥2
2

‖x‖22
.

where x is the original image, x denotes the mean intensity
value of x, xk is the restored image.

The sampling templates and the test MR images are shown
in Fig. 2: (a) is the radial sampling with 10 trajectory lines.
(b) is the pseudo-radial mask with 84 readout lines. (c) is
Cartesian under-sampling mask with a sampling rate of 34%.
(d)-(f) are test images (sizes 256×256 ): Shepp Logan, Brain
angiography, Brain respectively. More details can be found
in [22], [41]. We set the parameters as: λ = 0.01, δ1 = δ2 =
0.0001, ρ = 150, (s, r) = (0.382, 1.618). In order to ensure
that the objective function in the MCTV (or GMCTV) model
is convex, let α = 0.05/λ. To achieve higher PSNR, (s, r)
could be set within the range of D.

The numerical experiments are divided into four parts. In
the first part of the numerical experiment, we showed the
reconstruction effects of different MRI test images and three
sampling templates under different models. From Figs 3-5,
we can see the visual comparison of MRI reconstruction
results under the different models. In Fig. 3, Shepp Logan
phantom is chosen to evaluate the performance of the pro-
posed S-GMCTV method. We compare with the three recon-
struction models (TV, MCTV, S-GMCTV) proposed above
under the radial sampling template. From the results, we can
see that our S-GMCTV method reconstructed Shepp Logan
image with PSNR = 29.48, which higher TV, MCTV
methods. That is to say, The performance of S-GMCTV is
better than that of TV and MCTV. Because the Cartesian
undersampling is k-space data, and is most widely used in
practice. For MR image Brain, we test the image by using
the Cartesian template mask under 0.34 sampling rate. The

(a) Radial sampling (d) Shepp Logan

(b) Cartesian sampling (e) Brain

(c) pseudo-radial masks (f) Brain angiography

Fig. 2. Experimental datasets

reconstruction results were shown in Fig. 4. Then, we test S-
GMCTV method on Brain angiography image under pseudo-
radial masks with 84 readout lines. The reconstruction and
error images were shown in Fig. 5. Through the visual
comparison and analysis of the reconstruction results of three
different methods shown in Figs. 3-5, it can conclude that
the S-GMCTV always obtains better reconstruction results
than the other two reconstruction models.

Table I reports the PSNR and RE of Brain Brain (256 ×
256) and Brain angiography Brain (256×256) under a radial
sampling template with 10 lines, pseudo-radial masks with
84 readout lines and Cartesian undersampling mask of sam-
pling rate 34%. Compared with TV and MCTV, S-GMCTV
method is more trustworthy and has better performance in
testing MR images recovery, because it attained the higher
PSNR and lower RE.

In the second part, we chose the Brain angiography image
and radial sampling mask to evaluate the performance of the
sampling rates. In the Fig. 6, the curves illustrate comparison
of assessment indices PSNR and RE versus sampling rate
under the different methods. Fig. 6(a) shows the RE curve
versus the sampling rate. The curve shows that the value
of RE decreases with the increase of sampling rate. And it
can be observed that the RE value of S-GMCTV is lower
than that of TV and MCTV under the same sampling rate.
Fig. 6(b) gives the PSNR curve versus the sampling rate.
The curve indicates that the value of PSNR increase with
the increase of sampling rate. And it can be observed that
the PSNR value of S-GMCTV is higher than that of TV and
MCTV under the same sampling rate.
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Shepp Logan (256) TV, PSNR=22.2405 MCTV, PSNR=25.6142 S-GMCTV, PSNR=29.4846

Radial sampling TV, RE=0.313761 MCTV, RE=0.21277 S-GMCTV, RE=0.136267

Fig. 3. Different reconstruction results of Shepp Logan (256× 256) under Radial sampling

Brain(256) TV, PSNR=32.7598 MCTV, PSNR=33.1972 S-GMCTV, PSNR=36.9103

Cartesian sampling TV, RE=0.059325 MCTV, RE=0.0564112 S-GMCTV, RE=0.0367886

Fig. 4. Different reconstruction results of Brain (256× 256) under Cartesian sampling

Brain angiography(256) TV, PSNR=34.5623 MCTV, PSNR=34.7682 S-GMCTV, PSNR=38.0899

pseudo-radial masks TV, RE=0.0943128 MCTV, RE=0.0921039 S-GMCTV, RE=0.0628333

Fig. 5. Different reconstruction results of Brain angiography (256× 256) under pseudo-radial masks
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Fig. 6. PSNR and RE versus sampling rate on Brain an-
giography with three reconstruction models under the radial
sampling template

In the third part of the numerical experiment, we select
some representative values from (s, r) ∈ D such that
the symmetric-ADMM is slightly faster than the original

ADMM (i.e. (s, r) = (0, 1)). For r ∈
(

0, 1+
√
5

2

)
, we

mainly consider r ≈ 1.618 (the golden ratio). The numerical
experimental results from Table II show that the point

(s, r) = (0, 382, 1.618) is better some other points such as
(s, r) = (0, 1.618) and (s, r) = (−0, 382, 1.618). Hence, for
the sake of brevity, we have omitted the comparison with
other points.

At the end of the experiment, we choose two 512×512 test
images to illustrate the effectiveness of the proposed method.
In Fig. 7, the Shepp Logan data (512) were measured using
a radial sampling template with 15 lines under 3% sampling
rate. It is obvious that S-GMCTV achieves about 3.6dB and
7.1dB performance gain as compared with MCTV and TV,
respectively. For Brain (512), random sampling template with
10% sampling rate and 0.05 sampling radius was employed.
Fig. 8 shows clearly that the reconstruction result of S-
GMCTV method is superior than MCTV and TV methods.

5. CONCLUSION

In this paper, the GMCTV non-convex regularization term
is constructed by using minimax-concave (GMC) penalty
function, and we apply it to MR image reconstruction.
Compared with classical TV regularizer, the GMCTV reg-
ularization term not only preserves the convexity of the
objective function but also avoids the suboptimal local solu-
tions. In order to accelerate the imaging speed, we introduce
symmetric ADMM method with large step sizes. Numerical
experiments show that the S-GMCTV method proposed in
this paper can significantly improve the MRI reconstruction
effect. In the future, this proposed method should be tested
for more sparse systems such as dynamic magnetic resonance
imaging etc.
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TABLE I
THE VALUE OF PSN AND RE UNDER DIFFERENT SAMPLING TEMPLATES.

Test Image Template Method RE PSNR
TV 0.2011 22.1566

Radial sampling MCTV 0.1874 22.7697
S-GMCTV 0.1793 23.1534

TV 0.0593 32.7598
Brain Cartesian sampling MCTV 0.0564 33.1972

S-GMCTV 0.0368 36.9103
TV 0.0550 33.4165

pseudo-radial masks MCTV 0.0580 32.961
S-GMCTV 0.0426 35.6429

TV 0.4045 21.9149
Radial sampling MCTV 0.3628 22.8605

S-GMCTV 0.3384 23.4650
TV 0.1169 32.6999

Brain angiography Cartesian sampling MCTV 0.0955 34.4580
S-GMCTV 0.0629 38.0761

TV 0.0943 34.5623
pseudo-radial masks MCTV 0.0921 34.7682

S-GMCTV 0.0628 38.0899
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TABLE II
RECONSTRUCTION RESULTS UNDER DIFFERENT VALUES OF (r, s)

Test Image Template S-GMCTV RE PSNR
s = 0.000, r = 1.000 0.1691 27.6088

Shepp Logan Radial sampling s = 0.000, r = 1.618 0.1689 27.6190
s = −0.382, r = 1.618 0.2043 25.9681
s = 0.382, r = 1.618 0.1363 29.4846
s = 0.000, r = 1.000 0.0385 36.5201

Brain Cartesian sampling s = 0.000, r = 1.618 0.0384 36.5410
s = −0.382, r = 1.618 0.0372 36.8152
s = 0.382, r = 1.618 0.0368 36.9103
s = 0.000, r = 1.000 0.0672 37.5034

Brain angiography pseudo-radial masks s = 0.000, r = 1.618 0.0667 37.5655
s = −0.382, r = 1.618 0.0643 37.8932
s = 0.382, r = 1.618 0.0628 38.0899

TV, PSNR=25.4064 MCTV, PSNR=28.9204 S-GMCTV, PSNR=32.4857

Radial sampling TV, RE=0.21732 MCTV, RE=0.145011 S-GMCTV, RE=0.0961913

Fig. 7. Different reconstruction results of Shepp Logan (512× 512) under Radial sampling

Brain (512) TV, PSNR=30.6079 MCTV, PSNR=30.5835 S-GMCTV, PSNR=32.2301

Random sampling TV, RE=0.123421 MCTV, RE=0.123768 S-GMCTV, RE=0.102395

Fig. 8. Different reconstruction results of Brain (512× 512) under Random sampling
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