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An SCADTYV Nonconvex Regularization Approach
for Magnetic Resonance Imaging

Zhijun Luo, Zhibin Zhu, and Benxin Zhang

Abstract—In this paper, we propose a non-convex regulariza-
tion magnetic resonance imaging (MRI) reconstruction model
via the smoothly clipped absolute deviation (SCAD) penalty
function, which can effectively improve the fitting performance
and prevent systematic underestimation compared with the
classical total variation (TV) regularization. Then, we choose the
alternating direction method of multipliers (ADMM) algorithm
to solve the non-convex regularization model. The experiment
results show that the efficiency of the proposed model and
algorithm in comparison with some other typical methods.

Index Terms—MRI reconstruction, TV regularization, SCAD
penalty function, ADMM.

1. INTRODUCTION

AGNETIC resonance imaging (MRI) has been widely

used in the medical field due to its non-radiation and
non-ionizing nature, as well as its powerful capability in
providing rich anatomical and functional information. How-
ever, several constraints, such as nuclear relaxation times,
signal to noise, power absorption, and so on, make MRI be
a time-consuming procedure. Moreover, the longer the MRI,
the more uncomfortable the patient will be, and the higher
the possibility of artifacts will increase. Therefore, to cut
back the acquisition time of MRI, a lot of techniques (such
as multi coils [1]-[3], parallel imaging [4]-[5], and sparse
sampling [7]-[13], etc) have been developed. Among them,
compressed sensing technology is particularly prominent [6]-
[7], because it is easier to reconstruct the accurate signal than
the traditional Shannon-Nyquist sampling criterion when the
signal is sparse and satisfies certain assumptions. Com-
pressed sensing has become the focus of the MRI community
since the invention of the pioneering work compression
sensing MRI (CS-MRI) [14].
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In the MRI field, researchers commonly formulate the data
acquisition as

y=RFEx+e=Ax+e¢,
A

(1.1)

where x and ¢ are the desired MR image and
noise/disturbance, respectively; R and F denote the under-
sampling operator and the Fourier operator, respectively; y
represents the undersampled k— space measurement, and its
scale is much smaller than that of x. MR image reconstruc-
tion aims to recover x from y. Compressed sensing based
reconstruction techniques commonly model the reconstruc-
tion as

min My + 3 ly — Ax]3 (1.2)
where ||x||rv = ||Dx]}; (D is finite difference operator),
A > 0 is the regularization parameter. Under some conditions
of A [7], the classical TV regularization is formulated
as a convex optimization problem involving an ¢;-norm
regularization. The minimizer of cost function is unique.
However, the use of ¢;-norm regularization suffers from two
limitations [10], [15]: 1) the estimation for large coefficients
may be biased, 2) it is unable to recover a signal by the least
measurements. Therefore, many non-convex regularizations
have been developed for dealing with these issues [16]-
[22]. For instance, the £,-norm regularization was studied in
[16], [20], and its significantly better recovery performance
than ¢;-regularization was verified. Inspired by the Moreau
envelope and minimax-concave penalty, a nonseparable non-
convex TV regularization was proposed in [21] and extended
in [23], [24]. Smoothly clipped absolute deviation (SCAD) is
another non-convex penalty function, which was originally
proposed by Fan and Li [25]. Mehranian et al. [26] have
studied the SCAD norm for CS-MRI using an augmented
Lagrangian method. In view of the good properties of SCAD
penalty such as sparsity and oracle, in this paper, we use
SCAD norm to construct a non-convex regularization model
for MRI reconstruction.

Fast imaging algorithm is another focus of MR image
reconstruction. In recent decades, a large number of fast
optimization algorithms have been developed using the struc-
ture and regularizers of the system model in MRI, such as
segmentation algorithms (SA) [27], augmented lagrangian
methods (ALM) [28]-[29], primal-dual methods [31]-[32],
splitting methods [33]-[35], the fast iterative soft thresholding
algorithms (FISTA) [36]-[39], alternating direction method
of multipliers (ADMM) algorithms [40]-[46] etc. For more
detailed discussion, can see [47]. In this paper, we will solve
the proposed model by ADMM iteration, which is simple in
structure similar to the ALM and equivalent to some other
splitting algorithms under certain conditions [48].
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The main contribution of this article can be summarized
as following: 1) We construct a more accurate MRI recon-
struction non-convex model via SCAD penalty function. The
most important feature of the new model has good properties
of selecting variables and estimating coefficients at the same
time. That is, the SCAD non-convex regularization improves
the performance of TV regularization technique. 2) To solve
the proposed model, we introduce the ADMM method which
can successfully solve non-convex optimization problems
[50]. 3) In order to evaluate the performance, a number of
experiments are carried out with different sampling masks
and MR data sets.

The rest of this paper is organized as follows. Section
2 introduces the non-convex MRI reconstruction model via
SCAD penalty function. In Section 3, the fast algorithm
ADMM is presented. Section 4 contains experimental results.
At last, some conclusions are made in Section 5.

2. NON-CONVEX MRI RECONSTRUCTION MODEL

In this section, we recalled the definition of smoothly
clipped absolute deviation (SCAD) function and showed
its properties, then defined SCADTV regularization using
the penalty function. Finally, we proposed a non-convex
regularization model for MRI reconstruction.

Definition 2.1. [51] The SCAD function ¢ : R — R is
defined as

‘$|7 s s |x|<’717
2 —xl—

¢, (z) = ﬁ < le) < 23)
nde ] > 72,

for some o > 71 > 0, where vy and 7o are threshold
parameters, v = (V1,Y2).

From the definition of SCAD function, we consider an-
other function ¥ (x) as following,

072 5 |I'| < 717
—2
Uy (@) i= [a] =y (x) = ¢ EGEREIIL oy <af < g,
o] = 2522, 2] > .

(2.4)
It's easy to see that the function of ,(x) is convex,
differentiable and satisfies 0 < 9, (z) < |z|. The graph of
() is illustrated in Fig. 1(a). Then, the SCAD function
can be written as ¢, (x) = |z| — ¥, (z).

Proximity operator plays a key role in developing highly-
efficient first-order algorithms which scale well to high-
dimensional problems. In [25], Fan and Li suggested o =
ayr (a > 2,a =~ 3.7), the corresponding proximity opera-
tor of (2.4) is

prox, ,(t) = arg mmin {¢1(z) + Z(z —1)*}

sign(t) max{|t| - 71,0}, [t <271,
(a—t=sign(t)am 271 < [t < am,
t, t| > a1,

(2.5)
and its graph is shown in in Fig. 1(b).
For MRI model, we define the corresponding multivariate
functions ¢.,(x) as follows

N
Oy (v) =Y y(vi), veERY
1=1

(a) SCAD function

Y, T T 0 T Ty,

(b) SCAD proximity operator

Fig. 1. SCAD function and its proximity operator

The extension function of v, (x) is given by

N
Uy (v) =) y(vi), veRY,
=1

then, for all v € RY, &, (v) = |v|; — ¥,(v). Now, we
consider replacing v with gradient Dx in above-mentioned
equation, which leads to our definition of SCADTV as
follows.

Definition 2.2. The SCAD penalty function of non-convex
TV regularizer: ||x||scaprv : RY — R
[x[lscaprv = @, (Dx) = ||Dx[l; — ¥, (Dx),  (2.6)
where D is the first-order difference matrix.

Now, we consider the following formulation for magnetic
resonance imaging (MRI)

. 1
min Allx[[scapTv + §||y — Ax|? 2.7

where ||x||scaprv is given by (2.6), A > 0 is called regular-
ization parameter. For @, (-) is non-convex, the model (2.7)
is non-convex model.

3. PROPOSED ALGORITHM
We rewrite the problem (2.7) as following:

1
min AP, (Dx) + 5 [ly — Ax|2. (3.8)
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We define the auxiliary variable z = Dx, the model (3.8) can
be expressed as an equality-constrained optimization problem
as

1
min A®,(z) + §||y — Ax||%, st z=Dx. 3.9

Hence, the augmented Lagrangian function of (3.9) can be
written as

L(x,2z,wW)

= A0, (2) + 5]y — Ax|3 — w¥ (2 — Dx) + §|z — Dx]}3,

where ®,(z) = ||z||; — ¥, (z), w is a Lagrange multiplier
and p > 0 is a penalty parameter. According to the standard
ADMM, the iterative scheme of the problem (3.9) can be
expressed as solving the following sub-problems

k+1 — argmin £(x, z¥, w¥)

— argminx{%ﬂy — Ax|3 + wFTDx + gsz — DXH%},
k41 k+1

X

z = argmin £(x¥*1 z, wk)
= argmin, {\®, (z) — w*Tz + 2|z — Dx*"|]3},
wktl = wk — p(DXk+1 _ zk+1).

Now, we show how to solve the subproblems. For x-
minimization step, the optimization subproblem for x**! can
be solved via the first-order optimality optimality conditions,

x*t1 = ()DTD + ATA) 'Hy, (3.10)

where ﬁk = pDTzk + ATy — DTwX, In the field of MRI,
A = RF (F is the Fourier operator such that F = F~1 ),
and DTD is circulant matrix which can be diagonalized via
Fourier transform. For simplicity, we can get the optimal
solution of xX** through two Fourier transforms.

For z-minimization sub-problem:

A
Zktl — minz{)\@v(z) —2wkTz + ?pHZ - DXkJrl”g}

k
A%
= min (@, (z) + Zlz — (Dx**! + Z)|13)

(3.11
Follows (2.5) , we can write the iteration procedure below

k _ k+1 wk
t =Dx + o
Zk

(3.12)
1 = proxq,%p(tk),

where proxg(-) represents the proximal operator and it is
useful in convex optimization, for more discussion, please
see [52].

Now, we propose an iterative algorithm for solving the
problem (3.9). Since the SCAD penalty function is used for
the regular term in the model (3.9), we call this algorithm
the SCADTV method (SCADTYV).

Algorithm (SCADTYV)

Step 0 Initialization and date:

Input parameters a > 0,p > 0, A > 0, y1 > 0,72 > 0, the
tolerance ¢ > 0. Given (x,z, w) := (x°,2% wP?), let k := 0;

Step 1 ~ Compute the new iterate
whtl = (xkt+1 gkt1 wkt1) by (3.13);

xkt1 = (ATA + pDTD)1H,,
zkt1 — proth_’p(tk)7
Lk p(DxRHD gkt

(3.13)

w

Step 2 If [|[w* — wk+1||2 < ¢, STOP; otherwise let k =:
k + 1. Go back to step 1.

(d) Shepp Logan

@

Radial sampling

(b) Random sampling (e) Brain 1

(c) Cartesian sampling

Fig. 2. Experimental datasets

(f) Brain 2

4. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed SCADTV method through some numerical experi-
ments, and compare the proposed method with those of
classic TV [40] and MCTYV [23]. All of our test experiments
are performed on MATLAB R2015a on the PC with Intel
(R) Core (TM) 2.2 GHz CPU and and 8.0 GB RAM.

MRI test images recovery performance was evaluated by
peak signal-to-noise ratio (PSNR) and relative error (RE),
which are respectively defined as

P
PSNR = 10lg (2> , RE=1— 12
Ix* = xIl; (e[

where x is the original image, X denotes the mean intensity
value of x, x* is the restored image, P represents the size of
the image. Usually, the larger PSNR value and the smaller
RE value indicate better recovery performance.

The sampling templates and the test MR images are shown
in Fig. 2: (a) is the radial sampling with 10 trajectory lines.
(b) is the Random sampling with 30% sampling rate and
0.1 sampling radius. (c) is Cartesian under-sampling mask
with a sampling rate of 34%. (d)-(f) are test images(sizes
256 x 256 ). (d) is Shepp Logan MRI data, (e) and (f) are
two different of the brain MRI data images. More details can
be found in [23], [49]. We set the parameters as: A = 0.01,
01 = 02 = 0.0001, p = 150. The SCAD parameters were set
Yo = a1, a = 3.7. The optimized parameter y; need to be
set according to different sampling methods and data sets.
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Shepp Logan (256) TV, PSNR=22.2405 MCTV, PSNR=25.6142 SCADTV, PSNR=30.0502
MCTV, RE=0.21277 SCADTV, RE=0.127677

Radial sampling

Fig. 3. Different reconstruction results of Shepp Logan (256) under radial sampling
Brain1(256) TV, PSNR=30.5559 MCTV, PSNR=33.5856 SCADTV, PSNR=46.3925

Random sampling TV, RE=0.10405 MCTV, RE=0.0734099 SCADTV, RE=0.0168039

Fig. 4. Different reconstruction results of Brainl (256) under random sampling

Brain2(256) TV, PSNR=32.7598 MCTV, PSNR=33.1972 SCADTV, PSNR=36.2133

|

Cartesian sampling TV, RE=0.059325 MCTV, RE=0.0564112 SCADTV, RE=0.0398621

Fig. 5. Different reconstruction results of Brain2 (256) under cartesian sampling
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TABLE I
THE VALUE OF PSN, RE AND CPUTIME UNDER DIFFERENT SAMPLING TEMPLATES.
Test Image Template Method RE PSNR(dB) CPUtime(s)
TV 0.3138 22.2405 2.805913
Shepp Logan Radial sampling MCTV 0.2128 25.6142 14.118701
SCADTV 0.1277 30.0502 2.857253
TV 0.1041 30.5559 2.836221
Brain Random sampling MCTV 0.0734 33.5856 15.004601
SCADTV 0.0316 40.9066 2.968011
TV 0.0593 32.7598 2.951520
Brain2 Cartesian sampling MCTV 0.0564 33.1972 14.054279
SCADTV 0.0399 36.2133 2.935640
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Fig. 7. PSNR and RE versus Iteration on Brainl (256) with three reconstruction models under the random sampling template

with sampling rate of 30%.

The numerical experiments are divided into four parts. In
the first part of the numerical experiment, we showed the
reconstruction effects of different MRI test images and three
sampling templates under different models. From Figs. 3-
5, we can see the visual comparison of MRI reconstruction
results under the different models.

In Fig. 3, Shepp Logan phantom is chosen to evaluate the
performance of the proposed SCADTV model. We compare
with the three reconstruction models (TV, MCTYV, SCADTYV)
proposed above under the radial sampling template with
3.9% sampling rate. From the results, we can see that our
SCADCTYV method reconstructed Shepp Logan image with
PSNR = 30.05, which higher TV, MCTV methods. That
is to say, The performance of SCADTYV is better than that
of TV and MCTYV. For the radial sampling results, the
SCAD optimized parameter is set to (y; = 0.03). For MR
image Brain, we test the effectiveness of SCADTV method

through the random sampling (y; = 0.001, a = 100).
The reconstruction and error images are shown in Fig. 4.
Because the Cartesian undersampling is k-space data, and is
most widely used in practice. For Brain2, we test the image
by using the Cartesian template mask under 0.34 sampling
rate (y; = 0.01). The reconstruction results were shown in
Fig. 5. Through the visual comparison and analysis of the
reconstruction results of three different methods shown in
Figs. 3-5, it can conclude that the SCADTYV always obtains
better reconstruction results than the other two reconstruction
models.

The reconstruction comparison results are shown in Table
I. Compared with TV and MCTYV, SCADTYV method is more
trustworthy and has better performance in testing MR images
recovery, because it attained the higher PSNR and lower RE.
From the table, we also know that SCADTV method needs
about a fifth of the CPU time of MCTV in general. It is
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well know that appropriate selection of SCAD parameters are
essential for its performance. For MRI data Brain 1, we test
the reconstruction performances of SCADTV-model under
the random sampling template with sampling rate of 30%.
Our choice of a = 3.7 (or 50, 100, 200, 500) is based on the
suggestion of the authors of [25] and [26]. Table II shows
that the performance of SCADTV model is greatly affected
by different parameters. According to the results in Table II,
v1 = 0.001,a = 100 are considered to be the “’best” choices
SCAD parameters in this case. For more detailed discussion,
please see [S1].

The third part of the experiment, we compared MR image
reconstruction performances at different sampling ratios and
iterations. Fig. 6 show that for a fixed sampling ratio, the
SCADTYV method obtain higher PSNR and lower RE values
than the mctv and TV. That is to say, the performances of

SCADTYV model are mostly better than MCTV and TV in
this case. In addition, it is also know that the MCTV and
TV achieve nearly the same values of PSNR and RE in this
case. For a fixed iteration, Fig. 7 imply that the SCADTV
performs mostly better than the MCTV and TV under the
random sampling template with sampling rate of 30%.

Finally, we select two sets of 512 x 512 data to test the
proposed method. In Fig. 8, the Shepp Logan data (512)
were measured using a radial sampling template with 10
lines under 2% sampling rate. For Brain (512), cartesian
sampling template with 15% sampling rate and random
sampling template with 10% sampling rate was employed,
respectively. Figs. 9-10 show clearly that the reconstruction
result of SCAD method is superior than MCTV and TV
methods.

TABLE 11
RECONSTRUCTION RESULTS UNDER DIFFERENT VALUES OF SCAD PARAMETERS
Image Template SCAD parameters RE PSNR(dB)

v1 = 0.0001,a = 3.7 0.0305 41.2153

1 = 0.001,a = 3.7 0.0316 40.9066

Brain1(256) Random sampling with 30% v1 =0.01, a=3.7 0.0361 39.7594
1 =0.1, a=3.7 0.1947 25.1145

1 =1, a=37 0.8222 12.6009

1 = 0.0001, a = 50 0.0305 41.2016

1 = 0.001,a = 50 0.0201 44.8514

Brain1(256) Random sampling with 30% v1 =0.01, a=250 0.0469 37.4706
y1 =0.1, a=50 0.2077 24.5516

v =1, a =50 0.8222 12.6008

y1 = 0.0001, a = 100 0.0304 41.2433

v1 = 0.001,a = 100 0.0168 46.3925

Brainl(256) Random sampling with 30% v1 =0.01, a=100 0.0505 36.8349
1 =0.1, a=100 0.2081 24.5361

1 =1, a = 100 0.8222 12.6008

1 = 0.0001, a = 200 0.0301 41.3338

1 = 0.001, a = 200 0.0171 46.2578

Brain1(256) Random sampling with 30% v1 =0.01, a =200 0.0525 36.4939
y1 =0.1, a=200 0.2082 24.5293

y1 =1, a =200 0.8222 12.6008

1 = 0.0001, a = 500 0.0290 41.6427

1 = 0.001, a = 500 0.0191 45.2612

Brain1(256) Random sampling with 30% v1 = 0.01, a =500 0.0538 36.2883
1 =0.1, a =500 0.2085 24.5198

1 =1, a = 500 0.8222 12.6008

Shepp Logan (512)

TV, PSNR=20.2442

Radial sampling

MCTV, PSNR=23.2293

SCADTV, PSNR=24.0025

SCADTV, RE=0.255444

Fig. 8. Different reconstruction results of Shepp Logan (512) under radial sampling
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Brain (512) TV, PSNR=25.7711

Cartesian sampling TV, RE=0.215392

Fig. 9. Different reconstruction results

TV, PSNR=30.5301

Brain (512)

TV, RE=0.124531

Random sampling

MCTV, PSNR=26.1336

SCADTV, PSNR=27.287

MCTV, RE=0.206588 SCADTV, RE=0.180898

of Brain (512) under cartesian sampling

MCTV, PSNR=30.534 SCADTV, PSNR=32.9716

MCTV, RE=0.124475 SCADTV, RE=0.094016

Fig. 10. Different reconstruction results of Brain (512) under random sampling

5. CONCLUSION

This work introduced a non-convex regularization model
for MRI reconstruction via SCAD penalty function, which
avoids the suboptimal local solutions and improves the fitting
performance compared with the classical TV regularization.
To solve this non-convex minimization problem, we use the
ADMM method based on variable splitting technique, which
can obtain some cheap closed-form solutions by proximal
operator. Experimental results indicate that the SCADTV
method proposed in this paper can significantly improve
the MRI reconstruction effect. And the reconstructed MRI
images show the superiority visual effects. In the future, this
proposed method should be tested for more sparse systems
such as dynamic magnetic resonance imaging etc.
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