An SCADTV Nonconvex Regularization Approach for Magnetic Resonance Imaging

Zhijun Luo, Zhibin Zhu, and Benxin Zhang

Abstract—In this paper, we propose a non-convex regularization technique for magnetic resonance imaging (MRI) reconstruction model via the smoothly clipped absolute deviation (SCAD) penalty function, which can effectively improve the fitting performance and prevent systematic underestimation compared with the classical total variation (TV) regularization. Then, we choose the alternating direction method of multipliers (ADMM) algorithm to solve the non-convex regularization model. The experiment results show that the efficiency of the proposed model and algorithm in comparison with some other typical methods.

Index Terms—MRI reconstruction, TV regularization, SCAD penalty function, ADMM.

1. INTRODUCTION

MAGNETIC resonance imaging (MRI) has been widely used in the medical field due to its non-radiation and non-ionizing nature, as well as its powerful capability in providing rich anatomical and functional information. However, several constraints, such as nuclear relaxation times, signal to noise, power absorption, and so on, make MRI be a time-consuming procedure. Moreover, the longer the MRI, the more uncomfortable the patient will be, and the higher the possibility of artifacts will increase. Therefore, to cut back the acquisition time of MRI, a lot of techniques (such as multi coils [1]-[3], parallel imaging [4]-[5], and sparse sampling [7]-[13], etc) have been developed. Among them, compressed sensing technology is particularly prominent [6]-[7], because it is easier to reconstruct the accurate signal than the traditional Shannon-Nyquist sampling criterion when the signal is sparse and satisfies certain assumptions. Compressed sensing has become the focus of the MRI community since the invention of the pioneering work compression MRI (CS-MRI) [14].

Manuscript received November 06, 2020; revised July 19, 2021. This work is supported in part by the National Natural Science Foundation of China under Grants 11901137 and 61967004, in part by the China Postdoctoral Science Foundation under Grant 2020M682959, in part by the Natural Science Foundation of Guangxi province under Grant 2018GXNSFBA281023, in part by Scientific Research Fund of Hunan Provincial Education Department 20A273, and in part by Research Fund of Mathematics Discipline of Hunan University of Humanities, Science and Technology 2020XJH101.

Zhijun Luo is a PhD candidate in the School of Electronic Engineering and Automation and Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, 541004, P. R. China, and an associate Professor in the School of Mathematics and Finance, Hunan University of Humanities, Science and Technology, Loudi, 417000, P. R. China e-mail: ldzj23@163.com.

Zhibin Zhu is a Professor in the School of Mathematics and Computing Science and Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin, 541004, P. R. China. Corresponding author, e-mail: optimization_zhu@163.com.

Benxin Zhang is an associate Professor in the School of Electronic Engineering and Automation and Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, 541004, P. R. China. e-mail: bzzhang@guet.edu.cn.

In the MRI field, researchers commonly formulate the data acquisition as

$$y = RF \cdot x + \varepsilon = Ax + \varepsilon,$$

where x and ε are the desired MR image and noise/disturbance, respectively; R and F denote the undersampling operator and the Fourier operator, respectively; y represents the undersampled k–space measurement, and its scale is much smaller than that of x. MR image reconstruction aims to recover x from y. Compressed sensing based reconstruction techniques commonly model the reconstruction as

$$\min_{x} \lambda \|x\|_{TV} + \frac{1}{2} \|y - Ax\|_{2}^{2},$$

where $\|x\|_{TV} = \|Dx\|_{1}, (D$ is finite difference operator), $\lambda > 0$ is the regularization parameter. Under some conditions of A [7], the classical TV regularization is formulated as a convex optimization problem involving an ℓ_{1}-norm regularization. The minimizer of cost function is unique. However, the use of ℓ_{1}-norm regularization suffers from two limitations [10], [15]: 1) the estimation for large coefficients may be biased, 2) it is unable to recover a signal by the least measurements. Therefore, many non-convex regularizations have been developed for dealing with these issues [16]-[22]. For instance, the ℓ_{p}-norm regularization was studied in [16], [20], and its significantly better recovery performance than ℓ_{1}-regularization was verified. Inspired by the Moreau envelope and minimax-concave penalty, a nonseparable non-convex TV regularization was proposed in [21] and extended in [23], [24]. Smoothly clipped absolute deviation (SCAD) is another non-convex penalty function, which was originally proposed by Fan and Li [25]. Mehranian et al. [26] have studied the SCAD norm for CS-MRI using an augmented Lagrangian method. In view of the good properties of SCAD penalty such as sparsity and oracle, in this paper, we use SCAD norm to construct a non-convex regularization model for MRI reconstruction.

Fast imaging algorithm is another focus of MR image reconstruction. In recent decades, a large number of fast optimization algorithms have been developed using the structure and regularizers of the system model in MRI, such as segmentation algorithms (SA) [27], augmented lagrangian methods (ALM) [28]-[29], primal-dual methods [31]-[32], splitting methods [33]-[35], the fast iterative soft thresholding algorithms (FISTA) [36]-[39], alternating direction method of multipliers (ADMM) algorithms [40]-[46] etc. For more detailed discussion, can see [47]. In this paper, we will solve the proposed model by ADMM iteration, which is simple in structure similar to the ALM and equivalent to some other splitting algorithms under certain conditions [48].
The main contribution of this article can be summarized as follows: 1) We construct a more accurate MRI reconstruction non-convex model via SCAD penalty function. The most important feature of the new model has good properties of selecting variables and estimating coefficients at the same time. That is, the SCAD non-convex regularization improves the performance of TV regularization technique. 2) To solve the proposed model, we introduce the ADMM method which can successfully solve non-convex optimization problems [50]. 3) In order to evaluate the performance, a number of experiments are carried out with different sampling masks and MR data sets.

The rest of this paper is organized as follows. Section 2 introduces the non-convex MRI reconstruction model via SCAD penalty function. In Section 3, the fast algorithm ADMM is presented. Section 4 contains experimental results. At last, some conclusions are made in Section 5.

2. NON-CONVEX MRI RECONSTRUCTION MODEL

In this section, we recalled the definition of smoothly clipped absolute deviation (SCAD) function and showed its properties, then defined SCADTV regularization using the penalty function. Finally, we proposed a non-convex regularization model for MRI reconstruction.

Definition 2.1. [51] The SCAD function $\phi : \mathbb{R} \to \mathbb{R}$ is defined as

$$
\phi_\gamma(x) = \begin{cases}
|\gamma| - \frac{1}{\gamma} x^2, & |x| < \gamma, \\
2\gamma |x| - \gamma^2 - \frac{1}{2} \gamma, & \gamma \leq |x| < 2\gamma, \\
\frac{\gamma}{2} |x|, & |x| \geq 2\gamma,
\end{cases}
$$

for some $\gamma > \gamma_1 > 0$, where γ_1 and γ_2 are threshold parameters, $\gamma := (\gamma_1, \gamma_2)$.

From the definition of SCAD function, we consider another function $\psi_\gamma(x)$ as following,

$$
\psi_\gamma(x) := |x| - \phi_\gamma(x) = \begin{cases}
0, & |x| < \gamma, \\
\frac{1}{\gamma} x^2 - 2\gamma |x| + \gamma^2, & \gamma_1 \leq |x| < \gamma_2, \\
\gamma |x| - \frac{1}{2} \gamma^2, & |x| \geq \gamma_2.
\end{cases}
$$

(2.4)

It’s easy to see that the function of $\psi_\gamma(x)$ is convex, differentiable and satisfies $0 < \psi_\gamma(x) < |x|$. The graph of $\psi_\gamma(x)$ is illustrated in Fig. 1(a). Then, the SCAD function can be written as $\phi_\gamma(x) = |x| - \psi_\gamma(x)$.

Proximity operator plays a key role in developing highly-efficient first-order algorithms which scale well to high-dimensional problems. In [25], Fan and Li suggested $\gamma_2 = a \gamma_1$ ($a > 2, a \approx 3.7$), the corresponding proximity operator of (2.4) is

$$
\text{prox}_{\psi_\gamma, \lambda}(t) = \arg \min_{x} \{ \psi_\gamma(x) + \frac{\lambda}{2} \| x - t \|^2 \}
$$

$$
= \begin{cases}
\text{sign}(t) \max\{ |t| - \gamma_1, 0 \}, & |t| \leq 2\gamma_1, \\
\frac{a - 1}{a - 2} |t|, & 2\gamma_1 < |t| \leq a \gamma_1, \\
\frac{a - 1}{a - 2} \gamma_1, & |t| > a \gamma_1,
\end{cases}
$$

(2.5)

and its graph is shown in in Fig. 1(b).

For MRI model, we define the corresponding multivariate functions $\phi_\gamma(x)$ as follows

$$
\phi_\gamma(v) = \sum_{i=1}^{N} \phi_\gamma(v_i), \quad v \in \mathbb{R}^N.
$$

Fig. 1. SCAD function and its proximity operator

The extension function of $\psi_\gamma(x)$ is given by

$$
\psi_\gamma(v) = \sum_{i=1}^{N} \psi_\gamma(v_i), \quad v \in \mathbb{R}^N,
$$

then, for all $v \in \mathbb{R}^N$, $\phi_\gamma(v) = \|v\|_1 - \psi_\gamma(v)$. Now, we consider replacing v with gradient Dx in above-mentioned equation, which leads to our definition of SCADTV as follows.

Definition 2.2. The SCAD penalty function of non-convex TV regularizer: $\|x\|_{\text{SCADTV}} : \mathbb{R}^N \to \mathbb{R}$

$$
\|x\|_{\text{SCADTV}} = \Phi_\gamma(Dx) = \|Dx\|_1 - \psi_\gamma(Dx),
$$

(2.6)

where D is the first-order difference matrix.

Now, we consider the following formulation for magnetic resonance imaging (MRI)

$$
\min_{x} \lambda \|x\|_{\text{SCADTV}} + \frac{1}{2} \|y - Ax\|^2
$$

(2.7)

where $\|x\|_{\text{SCADTV}}$ is given by (2.6), $\lambda > 0$ is called regularization parameter. For $\phi_\gamma(\cdot)$ is non-convex, the model (2.7) is non-convex model.

3. PROPOSED ALGORITHM

We rewrite the problem (2.7) as following:

$$
\min_{x} \lambda \Phi_\gamma(Dx) + \frac{1}{2} \|y - Ax\|^2.
$$

(3.8)
We define the auxiliary variable \(z = Dx \), the model (3.8) can be expressed as an equality-constrained optimization problem as

\[
\min_x \lambda \Phi_\gamma(z) + \frac{1}{2} \| y - Ax \|_2^2, \quad \text{s.t.} \quad z = Dx. \tag{3.9}
\]

Hence, the augmented Lagrangian function of (3.9) can be written as

\[
\mathcal{L}(x, z, w) = \lambda \Phi_\gamma(z) + \frac{1}{2} \| y - Ax \|_2^2 - w^T(z - Dx) + \frac{\rho}{2} \| z - D(x^{k+1}) \|_2^2,
\]

where \(\Phi_\gamma(z) = \| z \|_1 - \Psi_\gamma(z) \), \(w \) is a Lagrange multiplier and \(\rho > 0 \) is a penalty parameter. According to the standard ADMM, the iterative scheme of the problem (3.9) can be expressed as solving the following sub-problems

\[
\begin{align*}
(x^{k+1}, z^{k+1}, w^{k+1}) &= \arg \min \mathcal{L}(x, z, w) \\
&= \arg \min_x \{ \frac{1}{2} \| y - Ax \|_2^2 + w^{kT}Dz + \frac{\rho}{2} \| z - D(x^{k+1}) \|_2^2 \}, \\
(k = 0, \infty)
\end{align*}
\]

\[
\begin{align*}
&\text{where } \Phi_\gamma(z) = \| z \|_1 - \Psi_\gamma(z), \text{ w is a Lagrange multiplier, and } \rho > 0 \text{ is a penalty parameter.}
\end{align*}
\]

Now, we show how to solve the subproblems. For \(x \)-minimization step, the optimization subproblem for \(x^{k+1} \) can be solved via the first-order optimality optimality conditions,

\[
(x^{k+1} = (\rho D^T D + A^T A)^{-1} \hat{H}_k, \tag{3.10}
\]

where \(\hat{H}_k = \rho D^T z_k + A^T y - D^T w_k \). In the field of MRI, \(A = RF \) (\(F \) is the Fourier operator such that \(F = F^{-1} \)), and \(D^T D \) is a circulant matrix which can be diagonalized via Fourier transform. For simplicity, we can get the optimal solution of \(x^{k+1} \) through two Fourier transforms.

For \(z \)-minimization subproblem:

\[
\begin{align*}
z^{k+1} &= \min_z \{ \lambda \Phi_\gamma(z) - \lambda w^{kT}z + \frac{\lambda \rho}{2} \| z - D(x^{k+1}) \|_2^2 \} \\
&= \min_z \{ \Phi_\gamma(z) + \frac{\rho}{2} \| z - (Dx^{k+1} + \frac{w_k}{\rho}) \|_2^2 \}
\end{align*}
\]

Follows (2.5), we can write the iteration procedure below

\[
\begin{align*}
k + 1 &\quad D = Dx^{k+1} + \frac{w_k}{\rho}, \\
(k + 1) &\quad \text{prox}_{\Phi_\gamma, \rho}(k), (3.12)
\end{align*}
\]

where \(\text{prox}_{\Phi_\gamma}(\cdot) \) represents the proximal operator and it is useful in convex optimization, for more discussion, please see [32].

Now, we propose an iterative algorithm for solving the problem (3.9). Since the SCAD penalty function is used for the regular term in the model (3.9), we call this algorithm the SCADTV method (SCADTV).

Algorithm (SCADTV)

Step 1 Initialization and data:

Input parameters \(\alpha \geq 0, \rho > 0, \lambda > 0, \gamma_1 > 0, \gamma_2 > 0 \), the tolerance \(\varepsilon > 0 \). Given \((x, z) : = (x^0, z^0, w^0) \), let \(k := 0 \).

Step 1 Compute the new iterate

\[
\begin{align*}
\hat{w}^{k+1} &= (x^{k+1}, z^{k+1}, w^{k+1}) \text{ by (3.13)}; \\
x^{k+1} &= (A^T A + \rho D^T D)^{-1} \hat{H}_k, \\
z^{k+1} &= \text{prox}_{\Phi_\gamma, \rho}(k), \tag{3.13} \\
w^{k+1} &= w^{k} - \rho (Dx^{k+1} - z^{k+1})
\end{align*}
\]

Step 2 If \(\| \hat{w}^{k} - z^{k+1} \|_2^2 \leq \varepsilon \), STOP; otherwise let \(k := k + 1 \). Go back to step 1.

4. Numerical Results

In this section, we evaluate the performance of the proposed SCADTV method through some numerical experiments, and compare the proposed method with those of classic TV [40] and MCTV [23]. All of our test experiments are performed on MATLAB R2015a on the PC with Intel (R) Core (TM) 2.2 GHz CPU and 8.0 GB RAM.

MRI test images recovery performance was evaluated by peak signal-to-noise ratio (PSNR) and relative error (RE), which are respectively defined as

\[
\text{PSNR} = 10 \log \left(\frac{P}{\| x^k - x \|_2^2} \right), \quad \text{RE} = \frac{\| x^k - x \|_2^2}{\| x \|_2^2},
\]

where \(x \) is the original image, \(x^k \) denotes the mean intensity value of \(x \), \(x^k \) is the restored image, \(P \) represents the size of the image. Usually, the larger PSNR value and the smaller RE value indicate better recovery performance.

The sampling templates and the test MR images are shown in Fig. 2. (a) is the radial sampling with 10 trajectory lines. (b) is the Random sampling with 30% sampling rate and 0.1 sampling radius. (c) is Cartesian under-sampling mask with a sampling rate of 34%. (d) and (f) are test images(sizes 256 \times 256). (d) is Shepp Logan MRI data, (e) and (f) are two different of the brain MRI data images. More details can be found in [23], [49]. We set the parameters as: \(\lambda = 0.01, \delta_1 = 0.0001, \rho = 150 \). The SCAD parameters were set \(\gamma_2 = \alpha \gamma_1, \alpha = 3.7 \). The optimized parameter \(\gamma_1 \) need to be set according to different sampling methods and data sets.
Fig. 3. Different reconstruction results of Shepp Logan (256) under radial sampling.

Fig. 4. Different reconstruction results of Brain1 (256) under random sampling.

Fig. 5. Different reconstruction results of Brain2 (256) under cartesian sampling.
TABLE I
THE VALUE OF PSN, RE AND CPUTIME UNDER DIFFERENT SAMPLING TEMPLATES.

<table>
<thead>
<tr>
<th>Test Image</th>
<th>Template</th>
<th>Method</th>
<th>RE</th>
<th>PSNR(dB)</th>
<th>CPUtime(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shepp Logan</td>
<td>Radial sampling</td>
<td>TV</td>
<td>0.3138</td>
<td>22.2405</td>
<td>2.805913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCTV</td>
<td>0.2128</td>
<td>25.6142</td>
<td>14.118701</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCADTV</td>
<td>0.1277</td>
<td>30.0502</td>
<td>2.857253</td>
</tr>
<tr>
<td>Brain</td>
<td>Random sampling</td>
<td>TV</td>
<td>0.1041</td>
<td>30.5559</td>
<td>2.836221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCTV</td>
<td>0.0734</td>
<td>33.5856</td>
<td>15.004601</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCADTV</td>
<td>0.0316</td>
<td>40.9066</td>
<td>2.968011</td>
</tr>
<tr>
<td>Brain2</td>
<td>Cartesian sampling</td>
<td>TV</td>
<td>0.0593</td>
<td>32.7598</td>
<td>2.951520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCTV</td>
<td>0.0564</td>
<td>33.1972</td>
<td>14.054279</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCADTV</td>
<td>0.0399</td>
<td>36.2133</td>
<td>2.935640</td>
</tr>
</tbody>
</table>

Fig. 6. PSNR and RE versus sampling rate on Shepp Logan (256) with three reconstruction models under the radial sampling template.

Fig. 7. PSNR and RE versus Iteration on Brain1 (256) with three reconstruction models under the random sampling template with sampling rate of 30%.

The numerical experiments are divided into four parts. In the first part of the numerical experiment, we showed the reconstruction effects of different MRI test images and three sampling templates under different models. From Figs. 3-5, we can see the visual comparison of MRI reconstruction results under the different models.

In Fig. 3, Shepp Logan phantom is chosen to evaluate the performance of the proposed SCADTV model. We compare with the three reconstruction models (TV, MCTV, SCADTV) proposed above under the radial sampling template with 3.9% sampling rate. From the results, we can see that our SCADCTV method reconstructed Shepp Logan image with $PSNR \approx 30.05$, which higher TV, MCTV methods. That is to say, The performance of SCADTV is better than that of TV and MCTV. For the radial sampling results, the SCAD optimized parameter is set to $(\gamma_1 = 0.03)$. For MR image Brain, we test the effectiveness of SCADTV method through the random sampling $(\gamma_1 = 0.001, \ a = 100)$. The reconstruction and error images are shown in Fig. 4. Because the Cartesian undersampling is k-space data, and is most widely used in practice. For Brain2, we test the image by using the Cartesian template mask under 0.34 sampling rate $(\gamma_1 = 0.01)$. The reconstruction results were shown in Fig. 5. Through the visual comparison and analysis of the reconstruction results of three different methods shown in Figs. 3-5, it can conclude that the SCADTV always obtains better reconstruction results than the other two reconstruction models.

The reconstruction comparison results are shown in Table I. Compared with TV and MCTV, SCADTV method is more trustworthy and has better performance in testing MR images recovery, because it attained the higher PSNR and lower RE. From the table, we also know that SCADTV method needs about a fifth of the CPU time of MCTV in general.
well know that appropriate selection of SCAD parameters are essential for its performance. For MRI data Brain 1, we test the reconstruction performances of SCADTV-model under the random sampling template with sampling rate of 30%. Our choice of $a = 3.7$ (or 50, 100, 200, 500) is based on the suggestion of the authors of [25] and [26]. Table II shows that the performance of SCADTV model is greatly affected by different parameters. According to the results in Table II, $\gamma_1 = 0.001, a = 100$ are considered to be the "best" choices SCAD parameters in this case. For more detailed discussion, please see [51].

The third part of the experiment, we compared MR image reconstruction performances at different sampling ratios and iterations. Fig. 6 show that for a fixed sampling ratio, the SCADTV method obtain higher PSNR and lower RE values than the mctv and TV. That is to say, the performances of SCADTV model are mostly better than MCTV and TV in this case. In addition, it is also know that the MCTV and TV achieve nearly the same values of PSNR and RE in this case. For a fixed iteration, Fig. 7 imply that the SCADTV performs mostly better than the MCTV and TV under the random sampling template with sampling rate of 30%.

Finally, we select two sets of 512 × 512 data to test the proposed method. In Fig. 8, the Shepp Logan data (512) were measured using a radial sampling template with 10 lines under 2% sampling rate. For Brain (512), cartesian sampling template with 15% sampling rate and random sampling template with 10% sampling rate was employed, respectively. Figs. 9-10 show clearly that the reconstruction result of SCAD method is superior than MCTV and TV methods.

<table>
<thead>
<tr>
<th>Image</th>
<th>Template</th>
<th>SCAD parameters</th>
<th>RE</th>
<th>PSNR(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain1(256)</td>
<td>Random sampling with 30%</td>
<td>$\gamma_1 = 0.0001, a = 3.7$</td>
<td>0.005</td>
<td>41.2153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.001, a = 3.7$</td>
<td>0.0316</td>
<td>40.9066</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.01, a = 3.7$</td>
<td>0.0361</td>
<td>39.7594</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.1, a = 3.7$</td>
<td>0.1947</td>
<td>25.1145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 1, a = 3.7$</td>
<td>0.8222</td>
<td>12.6009</td>
</tr>
<tr>
<td>Brain1(256)</td>
<td>Random sampling with 30%</td>
<td>$\gamma_1 = 0.0001, a = 50$</td>
<td>0.005</td>
<td>41.2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.001, a = 50$</td>
<td>0.0201</td>
<td>44.8514</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.01, a = 50$</td>
<td>0.0469</td>
<td>37.4706</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.1, a = 50$</td>
<td>0.2077</td>
<td>24.5516</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 1, a = 50$</td>
<td>0.8222</td>
<td>12.6008</td>
</tr>
<tr>
<td>Brain1(256)</td>
<td>Random sampling with 30%</td>
<td>$\gamma_1 = 0.0001, a = 100$</td>
<td>0.0046</td>
<td>41.2433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.001, a = 100$</td>
<td>0.0168</td>
<td>46.3925</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.01, a = 100$</td>
<td>0.0505</td>
<td>36.8349</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.1, a = 100$</td>
<td>0.2081</td>
<td>24.5361</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 1, a = 100$</td>
<td>0.8222</td>
<td>12.6008</td>
</tr>
<tr>
<td>Brain1(256)</td>
<td>Random sampling with 30%</td>
<td>$\gamma_1 = 0.0001, a = 200$</td>
<td>0.0301</td>
<td>41.3333</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.001, a = 200$</td>
<td>0.0171</td>
<td>46.2578</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.01, a = 200$</td>
<td>0.0352</td>
<td>36.4939</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.1, a = 200$</td>
<td>0.2082</td>
<td>24.5293</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 1, a = 200$</td>
<td>0.8222</td>
<td>12.6008</td>
</tr>
<tr>
<td>Brain1(256)</td>
<td>Random sampling with 30%</td>
<td>$\gamma_1 = 0.0001, a = 500$</td>
<td>0.0290</td>
<td>41.6427</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.001, a = 500$</td>
<td>0.0191</td>
<td>45.2612</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.01, a = 500$</td>
<td>0.0385</td>
<td>36.2883</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 0.1, a = 500$</td>
<td>0.2085</td>
<td>24.5198</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_1 = 1, a = 500$</td>
<td>0.8222</td>
<td>12.6008</td>
</tr>
</tbody>
</table>

Fig. 8. Different reconstruction results of Shepp Logan (512) under radial sampling.
This work introduced a non-convex regularization model for MRI reconstruction via SCAD penalty function, which avoids the suboptimal local solutions and improves the fitting performance compared with the classical TV regularization. To solve this non-convex minimization problem, we use the ADMM method based on variable splitting technique, which can obtain some cheap closed-form solutions by proximal operator. Experimental results indicate that the SCADTV method proposed in this paper can significantly improve the MRI reconstruction effect. And the reconstructed MRI images show the superiority visual effects. In the future, this proposed method should be tested for more sparse systems such as dynamic magnetic resonance imaging etc.

ACKNOWLEDGMENT

The authors would like to thank Prof. Ivan Selesnick (http://eeweb.poly.edu/iselesni/index.html), Prof. Xiaobo Qu (https://csrc.xmu.edu.cn/index_cn/xiaobo/index_cn.html), and Junfeng Yang (https://math.nju.edu.cn/jfyang) for sharing the Data, MATLAB codes and free download from their homepages.

REFERENCES

