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Abstract—In the studies of machinery remaining useful life
(RUL) prediction, the construction of health indicator (HI)
can appropriately describe operating condition of machinery,
which is always the bridge between raw data and RUL. In
this paper, an improved HI construction method is utilized
to solve glitches introducing when outlier region correction,
which are adaptive generalized framework of HI construction
and can apply to vibration-signal-related scenarios. On the
basis of it, gated recurrent units (GRUs) are proposed to
investigate the degradation information over time aim to
output a estimated RUL as close to actual RUL as possible.
The proposed method in this paper is compared against
the state-of-the-art. For further verification, we have choose
two dataset come from varying platform when experimental
verification. At the same time, long short-term memory
(LSTM) also is the one of baseline, which makes recurrent-
neural-networks-based (RNN-based) architectures identified
as an effective method for RUL prediction. Experimental
verification has been carried out on FEMTO and XJTU-
SY dataset, experimental results testify proposed method
outshines other baselines.

Index Terms—PHM, health indicator, remaining useful life
prediction, gated recurrent units

I. INTRODUCTION

PROGNOSTICS health management (PHM) is one
of the core research hotpots in the field of me-

chanical engineering. The degradation and break-down
of components seriously affects operating efficiency and
profit, and even causes greater loss in life and property.
Therefore, there are lots of researches in PHM, for ex-
ample, generative adversarial networks (GAN) are used
in fault diagnosis on few fault samples [1], cross-domain
adaption for remaining useful life (RUL) prediction [2].
Also, many RUL studies are proposed in recent years,
which classified into two categories: one-stage/end-to-end
and two-stage. One-stage methods mean that RUL are
directly estimated from a model trained with the input
of raw vibration data. Two-stage methods usually firstly
construct health indicator (HI) and secondly estimate RUL
which can complete main regression estimation tasks with
high quality. From the literature in recent years, the latter
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is more, that is, studies on two-stage methods for RUL
estimation are many.

In the rise of artificial intelligence (AI), huge break-
throughs have been made in many domains, especially in
autonomous driving, natural language processing (NLP)
and computer vision (CV). In the field of bearing PHM
research, traditional prognosis algorithms usually does
not have considerable generalization ability and anti-
interference ability, such as traditional and simple time
domain features and frequency domain features. However,
for many deep learning (DL) techniques, such as con-
volutional neural networks (CNN) and long short-term
memory (LSTM) have been validated that outperforms
other traditional algorithms [3] [4] [5] [6]. For CNN has
a strong advantage in nonlinear feature extraction, many
scholars use CNN to extract vibration features of bearings.
[7] used the CNN with multi-scale filters to construct
HI. [8] proposed double-convolutional neural network to
predict RUL and got a great performance. [9] applied deep
convolutional neural networks (DCNN) extract multi-scale
features from time-frequency domain. [4] [10] also utilized
CNN and got effectively visible results.

From the perspective of mechanical degradation issue
on bearing units, it is a problem of nonlinear degradation
over time. For CNN, It is usually difficult to obtain
information about time series. Of course, it works when
more neural network layers are used to ensure the receptive
field large enough, but it will cause some troubles in
calculation. Recurrent neural networks (RNN) combining
with CNN for RUL prediction are proposed to alleviate the
problem of incapable of parallel computing [11]. Because
RNN has two defects that cannot remember the longer
knowledge and vanishing gradient or exploding gradient,
researchers [12] added input and output gates on the basis
of RNN to replace the internal logic calculation method
to better control input and output streams, which makes
LSTM an effective tool related to timing. [13] utilized
bidirectional handshaking LSTM to extract degradation
information related to time. LSTM is also used to acquire
trend of engine for a good score [14]. However, in many
practical applications, real-time and accuracy should be
first considered, such as NLP and autonomous driving,
in order to further reduce training time and improve
performance, gated recurrent units (GRUs) are proposed
to cover their shortcomings. [15] used GRUs to predict
RUL on the basis of nonlinear feature obtained by kernel
principle component analysis (KPCA), which is verified
and obtained excellent performance on two data sets. Since
KPCA requires the calculation of the kernel function,
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which means a large amount of calculation. In this paper,
we obtain one dimensional HI extracted from raw vibration
signal via CNNs, then GRUs are used for learning the law
of changes over time. In short, a novel two-stage approach
for RUL prediction is proposed in this paper where three
main contributions are listed as follows:

(1) HI construction. Based on [16], we optimize outlier
region correction in a local perspective instead of in a
global perspective, because the outlier region correction
method based on global will introduce some glitches. This
will provide quality data with less noise for subsequent
sequence learning.

(2) RNN-based RUL prediction. On the basis of (1),
GRUs are used to extract degradation information of
sequential HIs.

(3) To make sure the effectiveness of the proposed
method, we do a lot of experiments on two data sets.

The organization of the rest of this article is as follows.
Section II will use related work as a foreshadowing: health
indicator construction, standard RNN, LSTM, and GRU.
Section III will give out experimental setting: dataset, data
preprocessing, training precedure and hyper-parameter se-
lection. Section IV shows experimental results. Finally,
conclusion in section V closes this paper.

II. RELATED WORKS

A. Health Indicator Construction

HI construction usually be grouped into two classes:
physical HIs and fused HIs [16]. Many methods are
still belong to handcrafted feature that faces some prob-
lems that HIs construction depends on knowledge of the
characteristic of the acquired data. [16] utilized CNN to
automatically build HIs where the architecture includes
one input layer, two convolutional layers, two pooling
layers and three fully connected layers, also named CHI.
In the final fully connected layer, the output is a HI
corresponding to cycle time step t, by minimizing the
square of the euclidian distance between output value and
the actual degradation percentage corresponding to the
vibration signal input Xt = (x1,x2,...,xn) of cycle time t,
n is the number of data points.

For a bearing unit, after HIs constructed in whole cycle
time, outlier region correction is utilized to remove the
outlier regions that are determined by 3σ rule, which is
used in status monitoring [9] [17] [18]. In this rule, any
point with HI value greater than µ+3σ or less than µ-3σ
is judged to be an outlier, which affects the true trend
of HIs like noise. Readers can refer to [16] for detailed
information about CHI. In the following chapters, we will
give an optimization plan for CHI, and design a reasonable
experimental verification.

B. Standard RNN

Compared with fully connected neural networks, RNN
has one more hidden unit. RNN structurally connects
multiple neural hidden units in series show in Fig.1. Its
input is a string of data Xt=(xt−L+1,xt−L+2,...,xt)T , the
length L of X in current time t is same as the number
of hidden units, and the entire RNN structure shares one
group (U,W, b). W is a matrix that bridges the current

Fig. 1: The architecture of standard RNN.

Fig. 2: The whole architecture of LSTM.

hidden layer and the previously hidden layer. different
with W , U is the connection matrix linking the current
input layer and hidden layer. b is the bias on the hidden
unit. Each time the preceding hidden unit is calculated,
the corresponding state factor is learned, which provides
knowledge support for the subsequent hidden units. For
each time step t, the update function hidden state and
output yt at time step t as follows,

ht = f(Wht−1 + Uxt + b),

yt = f(V ht)
(1)

, where V is a matrix that notes the relationship between
the current hidden layer and output layer. Because of pa-
rameter sharing, when propagating gradient optimization
after training loss is calculated, the loss is continuously
multiplied by a number less than 1, which will cause the
loss to become a number close to 0 before it is passed
to the pre-order hidden layer. Therefore, the parameters
of the previous hidden layer cannot be updated, which
makes the difficult in training. Conversely, if multiplied
by a value greater than 1, the gradient explodes. To solve
these shortcomings of RNN, LSTM is proposed in [12].

C. LSTM

LSTM has no difference between external input and
output with RNN. Instead, the internal update calculation
method is replaced by input gate i, forget gate f , output
gate o and internal memory unit c, the schematic diagram
is shown in Fig.2.

The logic operation process is described in Fig.3. For-
getting gate controls the degree to which the input x and
the output h of the previous hidden layer are forgotten.

ft = σ(Wf · [ht−1, xt] + br) (2)
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Fig. 3: The internal logical operation of LSTM.

Fig. 4: The architecture of GRU.

Input gate controls the extent to which the input x and the
current calculated state are updated to the memory unit.

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bc)
(3)

Output gate controls input x and the current output gate
depending on the degree of the current memory unit.

ot = σ(Wo · [ht−1, xt] + bo),

ht = ot ∗ tanh(Ct),

ŷt = f(ht)

(4)

where f is a activation function. ŷt is the final output
of LSTM. These three gates respectively share their own
(U,W, b), which can better control the inflow and outflow
of information so that the entire network can better get the
relationship between sequence information.

D. GRU

Because the LSTM gate control network structure is
too complicated and redundant we can see from previous
content about LSTM, GRU reduces the number of gates
from three to two: reset gate and update gate shown in
Fig.4 . GRU introduces an update gate to replace the
forget gate and input gate and introduces a reset gate to
replace the memory unit and the hidden unit, which makes
the entire logic operation more concise and performance
enhanced. The function reset gate rt:

rt = σ(Wrxt + Urht−1 + br) (5)

TABLE I: Information of FEMTO Dataset
Condition Load(N) Speed(rpm) Name

1 4000 1800 A1-1, A1-2, A1-3, A1-4, A1-5,
A1-6, A1-7

2 4200 1650 A2-1, A2-2, A2-3, A2-4, A2-5,
A2-6, A2-7

3 5000 1500 A3-1, A3-2, A3-3

The function of update gate zt:

zt = σ(Wzxt + Uzht−1 + bz) (6)

The hidden state is calculated from reset gate h̃t:

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh) (7)

The final hidden state ht is updated by update gate:

ht = zt � ht−1 + (1− zt)� h̃t (8)

The task of GRU is to map the current health indicator
to a RUL value, and the proposed method uses the
sequence-to-one method. The whole life cycle data of each
bearing unit is divided into fixed-length sequences Xt =
(xt−L+1,xt−L+2,...,xt), L is the length of the time series,
xt is the health indicator at the current time t. The current
actual RUL value is yt. First, Xt and yt are fed into the
GRU to obtain a predicted RUL. The Mean Absolute Error
(MAE) between the predicted RUL and the corresponding
actual RUL is used as the loss, and the model parameters
are updated through the gradient descent sgd [19] method.

MAE =
1

N

∑N

n=1
|ŷ − y|, (9)

where N is the number of cycle time of a bearing unit.
If the MAE value of the training set is no longer updated
more than 20 iterations, stop training.

III. EXPERIMENTAL SETTING

A. Dataset Description

1) FEMTO dataset: FEMTO dataset, collected from
the platform PRONOSTIA, is aimed to investigate bearing
unit degradation through conducting degradation exper-
iments and obtaining vibration data from monitors of
bearing unit. The FEMTO dataset includes 3 operation
conditions, which respectively has 7, 7 and 3 bearing
units, and the raw vibration signals are the run-to-failure
data. For every cycle time step, there are 2560 data points
in horizontal direction with sampling frequency of 25.6
kHz. Simple information of the FEMTO dataset are shown
in Table I. Ax-y represents the y-th bearing unit under
the x-th condition of FEMTO dataset. For more detailed
information of the dataset, readers can refer [20].

2) XJTU-SY dataset: XJTU-SY dataset, provided by
the Xi’an Jiaotong University and the Changxing Suny-
oung Technology company [21], is also degradation tests
of bearing units for the investigation of health condition
monitoring and RUL prediction. This dataset was also
collected with the same sampling frequency as the FEMTO
dataset. The difference is that each sample includes 32768
data points. The simple information are shown in Table II.
Bx-y represents the y-th bearing unit under the x-th condi-
tion of XJTU-SY dataset. For more detailed information,
researchers can refers to [21].
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TABLE II: Information of XJTU-SY Dataset
Condition Load(N) Speed(rpm) Name

1 12000 2100 B1-1, B1-2, B1-3, B1-4, B1-5
2 11000 2250 B2-1, B2-2, B2-3, B2-4, B2-5

B. Data Preprocessing and Performance Metrics

In experimental verification process, one bearing unit
is randomly selected as the test data, and the remaining
bearing units constitute training data. What needs further
explanation is that the condition difference is ignored in
the random test bearing selection process, which means
that this experimental study does not distinguish the bear-
ing operating conditions, but treats all bearings equally,
thereby improving the generalization ability of the al-
gorithm and the actual practicality in application. This
mechanism of experimental data construction is also used
in [16].

In order to make the dimension number of the two
datasets same with each other, the data are subjected to
coarse-grained physical dimensionality reduction before
experimental verification. By this process, the algorithm’s
dependence on high-frequency vibration data is also re-
duced as much as possible. Reducing the data dimension
can better adapt to actual situation, which means proposed
method can backward compatible to equipment with a low
configuration vibration signal collector.

In the building process of sequence data construction,
if current cycle time step tc is less than the sequence
length L, a sequencial data with fixed length L will be
supplemented to by zeros.

During the test process, the GRU model outputs a
estimated RUL between 0 and 1, which needs to be
converted into an actual value. The conversion formula
follows the this formula:

ˆRUL =
ŷt ∗Rt

yt
, (10)

where yt is actual label, ŷt is the predicted RUL, and Rt

is the real RUL corresponding to the current moment t.
There is a actual RUL Rt corresponding to current cycle
time step t of tested bearing unit. If the total cycle time is
50000 s and the current time is 20000 s, then Rt is 30000
s.

Different metrics measures the performance of an algo-
rithm from different prospective. When verification, MAE
and root mean square error (RMSE) are participated in
calculating experimental accuracy. The calculation formula
of MAE and RMSE is as follows:

MAE =
1

N

∑N

n=1
| ˆRUL−RUL|,

RMSE =

√
1

N

∑N

n=1
( ˆRUL−RUL)2

(11)

Where RUL is the actual RUL value, and the ˆRUL is the
estimated RUL value, N is the number of cycle time of
bearing unit.

C. Training Procedure and Hyper-parameter Selection

Experimental training procedure is listed as the follow-
ing steps:

TABLE III: Parameters in HI Construction Stage and RUL
Prediction Stage.

Parameters value Parameters value
lrHI 0.001 lrRUL 0.001

dropout 0.5 L 20
optimizer sgd lf MAE

1) Data preparation: FEMTO/XJTU-SY dataset are
grouped into training data and test data.

2) Obtain health indicator of training data and test
data: Firstly, initialize CHI model like [16] and training
data are passed it for training the model. Secondly, some
outlier region and glitches of HI corresponding to training
data or test data are rectified by an improved outlier region
correction method for final HI of the training data HItr
and of the test data HIte.

3) Training GRU model: Initial the GRU model, use
HItr to train GRU model and save model parameter.

4) Verification and performance calculation: Load
trained GRU model, predict RUL of the HIte, and calcu-
late RMSE and MAE between predictive RUL and actual
RUL.

In the HI construction stage, [16] has found the best
parameters pair through experimental verification. To fur-
ther confirm the generalization ability of this proposed
method, which is carried on the XJTU-SY data set and got
good performance. The parameters of CHI construction
stage are shown in Table III. In RUL prediction stage, in
order to explore the impact of different L, we have carried
some tests through single-varible method for searching a
favorable length L of GRU.

IV. EXPERIMENTAL RESULTS

A. Health Indicator Construction

CHI includes two stages: HI construction and outlier re-
gion correction. In the process of outlier region correction,
we find when the time span between the first outlier point
and the last outlier point is large, some small glitches will
appear. The outlier correction formula in [16] is as follows:

hitc = hcts +
hcte − h

c
ts

te − ts
(tc − ts) (12)

Where hitc is the CHI at time tc, te and ts are respectively
the time of first outlier and last outlier. The perspective
is global. For example as Fig.5 shown, CHI in [16] will
introduce some glitches when constructing HIs. In order
to solve the issue, we improved this method in a local
perspective. The step to remove the outlier regions uses
the variable gap representing the cycle time difference d
between two adjacent outliers Oi and Oi+1, i ∈ [1, N−1],
N is the total number of positive and negative outliers, Oi

is the i-th outlier. If d is less than the gap, we think that
the span between two adjacent outliers is small, and all
points between them will be removed as shown in Fig.5.

hitc = hctOi
+
hcte − h

c
ts

te − ts
(tc − tOi

) (13)

Where hctOi
is the outlier Oi at time tOi

, hitc is the CHI
at time tc, tc ∈ [tOi

, tOi+1
].
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Fig. 5: Comparison of health indicators construction before
and after optimization on FEMTO dataset.

Fig. 6: Health indicator construction on FEMTO dataset.

Otherwise, if d is greater than the gap, we think that
the span between two adjacent outliers is large which will
introduce some glitches. For this problem, we ignore the
adjacent outliers and continue to detect if next pair of
adjacent outilers need to be carried on removing untill all
the pairs are traversed. In this paper, we also let gap equals
to ’Length’ in [16].

On the whole, improved CHI method uses local initial
outlier instead of global initial outlier, although keeping
the slope constant. In Fig.5, the top sub-figure in Fig.5
comes from CHI [16], the middle sub-figure in Fig.5
comes from improved CHI in this paper, the bottom
sub-figure in Fig.5 is the difference of HI. Because 3σ
principle is aimed at outliers that are less than 3% out
of range. So the outlier region correction has far-reaching
significance for real-time condition monitoring and RUL
estimation, because the improved method reduces the
interference with subsequent RUL estimation. Fig.6 and
Fig.7 respectively shows HI construction of some bearing
units from two datasets which all maintain monotonicity in
the overall situation, although there are small fluctuations
in the local area, which provides a good reference basis
for the subsequent RUL prediction.

Fig. 7: Health indicator construction on XJTU-SY dataset.

TABLE IV: RUL Prediction Error with GRU in Different
L on FEMTO Dataset.

L 8 16 24 32
RMSE 40.92 21.77 19.11 16.27
MAE 29.28 15.29 13.49 12.16

B. Remaining Useful Life Prediction

The number L of hidden neural units that represents
the depth of GRU directly influences the performance
of GRU. In order to explore the impact of L on GRU
performance, 10 repeated experiments with different L at
8, 16, 24 and 32 under same other parameters are carried
out and the average results are also shown in Table IV
and Table V. From Table IV, it is easy to know that the
longer sequence length is, the smaller prediction error is.
In [15], experimental results turn that the prediction error
is negatively corrected with sequence length. The sample
number of bearing on XJTU-SY is less than FEMTO’s in
spite of bearing units on XJTU-SY dataset has a larger
time unite, the smallest sample number of bearing on
XJTU-SY is 42. From Table V, the proposed method will
obtain a lower MAE when parameter L equals 32 though
can get a lower RMSE when parameter L equals 16, which
may be come from shorter samples on XJTU-SY dataset.
But as we all known, we are willing to choose L=16 when
a run-to-failure bearing unit has a few samples.

The abscissa and ordinate of Fig.8 and Fig.9 respec-
tively represent cycle time (sample number) and RUL
percentage. The unit length of the abscissa is 10 second in
Fig.8 and 60 second in Fig.9, and the ordinate represents
the RUL percentage.

Fig.8 shows the prediction results of three bearing
units under different operating conditions in the FEMTO
dataset. A 95% confidence interval is given in each sub-
graph. Judging from the bearing unit of each operating
condition, the prediction results almost all fall within the

TABLE V: RUL Prediction Error with GRU in Different
L on XJTU-SY Dataset.

L 8 16 24 32
RMSE 23.65 22.68 24.50 23.44
MAE 19.74 18.33 19.96 17.25
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TABLE VI: RUL Prediction Error with Different Methods
on FEMTO Dataset.

GRU LSTM XGB DG
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

A1-1 20.23 13.76 23.90 16.69 34.32 19.87 36.45 27.29
A1-2 5.70 4.57 7.73 5.79 9.65 5.99 11.14 8.26
A1-3 35.19 29.63 37.24 30.95 38.54 33.45 38.99 35.66
A1-4 17.65 13.17 17.80 14.48 25.42 16.92 17.82 13.72
A1-5 15.24 12.4 15.24 12.54 18.18 12.43 26.77 20.24
A1-6 10.6 7.60 11.77 9.61 19.67 10.77 19.56 12.07
A1-7 23.35 17.42 24.08 17.62 30.36 19.30 37.23 25.36
A2-1 6.65 5.50 7.87 5.99 33.6 12.62 33.35 15.15
A2-2 6.08 4.72 6.44 5.04 14.49 8.80 14.78 10.89
A2-3 36.01 24.12 38.56 24.82 44.19 25.47 39.03 25.21
A2-4 5.76 4.70 5.66 4.67 11.34 7.58 12.70 8.88
A2-5 43.85 29.01 50.84 33.95 71.15 34.53 73.51 41.56
A2-6 9.29 7.62 10.41 8.73 3.29 8.49 16.37 11.69
A2-7 8.72 6.75 10.53 9.14 12.41 7.42 12.82 7.81
A3-1 5.14 4.27 6.65 5.67 6.88 4.43 7.26 5.54
A3-2 26.14 20.62 27.22 20.75 27.99 22.35 27.50 20.98
A3-3 1.14 1.00 1.24 1.12 2.44 1.49 1.58 1.13
Ave 16.27 12.16 17.83 13.38 23.76 14.81 25.10 17.14

TABLE VII: RUL Prediction Error with Different Methods
on XJTU-SY Dataset.

GRU LSTM XGB DG
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

B1-1 12.41 9.10 20.65 17.81 26.01 18.59 21.44 18.81
B1-2 19.71 15.18 32.91 18.44 23.44 26.17 27.19 22.16
B1-3 30.86 22.22 50.61 43.62 34.85 25.67 33.72 27.85
B1-4 11.04 8.01 20.95 17.97 33.21 24.04 23.06 19.44
B1-5 4.69 3.40 7.02 5.80 11.76 8.30 7.48 6.39
B2-1 41.25 30.63 43.73 33.30 89.13 66.23 57.16 46.74
B2-2 28.23 20.74 43.42 27.45 39.67 29.67 32.52 37.00
B2-3 53.79 38.47 51.12 36.57 56.58 38.75 58.67 44.50
B2-4 7.87 6.58 8.79 7.42 7.49 5.12 7.92 6.98
B2-5 24.61 18.18 25.80 19.17 43.78 29.98 34.12 23.24
Ave 23.44 17.25 30.50 22.75 35.59 27.25 30.32 25.31

interval. Fig.9 shows the prediction results on the XJTU-
SY dataset. For the B1-2 bearing unit shown in Fig.9(a), a
few prediction values are outside the confidence interval,
but as time goes by, the prediction values are closer to
the true values. From Fig.8 and Fig.9, we can see the
proposed solution is capable of predicting RUL and has
the generalization ability of RUL estimation of bearing
units under different machines.

For further comparing, experimental baseline consists of
xgboost (XGB), double gaussian (DG) and LSTM. XGB
has repeatedly obtained excellent results in data classifica-
tion and regression of science competition. DG are used
to predict RUL and get a good result in [11]. According
to DG and XGB, we choose best parameters through grid
search technology. To ensure a fair comparison, LSTM has
same parameters with GRU’s, such as number L of hidden
neural units.

Table VI and Table VII show RMSE and MAE of RUL
prediction on the FEMTO dataset and XJTU-SY dataset
respectively. In these two tables, the average RMSE and
MAE of GRU are lower than other baselines. Compared
with XGB and DG, the RMSE and MAE of LSTM are
closer to GRU’s, which proves that RNN-based is suitable
to solve the nonlinear degradation problem.

V. CONCLUSION

In this research, the improved technology solves the
glitches introduced during the correction of abnormal

regions. Based on the construction of health indicators, we
introduce GRU to extract nonlinear degradation features
and predict the estimated RUL value. After a lot of
experimental verification, from the perspective of RMSE
and MAE, the combination of CHI and GRU works very
well in the mechanical RUL prediction of the FEMTO data
set and the XJTU-SY data set.

In the future works, we are focusing on cross-condition
and cross-machine RUL prediction, which urgently needs
more scholars in related fields to study.

REFERENCES

[1] D. Zhao, F. Liu, and H. Meng, “Bearing fault diagnosis based on the
switchable normalization ssgan with 1-d representation of vibration
signals as input,” Sensors, vol. 19, no. 9, p. 2000, 2019.

[2] X. Li, W. Zhang, H. Ma, Z. Luo, and X. Li, “Data alignments in
machinery remaining useful life prediction using deep adversarial
neural networks,” Knowledge-Based Systems, p. 105843, 2020.

[3] A. L. Ellefsen, E. Bjørlykhaug, V. Æsøy, S. Ushakov, and H. Zhang,
“Remaining useful life predictions for turbofan engine degradation
using semi-supervised deep architecture,” Reliability Engineering
& System Safety, vol. 183, pp. 240–251, 2019.

[4] G. S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural
network based regression approach for estimation of remaining
useful life,” in International conference on database systems for
advanced applications. Springer, 2016, pp. 214–228.

[5] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long short-
term memory network for remaining useful life estimation,” in
2017 IEEE international conference on prognostics and health
management (ICPHM). IEEE, 2017, pp. 88–95.

[6] X. Li, Q. Ding, and J.-Q. Sun, “Remaining useful life estimation
in prognostics using deep convolution neural networks,” Reliability
Engineering & System Safety, vol. 172, pp. 1–11, 2018.

[7] C. Wu, F. Feng, S. Wu, P. Jiang, and J. Wang, “A method for
constructing rolling bearing lifetime health indicator based on
multi-scale convolutional neural networks,” Journal of the Brazilian
Society of Mechanical Sciences and Engineering, vol. 41, no. 11,
p. 526, 2019.

[8] B. Yang, R. Liu, and E. Zio, “Remaining useful life prediction
based on a double-convolutional neural network architecture,” IEEE
Transactions on Industrial Electronics, vol. 66, no. 12, pp. 9521–
9530, 2019.

[9] X. Li, W. Zhang, and Q. Ding, “Deep learning-based remaining use-
ful life estimation of bearings using multi-scale feature extraction,”
Reliability Engineering & System Safety, vol. 182, pp. 208–218,
2019.

[10] C. Cheng, G. Ma, Y. Zhang, M. Sun, F. Teng, H. Ding, and Y. Yuan,
“Online bearing remaining useful life prediction based on a novel
degradation indicator and convolutional neural networks,” arXiv
preprint arXiv:1812.03315, 2018.

[11] Q. Wang, B. Zhao, H. Ma, J. Chang, and G. Mao, “A method
for rapidly evaluating reliability and predicting remaining useful
life using two-dimensional convolutional neural network with sig-
nal conversion,” Journal of Mechanical Science and Technology,
vol. 33, no. 6, pp. 2561–2571, 2019.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] A. Elsheikh, S. Yacout, and M.-S. Ouali, “Bidirectional handshak-
ing lstm for remaining useful life prediction,” Neurocomputing, vol.
323, pp. 148–156, 2019.

[14] J. Zhang, P. Wang, R. Yan, and R. X. Gao, “Long short-term
memory for machine remaining life prediction,” Journal of manu-
facturing systems, vol. 48, pp. 78–86, 2018.

[15] J. Chen, H. Jing, Y. Chang, and Q. Liu, “Gated recurrent unit based
recurrent neural network for remaining useful life prediction of
nonlinear deterioration process,” Reliability Engineering & System
Safety, vol. 185, pp. 372–382, 2019.

[16] L. Guo, Y. Lei, N. Li, T. Yan, and N. Li, “Machinery health
indicator construction based on convolutional neural networks
considering trend burr,” Neurocomputing, vol. 292, pp. 142–150,
2018.

[17] Y. Wang, Y. Peng, Y. Zi, X. Jin, and K.-L. Tsui, “A two-stage data-
driven-based prognostic approach for bearing degradation prob-
lem,” IEEE Transactions on Industrial Informatics, vol. 12, no. 3,
pp. 924–932, 2016.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_20

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 



(a) A1-2. (b) A2-2. (c) A3-2.

Fig. 8: RUL Prediction on FEMTO Dataset.

(a) B1-2. (b) B1-5. (c) B2-3.

Fig. 9: RUL Prediction on XJTU-SY Dataset.

[18] Z. Gao, L. Qu, and G. Lu, “Early change detection in dynamic
machine running status based on a new stability measure,” IEEE
Transactions on Instrumentation and Measurement, 2019.

[19] N. S. Keskar and R. Socher, “Improving generalization performance
by switching from adam to sgd,” arXiv preprint arXiv:1712.07628,
2017.

[20] FEMTO-ST, “Ieee phm 2012 data challenge,” 2012.
[21] B. Wang, Y. Lei, N. Li, and N. Li, “A hybrid prognostics approach

for estimating remaining useful life of rolling element bearings,”
IEEE Transactions on Reliability, 2018.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_20

Volume 48, Issue 4: December 2021

 
______________________________________________________________________________________ 




