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Abstract—Weakly-supervised temporal action localization
aims to identify all action instances and their corresponding
categories in the untrimmed videos. Since it involves only video-
level labels during training, resulting in this problem being
more challenging. Existing attention-based action localization
methods use the attention module to identify action segments
and assign them to the appropriate action categories. How-
ever, such methods inevitably suffer from many background
segments that are similar to the target actions, being rec-
ognized as actions. To address this issue, we propose a new
weakly-supervised temporal action localization network using
background suppression (BS-WTAL). The network defines the
filtering module, which can suppress the activation of the
background regions, classification module, which identifies the
activity categories, and generative attention module, which
is learned to model a segment-wise representation. This en-
ables BS-WTAL to accurately distinguish actions from the
background. Furthermore, we conduct ablation studies from
different perspectives. Extensive experiments are performed on
two datasets: THUMOS14 and ActivityNet1.2. Our approach
exhibits better performance on these two datasets and achieves
performance comparable to the state-of-the-art fully-supervised
methods.

Index Terms—Weak Supervision, Temporal Action Localiza-
tion, Filtering Module, Background Suppression

I. INTRODUCTION

TEMPORAL action localization is a challenging subject
in the field of computer vision. It aims to determine the

start and end times of each action instance in the untrimmed
videos, and classify each action instance. Owing to the rapid
development of deep learning and its wide application in
various fields, including medical diagnosis [1], [2], stock
price prediction [3], etc., many methods have been proposed.
And these methods have achieved remarkable performance
under a fully-supervised definition [4], [5], [6], [7], [8], [9],
[10], which require precise temporal boundaries and action
categories of all action instances contained in the training
videos. However, with the influx of voluminous online video
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data, annotating temporal boundaries for massive videos has
become time-consuming, expensive and subjective. Rela-
tively speaking, it is easier to label these online videos with
video-level activity categories. Therefore, weakly-supervised
temporal action localization (WTAL) using only video-level
labels during training is more practical.

Currently, based on the video features processing tech-
niques followed by the models, WTAL methods can be
roughly divided into two types. The first type is the top-
down method [11], [12], [13], [14], which uses the gen-
erated class activation mapping (TCAM) [15] to obtain a
degree of correlation between each video segment and all
action categories. This correlation is regarded as a class-
aware attention map. The second type is the bottom-up
method [16], [17], [18], which directly learns the correlation,
a type of class-agnostic attention map, from the original
video through the attention module. The segments with
high attention values are regarded as actions; those with
low attention values are considered the background. Both
methods need to optimize the segment-level attention weights
using the classification module. In previous studies, these
two methods have achieved good performance in WTAL
tasks. However, even with thorough observation and analysis
of the localization results, we still encounter the problem
of background regions similar to the target actions being
recognized as actions. Taking the video clip of the long jump
in Fig. 1 as an example, the attentions refer to the segment-
level attention weights generated by the attention module in
DGAM [18]. The following two lines are the ground truth
of action localization and localization results in DGAM [18].
As shown in the figure, there is a small difference between
the weights of some background regions and action regions.
During action localization, these background regions are also
selected, which are the red regions in the figure.

To solve the problem of background regions being recog-
nized as actions, we devise a filtering module that amplifies
the attention weights from the action regions and penalizes
the ones from the background regions. Thus, we distinguish
the action from the background more accurately. The op-
timization of the filtering module is inseparable from the
classification and generative attention modules. Therefore,
our BS-WTAL model consists of three parts: the filtering,
classification, and generative attention modules. The classifi-
cation module can identify the action categories contained in
a video by training a classifier. Following [18], we integrate
the generative attention module, which can generate segment-
wise feature representation under the condition of segment-
level attention weights, which is very beneficial to solve the
problem of action and context confusion. By maximizing
the attention weights of action segments and minimizing the
classification loss, our proposed approach is optimized. We
conduct experiments using our model on two very popular
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Fig. 1. Localization Results of DGAM Model.

datasets, THUMOS14 [19] and ActivityNet1.2 [20]. The
results of the experiments prove that our BS-WTAL model
can more effectively distinguish actions from the background
than other state-of-the-art methods.

In DGAM, it is common to categorize background regions
similar to the target acts as actions. The main contribution of
our study is the proposed BS-WTAL model to address this
issue. The model adopts a filtering module that suppresses
the background features and amplifies the action features,
which are more conducive to modeling the background, to
more accurately distinguish actions from the background.

II. RELATED WORKS

A. Fully-supervised temporal action localization

They require precise temporal boundaries and action cat-
egories of all action instances during training. With the
rapid rise of deep learning, many object detection algo-
rithms have achieved excellent performance, such as R-CNN
[21] and its variants [22], [23]. Inspired by these methods,
the fully-supervised action localization methods have also
made extraordinary progress. SCNN [5] proposes the three
segment-based 3D ConvsNets for action localization. SSN
[6] executes a watershed algorithm on the complemented
actionness values to generate more accurate proposals, then
constructs a temporal structure for each proposal, and evalu-
ates the category and completeness of each proposal through
two classifiers. CDC [7] proposes a CDC filiter to retain
time granularity to boost the accuracy of localization results.
BSN [9] proposes a new proposal generation algorithm that
locally predicts the temporal boundaries of proposals and
globally evaluates the confidence scores. Yeung et al. [24]
use REINFORCE to train a single coherent model that can
directly predict the start and end locations of action instances.
SSAD [25] adopts a single-shot action detection model that
directly predicts the categories and localizes each action
instance. These reported methods have a beneficial effect on
the performance of action localization.

B. WTAL

The WTAL method with video-level labels and no
segment-level annotations during training was first intro-
duced in [26]. As explained in Section 1, the WTAL methods
can be thought of as containing both top-down and bottom-up
methods. Among top-down methods, W-TALC [11] proposes
that the correlations between videos with the similar labels
are conducive to the improvement of localization perfor-
mance. UntrimmedNets [12] adopts a soft selection module

to obtain segment-level weights and thresholds the weights
to select foreground segments to perform action localization.
Narayan et al. [27] propose 3C-Net, which defines center
and counting losses for weakly-supervised action localiza-
tion. Different from the top-down approaches, the bottom-up
methods directly generate attention weights for each segment
from raw videos. AutoLoc [16] trains a boundary predictor
using OIC loss. STPN [17] proposes to identify action-related
segments using the attention module and produce video-level
features by temporal average pooling. MAAN [28] proposes
a marginalized average aggregation module to solve the
problem of recognizing only the most discriminative regions.
Nguyen et al. [29] devise to use the complementary factors
of the attention weight values generated by the attention
module to model the background. DGAM [18] proposes a
new generative attention model that models the segment-
wise representation distribution under the segment-attention-
weights condition to address the action-context confusion
problem.

In addition, approaches that combine the two aforemen-
tioned methods have been developed to achieve better lo-
calization performance. For example, Bas-Net [30] intro-
duces an additional class to represent the background and
devises a two-branch architecture to suppress activation
from background regions. Clean-Net [31] proposes a new
contrast-based evaluation and localization network. Gong
et al. [32] utilize the class-agnostic attention module to
determine action segments and integrate the class-specific
attention module to obtain the action probability distribution.

III. OUR APPROACH

We introduce the proposed BS-WTAL model in great
detail. During training, we provide N videos with video-
level labels y ∈ {0, 1, · · ·, C}, where C denotes the total
number of activity categories involved in this datasets and 0
represents the background class. For each training video X ,
we first extract RGB frames and optical flow frames between
two adjacent RGB frames, then we divide them into multiple
segments consisting of non-overlapping 16 frames. Next, we
input these both stream segments into the pre-trained feature
extractor to obtain segment-level feature vectors. For t− th
segment, we denote its feature as xt and its feature dimension
is set to d. When training the model, we choose the features
of T segments from the both streams as the training data of
the proposed BS-WTAL model. Therefore, We can represent
the training data as X = (xt)

T
t=1.

During testing, we use a trained model to localize all
action instance occurred in testing videos. They are formatted
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Fig. 2. Framework Overview. (a) Feature Extraction (b) Filtering Module (c) Classification Module (d) Generative Attention Module

as { (si, ei, ci, pi) }ni=1, where si and ei denote the starting
and ending times of the localized action regions. And ci
and n denote action categories and total number of proposals
generated for a video, respectively, while pi represents the
confidence score of the predicted action category.

A. Architecture Overview

The overall architecture of our proposed BS-WTAL model
is shown in Fig. 2. It is composed of the feature extrac-
tion, the filtering module, the classification module and
the generative attention module. Given a video feature
X = (xt)

T
t=1, our algorithm first generate the attention

weights λ = (λt)
T
t=1, which denote the correlation be-

tween each video segment and action categories. Then we
perform temporal average pooling to calculate video-level
foreground features xfg from segment-level features and
their corresponding attention weights λ. Similarly, we use
1−λ to compute the video-level background representation,
denoted by xbg . Next, these video-level representations are
fed into the classification module to produce the class scores.
The generative attention module, that is, the conditional
Variational Auto-Encoder (VAE), utilizes the segment-level
feature and its attention weight to generate a segment-level
representation, denoted by _

x, which aims to further refine
the attention weights. We will discuss these details in the
following sections.

B. Filtering Module

In a localization model using the attention mechanism,
the main objective is to optimize the segment-level attention
weight λ. By observing the results of action localization
in DGAM [18], we realize the following problem: many
background regions that are similar to the target actions in ap-
pearance or motion patterns tend to be recognized as actions,
which causes performance degradation. We analyze attention
weights and find that the corresponding attention weights of
background regions mistaken as actions are not significantly
different from the attention weights corresponding to action
regions. To address this issue, we devise a filtering module
that can suppress the attention weights of background regions
and encourage the attention weights of foreground regions.

We experiment with features extracted from I3D [33].
For a training video, we first extract the RGB frames and
the optical flow frames between two adjacent RGB frames
using the TV-L1 algorithm [34]. Then, we divide two streams
into segments consisting of non-overlapping 16 frames. Next,

these segments are inputted to I3D to obtain segment-level
RGB and flow features. Note that both stream features are
sent into the filtering module.

We show the composition of the attention module and the
filtering module in Figure 3. The attention module consists
of fully connected layers while the filtering module is im-
plemented by convolutional layers. Both perform sigmoid
operations on the output of the final layer to ensure that
that the generated attention weight values are between 0 and
1. Thereafter, we use these attention weights λ to weight
segment-level features to obtain video-level foreground fea-
tures dominated by action features. Thus, we can obtain more
accurate class scores.

We take the long jump shown in Fig. 1 as an example
to analyze the attention weights generated by the attention
and filtering modules, as shown in Fig. 4. In this diagram
, we can see the localization results of DGAM and our
model on the same video clip. In Fig. 4(a), the first line
is the attention weights generated by the attention module
of DGAM, the following line is action instances labeled in
this video clip, and the last line is the localization results
predicted by DGAM. In Fig. 4(b), the first line is the attention
weights generated by the filtering module of our model,
the middle line is the same action instances labeled in this
video clip, as in Fig. 4(a). Finally, the third line is the
results of our algorithm prediction. From this graph we
can conclude that our model can generate better attention
weights. In the results of DGAM, many background regions
are recognized as actions. Owing to the integration of the
filtering module, our algorithm successfully suppresses the
attention weights from background segments and solves the
problem of distinguishing action instances from background
regions.

C. Classification Module

To predict video-level class scores of foreground features,
we utilize attention weights λ over all segments and their
corresponding segment-level features to perform temporal
average pooling, so as to obtain a video-level foreground
feature xfg dominated by action features. We can define it
as follows:

xfg =

∑
T
t=1λtxt∑
T
t=1λt

. (1)

Then, the video-level foreground features are input to the
classifier to produce video-level prediction pfg [c] and com-
pute the cross-entropy loss Lfg between the prediction pfg [c]
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Fig. 3. Structure comparison between attention module and filtering module.

and video-label y :

Lfg = − log pfg [y] . (2)

Similarly, we use the complementary factor 1−λ to compute
the background features xbg [29]:

xbg =

∑
T
t=1 (1− λt)xt∑
T
t=1 (1− λt)

. (3)

Next, the video-level background features are sent into
the classification module to obtain the class scores pbg [c]
corresponding to category c and calculate the cross-entropy
loss Lbg , which forces the class score on the background
class close to 1.

Lbg = − log pbg [0] . (4)

D. Training

1) Loss of the generative attention module: Following
[18], we optimize CVAE using pseudo-labels, which are
provided by the attention weights generated by the filtering
module. By minimizing the variational loss LCV AE , the
generative attention module can be optimized. The LCV AE
can be defined as following:

LCV AE = − 1

L

L∑
l=1

log pψ

(
xt |λt , z(l)t

)
+β ·KL (qϕ (zt|xt, λt) ‖pψ (zt |λt ) ).

(5)

where z
(l)
t represents l − th example sampled from qϕ.

And qϕ is defined as a Gaussian distribution, which can
be formulated as qϕ (zt|xt, λt) = N (zt|µϕ,Σϕ). We can
obtain µϕ and Σϕ from the encoder and they are mean
value and the standard deviation of Gaussian distribution
respectively. Furthermore, the prior probability distribution
pψ (zt|λt) is approximated as a Gaussian function and is
written as pψ (zt|λt) = N (zt|rλt · 1, I), where 1 is a vector
whose element values are all one and γ is a super parameter
that control the difference between the attention weights.
In addition, β is a super parameter that control the weight
between the reconstruction quality and sampling accuracy.

CVAE generates feature representation x̂ for each segment.
In order to further optimize the attention weights λ, we

calculate the the reconstruction Loss Lre, which forces the
generated segment-level features close to the original feature
representations. We define this loss function as follows:

Lre = −
T∑
t=1

log

{
1

L

L∑
l=1

pψ

(
xt|λt, z(l)t

)}
. (6)

where z(l)t is l− th example sampled from the prior distribu-
tion pψ (zt|λt). In our setting, we let L equal to 1. Therefore,
we can rewrite Eq.(6) as follows:

Lre =
T∑
t=1

‖xt − fψ (λt, zt)‖2. (7)

2) Loss of the filtering module: To further optimize atten-
tion weights λ, we first obtain top-down class-wise attention
weights from temporal class activation maps (TCAM) [17].
Then, we minimize the distance between the class-wise and
the class-agnostic attention weights to obtain more reliable
attention values. Therefore, Lguide can be calculated as
following:

Lguide =
1

T

T∑
t=1

∣∣∣∣λt − _

λ
fg

t

∣∣∣∣+

∣∣∣∣λt − _

λ
bg

t

∣∣∣∣. (8)

where
_

λ
fg

t and
_

λ
bg

t are the top-down class-aware foreground
and background TCAMs. The calculation method is as
follows:

_

λ
fg

t = G (σs) ∗
expw

T
y xt∑

C
c=0expw

T
c xt

, (9)

_

λ
bg

t = G (σs) ∗
∑

C
c=1expw

T
c xt∑

C
c=0expw

T
c xt

. (10)

where G is a Gaussian smooth filter with standard deviations
σs, and * is a convolution operation.

3) Training objective: Following [18], we train our model
using an alternate training method, which requires two steps:

Step 1 Update filtering Module and classification module:

L = Lfg + γ1Lbg + γ2Lre + γ3Lguide. (11)

Step 2 Optimize CVAE with loss LCV AE .
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Fig. 4. Visualization of the effectiveness of our method.

E. Action Localization

During inference, we use only the filtering and classifica-
tion modules. Given a video, we feed it to our model and
obtain the attention weights λ and class scores. Following
[18], we threshold the class scores to identify the action
categories that occur in this video. For each of the remaining
categories, we calculate the W-TCAM and threshold it to ex-
tract the connected components. The proposals are generated
by integrating adjacent components. We further follow [14],
[16] to obtain the confidence score of each proposal.

IV. EXPERIMENTS

A. Data Description and Evaluation Protocol

1) Datasets: To measure the performance of our method
on the task of WTAL, we conducted extensive experiments
on two datasets, THUMOS14 [19] and ActivityNet1.2 [20].
They contain multiple actions and have a large proportion of
non-action regions, which is an obstacle to locating action
instances but also improves the generalization ability of our
model.

THUMOS14. This dataset provides 200 validation and
212 testing videos. Following the convention, we train using
the validation videos and acquire only their video-level
labels, and evaluate our algorithm using the testing videos.
This dataset contains 20 activity categories. Moreover, this
dataset is quite long and involves more than one action
category in some videos. The lengths of action instances vary
greatly, from less than a second to minutes. These all pose
challenges to action localization.

ActivityNet1.2. This dataset involves an enormous number
of videos contained a variety of human activities, which
contains 4819 training videos and 2383 testing videos. There
are 200 action categories in this dataset.

2) Evaluation metrics: In our experiments, we evaluate
the performance of our proposed model by calculating the
mean average precision (mAP) under different intersection
over union (IoU). we utilize the benchmark code to compute
the mAP and the code is provided by ActivityNet official
codebase.

B. Implementation Details

For each video in these two datasets, we extract RGB and
optical flow features using the pre-trained feature extractor
I3D [33], which is trained on the Kinetics dataset [35].
Note that this feature extractor does not make any fine-
tuning in our experiment. Specifically, both RGB and optical
flow frames extracted from RGB data are divided into many
segments consisting of non-overlapping 16 frames. Segment-
level RGB and flow features with a dimension of d = 1024
are obtained by feeding these segments into I3D. Following
[18], during training, we set T to 400. Furthermore, if the
number of video segments is more than 400, T is set to
400 for THUMOS14, 200 for ActivityNet1.2, and the entire
video will be used as input otherwise.

In the filtering module, we devise two convolutional layers
with convolutional kernel sizes of 1 × 1 × 1024 and 1 × 1
× 512. This is expected to suppress the activation from the
background regions. Thus, our model can effectively identify
action regions.

During training, we set the batch size to 32. In Eq.(11),
we set γ1 to 0.03 and γ3 to 0.1. γ2 is set to 0.5 for
the RGB stream and 0.3 for flow stream. β=0.1 in Eq.(5).
During testing, if the maximum score is greater than 0.1, we
identify that the video contains at least one action category.
Then, we threshold the classification score to obtain the
classes that this video contains. Next, the process of temporal
action localization is conducted on the remaining classes
to generate action proposals. Finally, we perform a non
maximum suppression operation with an IoU threshold of
0.5 on the candidate proposals to remove duplicated action
proposals. We apply deep learning framework pytorch [36] to
implement our model and optimize using the Adam optimizer
whose learning rate is set to 0.001.

C. State-of-the-Art Comparisons

Table I summarizes the experimental results of our pro-
posed model and other methods on the THUMOS14 testing
dataset. We calculate mAP values at different IoU thresholds
of 0.1:0.1:0.9. Temporal action localization conducted under
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TABLE I
WTAL PERFORMANCE COMPARSION ON THUMOS14 TESTING SET. (“OURS” IS OUR REALIZATION)

Supervision Method
mAP@IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Full

SCNN [5] 47.7 43.5 36.3 28.7 19.0 10.3 5.3 - -
SSN [6] 66.0 59.4 51.9 41.0 29.8 - - - -
CDC [7] - - 40.1 29.4 23.3 13.1 7.9 - -

Yeung et al. [24] 48.9 44.0 36.0 26.4 17.1 - - - -
BSN [9] - - 53.5 45.0 36.9 28.4 20.0 - -

BMN [10] - - 56.0 47.4 38.8 29.7 20.5 - -

Weak

Hide-and-seek [13] 36.4 27.8 19.5 12.7 6.8 - - - -
UntrimmedNets [12] 44.4 37.7 28.2 21.1 13.7 - - - -

STPN [17] 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.1
AutoLoc [16] - - 35.8 29.0 21.2 13.4 5.8 - -
W-TALC [11] 49.0 42.8 32.0 26.0 18.8 - 6.2 - -
MAAN [28] 59.8 50.8 41.1 30.6 20.3 12.0 6.9 2.6 0.2

CleanNet [31] - - 37.0 30.9 23.9 13.9 7.1 - -
3C-Net [27] 59.1 53.5 44.2 34.1 26.6 - 8.1 - -
Bas-Net [30] 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5

Nguyen et al. [29] 60.4 56.0 46.6 37.5 26.8 17.6 9.0 3.3 0.4
DGAM [18] 60.0 54.2 46.8 38.2 28.8 19.8 11.4 3.6 0.4

ours 61.9 56.0 48.1 38.7 30.0 20.0 11.4 3.8 0.2

TABLE II
THE RESULT OF THE EXPERIMENT ON THE ACTIVITYNET1.2 VALIDATION SET. (“OURS” IS OUR REALIZATION)

Supervision Method
mAP@IoU

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

Full SSN [6] 41.3 38.8 35.9 32.9 30.4 27.0 22.2 18.2 13.2 6.1 26.6

Weak

UntrimmedNets* [12] 7.4 6.1 5.2 4.5 3.9 3.2 2.5 1.8 1.2 0.7 3.6
AutoLoc* [16] 27.3 24.9 22.5 19.9 17.5 15.1 13.0 10.0 6.8 3.3 16.0
W-TALC [11] 37.0 33.5 30.4 25.7 14.6 12.7 10.0 7.0 4.2 1.5 18.0
CleanNet [31] 37.1 33.4 29.9 26.7 23.4 20.3 17.2 13.9 9.2 5.0 21.6
3C-Net [27] 37.2 - - - 23.7 - - - 9.2 - 21.7

Liu et al. [14] 36.8 - - - - 22.0 - - - 5.6 22.4
Bas-Net [30] 38.5 - - - - 24.2 - - - 5.6 24.3
DGAM [18] 41.0 37.5 33.5 30.1 26.9 23.5 19.8 15.5 10.8 5.3 24.4

ours 40.6 37.5 33.6 30.4 27.2 24.2 20.4 16.4 11.8 6.0 24.8

fully-supervised settings utilizes a training set with segment-
level labels during training. However, in WTAL task, we use
only video-level labels to train our model. Nevertheless, our
algorithm is still able to achieve competitive performance.
In addition, compared to other WTAL methods, the per-
formance of our proposed BS-WTAL model is superior to
those of the others for IoU less than 0.8, indicating that our
method addresses the issue at hand by suppressing attention
weights of background segments. However, for IoU values
at 0.8 and 0.9, our method does not perform as well as
Bas-Net [30], which proves that our method also suppresses
the attention weights of the boundaries of the target action
when suppressing the attention weights of the background
regions. Although this network accurately determines the
localization of the target action, it cannot precisely pinpoint

the boundaries of the target action, which shows us the next
direction of our research.

We also conduct experiments on the ActivityNet1.2 dataset
to validate the performance of our BS-WTAL model. We
compared the performance of our method with other state-
of-the-art methods and the results are presented in Table II.
According to the evaluation criteria, we calculate the mAPs
under different IoU thresholds. Moreover, we compute the
mean of the mAP values for thresholds between 0.5 and 0.95
in increments of 0.05, which is denoted as mAP@IoU. As far
as the average mAP is concerned, our method outperforms
all other WTAL methods. Simultaneously, our method is
competitive compared to the fully-supervised method. Note
that * indicates that the corresponding models use a weaker
feature extractor to extract features than others.
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Fig. 5. Qualitative results on THUMOS14.

TABLE III
ABLATION STUDY OF THE EFFECTIVENESS OF OUR MODEL.

loss mAP@0.5
Lfg Lbg Lguide Lre DGAM [18] ours
√

21.5 24.9
√ √

24.8 27.0
√ √ √

26.7 28.5
√ √ √ √

28.8 30.0

D. Ablation Study

To investigate the impact of each component of BS-
WTAL model to the action localization performance, we
design an ablation study on the optimization objectives of
our proposed model and execute it on the THUMOS14
dataset. The baseline is set to the main pipeline with only
foreground loss Lfg . We add background loss Lbg to learn
modeling the background to distinguish the foreground and
background better. Next, we utilize the self-guide regulation
loss Lguide to further optimize attention. Our model also uses
Lre, which is related to the generative attention module. We
can optimize LCV AE while optimizing Lre. Simultaneously,
we also analyze the experimental results with DGAM [18]
under the same conditions.

The results of the ablation study are summarized in Table

III. The mAP values are reported under IoU thresholds of
0.5. The loss of foreground classification is used to model
the foreground, so that the model can recognize the action
instance. The loss of background classification is used to
model the background, so that the model can accurately sep-
arate the action instance from the background. As a result, the
performance is improved by 2.1%. Self-guide regularization
is an additional loss function to further optimize attention λ
, which leads to a 1.5% mAP improvement. Our BS-WTAL
model finally achieved a 30.0% performance gain owing to
the application of the loss function Lre. Moreover, our model
is superior to DGAM [18], which proves that the filtering
module plays a crucial role in improving the localization
performance.

E. Qualitative results

Fig. 5 illustrates a comparison between the localization
results of several actions and ground truths. These three ex-
amples are from the THUMOS14 dataset. Fig. 5(a) presents
a sample with numerous action instances along with their
attention weights and our predicted results. Before and after
the target action, there are many actions, such as athletes
running and waving to the audience, which are similar to
the target action in their appearances. Nevertheless, our
algorithm can still pinpoint the temporal boundaries of these
target actions successfully. In Fig. 5(b), many incomplete
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actions in the video are depicted, such as the beginning of
the target action, which are parts of the target action. It is
challenging to exclude these regions during inference, but
our model can achieve good performance. In Fig. 5(c), two
similar actions occurring at the same time in one video,
and they are so similar in motion and appearance, that it
is very challenging to localize the action regions. Despite
these challenges, our method can accurately localize these
temporal actions; moreover, it can accurately classify these
actions.

V. CONCLUSION

We addressed the issue of many background regions that
are similar to the target actions tending to be recognized
as actions. A BS-WTAL model was developed and val-
idated on two large-scale benchmarks, THUMOS14 and
ActivityNet1.2. Our algorithm defined the filtering module
for background suppression, the classification module for
action classification, and the generative attention module
for segment-wise representation modeling. Our model ex-
perimentally outperformed the state-of-the-art methods under
weakly-supervised settings and achieved competitive perfor-
mance under a fully-supervised setting.
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