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Abstract—This paper presents a new approach to kinematic
modeling and trajectory tracking control system (TTCS) design
of an autonomous two-wheeled robot. The robot kinematic mod-
eling is carried out based on a vector diagram. It transforms the
robot trajectory tracking problem into a stabilization problem
of non-linear posture error dynamics. A solution is presented by
applying a state feedback control. The posture error dynamics is
linearized using the Taylor series and linear quadratic regulator
(LQR) is applied to design the state feedback control. It results
in a closed-loop system where all of the eigenvalues are real
negative numbers. Performance evaluation of the TTCS is
presented through numerical simulations in computer. The
results show that the robot is able to track a reference trajectory
without oscillation regardless of the robot initial posture.

Index Terms—autonomous robot, kinematics modeling, tra-
jectory tracking control, optimal control design.

I. INTRODUCTION

AUTONOMOUS mobile robot has capability to move
from a departure point to a destination point through

a desired route without any intervention of the robot op-
erator. It is an enhancement of conventional mobile robot
by applying a control system for steering the robot. This
control system is called as the trajectory tracking control
system (TTCS). The TTCS works to steer the robot track
a reference trajectory by utilizing feedback signals from
navigation sensors.

The autonomous mobile robots are one of the challenging
research topics since the last three decades [1]–[3]. Re-
cently, this topic gets more attention due to the emerging of
advanced technology in electronics and computer systems.
A great extent of efforts and works have been invested
by researchers for developing autonomous robots [4]. The
autonomous robots are not only provides challenges on the
control and navigation systems but also on applying the latest
technology such as artificial intelligence and computer vision
[5]–[7].

There are several types of mobile robots including: aerial
robot, water surface robot, underwater robot and ground
mobile robot. A two-wheeled robot (TWR) is a part of the
ground mobile robot where the robot’s body is supported by
two wheels only. The TWR is an interesting robot because
the two-wheel support renders the robot agile with high
maneuverability. Unfortunately, the TWR is unable to stand
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and categorized as a statically unstable system. A state
feedback control system is applied to actively stabilize the
TWR such that the robot is balanced. Several results on
the TWR active stabilization have been presented based on
various methods [8]–[10]. The balanced TWR is therefore
ready to be deployed as an autonomous mobile robot with
high maneuverability.

The first autonomous two-wheeled robot (ATWR) was suc-
cessfully developed by Koyanogi et al. [11]. They designed
a two-dimensional trajectory control system for a wheeled
inverted pendulum robot. The wheeled inverted pendulum
robot is similar to the TWR. Their work resulted in the
robot moving autonomously. However, the robot can only
be operated for low-speed maneuvers. Another ATWR that
was able to maneuver at higher speed was then presented
in [2], [3]. Control system of the robot was designed by
including three tasks: 1) balancing and velocity control,
2) heading control, and 3) trajectory tracking control. The
experimental test confirmed a capability of the robot to move
autonomously up to approximately 20 cm/s.

Since then, several works on developing ATWR have
been reported. Control system of the ATWRs were mostly
designed using the model-based control method, for exam-
ples in [12]–[16]. Applying the model-based control method
requires a dynamic model of the robot in deriving a control
law. The model used is described by a set of mathematical
equations representing the robot dynamics obtained through
a modeling process. It can be distinguished in the literature
that there are three underlying methods to perform TWR
modeling [17] that include the Newtonian method [18]–[20],
the Lagrangian method [3], [21]–[23], and the Kane’s method
[24]–[26]. Modeling the TWR is a relatively complex task
because the TWR is a three-dimensional system with longi-
tudinal and lateral motions. In this regard, the longitudinal
motion is when the robot performs a pitching motion for
robot balancing. Moreover, the lateral motion is when the
robot performs a yawing motion for robot steering.

Considering the importance of the TWR modeling, we
hence present as the main contribution of this paper a new
approach to modeling the TWR’s lateral motion based on a
vector diagram. The main advantage of applying the vector
diagram is that it gives a clear description on how to derive
the robot’s kinematic model. The resulting model is then used
for designing a TTCS to yield the ATWR. Presentation of this
paper is then organized as follows. The kinematic modeling
of the robot based on the vector diagram is described in
Section II. The resulted model is then applied in designing a
TTCS for the TWR by using the LQR method as discussed in
Section III. Performance evaluation of the designed TTCS is
presented in Section IV. Numerical simulations are carried
out to demonstrated performance of the TTCS applied in
a TWR to track a reference trajectory. The performance
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Fig. 1. Position and orientation of the TWR A and TWR B on the planar
space.

evaluation is done through analysing the simulation results.
Finally, conclusions of this work are given in Section V.

II. VECTOR-BASED MODELING OF THE ROBOT
KINEMATICS

Fig. 1 shows two units of TWRs on a planar space, which
are named as the TWR-A and TWR-B, respectively. Each
TWR can perform two kinds of movement on the planar
space, i.e. translation and rotation. Position and orientation
of the robots are presented in an inertial coordinate system
XIYIZI . The inertial coordinate system is a fixed frame
coordinate system and shown by the XI and YI axes in the
Fig. 1. The ZI axis is not appear in the figure as it is pointing
out of the figure.

Positions of the TWR-A and TWR-B are given by (xa, ya)
and (xb, yb), respectively. Meanwhile, orientations of the
TWR-A and TWR-B are expressed by ψa and ψb, respec-
tively. The TWR orientation shows a forward-movement
direction of the robot. This orientation is represented by an
angle of the robot’s linear velocity with respect to the XI

axis.
Position and orientation of a robot are together referred

to as a posture. Therefore, postures of both TWRs can be
defined as follows:

ξa =

 xa
ya
ψa

 and ξb =

 xb
yb
ψb

 . (1)

where ξa is the posture of TWR-A and ξb is the posture of
TWR-B.

When the TWR moves on the planar space, its posture
always changes over time. Rate of the posture change is a
time derivative of the posture which is a function of the robot
velocities. Rate of change of the TWR-A posture is given as
follows:

ẋa = va cosψa,
ẏa = va sinψa,

ψ̇a = wa,
(2)
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Fig. 2. A vector diagram of the TWR-A and TWR-B positions with respect
to the inertial coordinate system.

where va is the linear velocity of the TWR-A and wa is the
angular velocity of the TWR-A. Meanwhile, rate of change
of the TWR-B posture is given by:

ẋb = vb cosψb,
ẏb = vb sinψb,

ψ̇b = wb,
(3)

where vb and wb are the linear and angular velocities of
TWR-B, respectively.

Suppose the TWR-A is aimed to track a trajectory of the
TWR-B movement. This trajectory tracking is achieved by
the TWR-A posture approaching the TWR-B posture at an
instant time and converging as time goes to infinity. In this
trajectory tracking, it is assumed that postures of both robots
at any instant time are known and velocities of the TWR-B
are given. Since the rate of change of the TWR-A posture is
a function of the velocities, the trajectory tracking problem is
therefore formulated to find proper velocities of the TWR-A.

Positions of both TWRs depicted in the Fig. 1 can be
represented in a vector diagram as shown in Fig. 2. Their
positions are thus expressed in terms of vectors ra and rb
defined as follows:

ra :=

[
xa
ya

]
and rb :=

[
xb
yb

]
. (4)

Based on the vector diagram, the relationship of both vectors
can then be written as

ra + r̃ = rb (5)

where r̃ denotes the position error of the TWR-A. This
position error can be defined as follows:

r̃ := rb − ra =

[
xb − xa
yb − ya

]
=

[
x̃
ỹ

]
. (6)

Analogously, the orientation error of the TWR-A can be
defined as follows:

ψ̃ := ψb − ψa. (7)
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Fig. 3. A vector diagram of the TWR-A and TWR-B positions with respect
to the TWR-A body coordinate system.

Thus, combining (6) and (7) results in the following vector:

ξ̃ :=

 x̃
ỹ

ψ̃

 , (8)

and call the ξ̃ as the posture error. This posture error
represents a deviation of the TWR-A posture to the TWR-
B posture. The TWR-A tracks the TWR-B trajectory if the
posture error is minimized and vanished. The posture error
is used as feedback information to calculate proper velocities
of the TWR-A in order to tracks the TWR-B trajectory.

In addition to the inertial coordinate system, define a new
coordinate system XAYAZA and call it as the TWR-A body
coordinate system. This coordinate system is sticking on the
TWR-A and moves along the robot movements. The TWR-
A body coordinate system is shown in Fig. 3, where the
origin is located at the center of mass of TWR-A and the
XA axis is inline with the linear velocity va. The YA axis
is perpendicular to the XA axis such that the ZA axis is
perpendicular to the XAYA plane and pointing out of the
Fig. 3.

The posture error ξ̃ in (8) was defined with respect to
the inertial coordinate system. It can also be expressed in
the TWR-A body coordinate system through a coordinate
transformation. The transformation from inertial coordinate
into the TWR-A body coordinate system is given by the
following equation:

ξ̃A = RAI ξ̃. (9)

The ξ̃A is the posture error represented in the TWR-A body
coordinate system, RAI is the transformation matrix form the
inertial coordinate system into the TWR-A body coordinate
system, and ξ̃ is the posture error represented in the inertial
coordinate system. The transformation matrix RAI is defined
as follows [27]:

RAI :=

 cosψa sinψa 0
− sinψa cosψa 0

0 0 1

 . (10)

Substituting (8) and (10) into (9) results in

ξ̃A =

 x̃A
ỹA
ψ̃A

 =

 cosψa sinψa 0
− sinψa cosψa 0

0 0 1

 x̃
ỹ

ψ̃

 .
(11)

The expression of ξ̃A in (11) shows that the transformation
does not change the orientation error,

ψ̃A = ψ̃. (12)

This is because the robot’s rotational axes of both coordinate
systems coincide. From the Figs. 1 to 3, we notice that the
orientation angle of the TWR-A is 90◦. Thus, applying this
angle in to (11) results in:

ξ̃A =

 x̃A
ỹA
ψ̃A

 =

 ỹ
−x̃
ψ̃

 (13)

as shown in the vector diagram in Fig. 3.
Since the TWR-A is intended to track the TWR-B, the

TWR-A has to move at certain velocities such that the
posture error ξ̃A decreases and converges to zero as time
goes to infinity. This can be achieved if the posture error dy-
namics is asymptotically stable. The posture error dynamics
is formulated by differentiating ξ̃A with respect to time. It
thus follows that a time derivative of (9) is given by

˙̃
ξA = ṘAI ξ̃ +RAI

˙̃
ξ, (14)

and the calculation result in ˙̃xA
˙̃yA
˙̃
ψA

 =

 waỹA + vb cos ψ̃A − va
−wax̃A + vb sin ψ̃A

wb − wa

 (15)

(see [27] for detailed calculation). To this end, the trajectory
tracking problem is thus equivalent to finding the TWR-A
velocities, va and wa, such that the posture error dynamics
(15) is asymptotically stable. Note that the posture error
dynamics is manifestation of a nonlinear dynamical system.
Thus, the trajectory tracking problem is not trivial to solve
and its solution cannot be obtained in a straightforward
manner.

The (15) can be presented in a general form of nonlinear
dynamical system as follows:

ż = f(z, u) (16)

where z represents the system state vector, u represents
the system input vector, and f(·) represents a vector-valued
nonlinear function. Here, z, u, and f(·) are given as follows:

z :=

 z1
z2
z3

 =

 x̃A
ỹA
ψ̃A

 (17)

u :=

[
u1
u2

]
=

[
va
wa

]
(18)

and

f(z, u) :=

 u2z2 + vb cos z3 − u1
−u2z1 + vb sin z3

wb − u2

 . (19)
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Suppose that f(z, u) in (19) has an equilibrium point at the
state zq and the input uq . Those are

zq =

 z1q
z2q
z3q

 (20)

and
uq =

[
u1q
u2q

]
. (21)

At the equilibrium point (zq, uq), we have

f(zq, uq) = 0 (22)

such that the velocities of both robots satisfy

u2qz2q + vb cos z3q − u1q = 0, (23)
−u2qz1q + vb sin z3q = 0, (24)

wb − u2q = 0. (25)

Given the equilibrium point (zq, uq), one can express the
nonlinear equation (19) in terms of the Taylor series [28]
written as follows:

f(z, u) = f(zq, uq) +
∂f(zq, uq)

∂z
(z − zq)

+
∂f(zq, uq)

∂u
(u− uq) + H.O.T. (26)

where H.O.T. stands for high-order terms. Thus, coefficients
of the first-order terms in (26) are yielded as

∂f(zq, uq)

∂z
=

 0 u2q −vb sin z3q
−u2q 0 vb cos z3q
0 0 0

 =: A, (27)

∂f(zq, uq)

∂u
=

 −1 z2q
0 −z1q
0 −1

 =: B. (28)

Let us now define deviations of the current system state z and
the current system input u from the equilibrium point (zq, uq)
respectively as the system state error z̃ and the system input
error ũ:

z̃ := z − zq, (29)
ũ := u− uq. (30)

Thus, neglecting the H.O.T. in (26) and taking the time
derivative of the system state error z̃ in (29), one may obtain
a linear dynamical equation as follows:

˙̃z = Az̃ +Bũ. (31)

The dynamical equation (31) is a linear approximation of
the the posture error dynamics in the neighbourhood of the
equilibrium point (zq, uq) and is expressed in terms of a
state-space model.

III. THE ROBOT TRAJECTORY TRACKING CONTROL
DESIGN

An admissible solution to the robot trajectory tracking
problem requires asymptotic stability of the posture error dy-
namics at the equilibrium point (zq, uq). Through the linear
approximation (31), the asymptotic stability is equivalently
satisfied when the system matrix A is Hurwitz. However,
this condition is not always fulfilled. Thus, in order to
achieve the asymptotic stability, a state feedback controller

can be synthesized to generate the control input ũ such
that the resulting closed-loop system matrix is Hurwitz. For
this purpose, let us define the states feedback controller as
follows:

ũ := −Kz̃ (32)

where K is the controller gain matrix. Substituting (32) into
(31) yields in

˙̃z = (A−BK)z̃ (33)

which is the closed-loop system of (31). Therefore, it is
necessary to design the state feedback controller (32) such
that the closed-loop system (33) is asymptotically stable.

Various methods can be applied to design the state feed-
back controller (32) the system (31), and one of them is the
linear quadratic regulator (LQR) method. Using the LQR
method, one may synthesize the state feedback controller
(32) by minimizing a quadratic cost function defined as
follows:

J :=
1

2

∫ ∞
0

(
z̃TQz̃ + ũTRũ

)
dt. (34)

Here, Q ≥ 0 is a positive semi-definite matrix and R > 0 is
a positive definite matrix.

According to the optimal control theory (see e.g. [29]),
minimization of the cost function J in (34) involves another
function expressed as

H =
1

2

(
z̃TQz̃ + ũTRũ

)
+ λT (Az̃ +Bũ) , (35)

which is referred to as the Hamiltonian function. Note that
the parameter λ in (35) denotes a costate. When the the cost
function J is minimized, these necessary conditions:

∂H

∂z̃
= −λ̇ and

∂H

∂ũ
= 0 (36)

are satisfied. It then follows that

λ̇ = −∂H
∂z̃

= −Qz̃ −ATλ (37)

ũ = −R−1BTλ. (38)

Now, substituting (38) into (31) yields

˙̃z = Az̃ −BR−1BTλ. (39)

Furthermore, let us define the costate λ as

λ := P z̃, (40)

where P ≥ 0 is a positive semi-definite matrix. Then,
substituting (40) into (37) and (39) results in

Ṗ z̃ + P ˙̃z = −Qz̃ −ATP z̃, (41)

and
˙̃z = Az̃ −BR−1BTP z̃, (42)

respectively. Finally, substituting (42) into (41) yields

(Ṗ + PA+ATP − PBR−1BTP +Q)z̃ = 0. (43)

Since z̃ is not necessarily zero, the equation (43) must always
be satisfied when

Ṗ + PA+ATP − PBR−1BTP +Q = 0, (44)

which is known as a Riccati differential equation. The matrix
P is the only unknown in (44) and it is thus obtained
as a solution to (44). Moreover, assuming a steady-state
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condition, where Ṗ = 0, one is then able to recast the Riccati
differential equation in (44) as an algebraic Riccati equation.
That is,

0 = PA+ATP − PBR−1BTP +Q. (45)

Substituting the matrix P obtained from solving (45) into
(40) and then (38) results in

ũ = −R−1BTP z̃. (46)

This implies that the control input ũ given in (46) is
an optimal control input that asymptotically stabilizes the
posture error dynamics (31). Therefore, referring to (32), one
can straightforwardly determine that

K = R−1BTP (47)

which is the optimal control gain matrix of the TTCS.

IV. SIMULATION RESULTS

In this section, we demonstrate via numerical simulations
what have been elaborated in Sections II and III. There are
two TWRs in this simulations scenario and named as the
TWR-A and the TWR-B. The designed TTCS is applied in
the TWR-A, where the TWR-A is desired to track the TWR-
B movements. The TWR-B is then called as the reference
robot.

Let us assume that both robots have the same initial
postures as follows:

ξa(0) = ξb(0) =

 1
1
90◦

 (48)

and the initial velocities as follows:

va(0) = vb(0) = 1, (49)
wa(0) = wb(0) = 0. (50)

It is appropriate to consider this set of initial conditions as
an equilibrium point of the posture error dynamics (19):

zq =

 z1q
z2q
z3q

 =

 0
0
0

 , (51)

uq =

[
u1q
u2q

]
=

[
1
0

]
. (52)

Linearizing the posture error dynamics (19) at the equilib-
rium point (51) with the system input (52) results in the
linearized posture error dynamic (31) with

A =

 0 0 0
0 0 1
0 0 0

 and B =

 −1 0
0 0
0 −1

 .
Applying the LQR method as described in Section III, one
is then able to design a trajectory tracking controller for the
linearized system (31). In this case, the selected weighting-
matrices are given as follows:

Q =

 300 0 0
0 500 0
0 0 100

 and R =

[
10 0
0 1

]
. (53)
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Fig. 4. The trajectory tracking performance of the TWR-A with respect to
the TWR-B in the first simulation, where an initial posture of both TWRs
are identical.

It thus follows that the controller gain matrix K of the state
feedback controller (32) is obtained as

K =

[
−5.4772 0 0

0 −22.3607 −12.0300

]
. (54)

Applying the state feedback controller to (31) yields a closed-
loop trajectory tracking system with eigenvalues: λ1 =
−5.4772, λ2 = −9.7325, and λ3 = −2.2975. Since all of the
eigenvalues are negative real numbers, the resulting closed-
loop system is asymptotically stable. Therefore, applying the
TTCS (32) with control gain (54) to the TWR-A will make
the TWR-A’s trajectory converge to the TWR-B’s trajectory
as a reference. This also implies that the posture error of the
TWR-A with respect to the TWR-B’s trajectory will decrease
and eventually converge to zero.

Numerical simulations whose results are shown in Figs. 4
and 5 were performed to demonstrate trajectory tracking
performance of the controller (32) using the control gain
defined in (54). Fig. 4 shows that the TWR-A is able to
track the TWR-B’s trajectory. However, it is also noticed that
although the trajectory tracking is precise when the TWR-A
follows a straight line path, a small tracking error appears
when the TWR-A performs a turning motion. The tracking
error consists of the position errors and the orientation error
as shown in the Fig. 5. Here, the position error xe in the
x direction has an amplitude of approximately 0.025 m,
but it vanishes within 2.5 s; and the position error ye in
the y direction has an amplitude of approximately 0.034 m
and vanishes within 4.0 s. Magnitudes of those position
errors are relatively small as compared to the turning radius
1.27 m. Moreover, the orientation error ψe has an amplitude
of approximately 3.0◦ and vanishes within 5.0 s. The results
depicted in Fig. 5 thus confirm the asymptotic stability of
the closed-loop TTCS.

While the previous batch of simulation results was gen-
erated by setting the initial postures of both robots to be
identical, the second batch of simulation results is presented
to evaluate the performance of the TTCS when the initial
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Fig. 5. The posture error of the TWR-A with respect to the TWR-B’s
posture in the fist simulation, where both robots have the same initial
postures.

postures of both robots are not identical. Those are,

ξa(0) =

 −5
2
90◦

 and ξb(0) =

 1
1
90◦

 .
Nonetheless, the initial velocities of both robots were set to
be identical as follows:

va(0) = vb(0) = 1,

wa(0) = wb(0) = 0.

The results of the second batch of simulation are shown in
Figs. 6 and 7. Here, Fig. 6 shows that the TWR-A was able
to track the TWR-B’s trajectory although the initial position
of the TWR-A is relatively far from that of the TWR-B. It is
also shown in Fig. 7 that the posture error of TWR-A with
respect to that of the TWR-B decreases and converges to zero
as time goes infinity. Note that the posture error converges
to zero relatively fast because no constraint was imposed on
the robot’s velocities.

V. CONCLUSIONS

A new approach to the kinematic modeling of the TWR
lateral motion based on the vector diagram has been pre-
sented in this paper. Through this modeling, we show how
to transform the robot trajectory tracking problem into the
stabilization problem of the posture error dynamics. This sig-
nifies the merit of the kinematic modeling as it then enables
one to synthesize the state feedback controller for stabilizing
the posture error dynamics. It has been demonstrated that

−5 0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

x [m]

y
[m

]

 

 

Robot A

Robot B (Ref)

Fig. 6. The trajectory tracking performance of the TWR-A with respect
to the TWR-B in the second simulation, where the initial postures of both
TWRs are different.
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Fig. 7. The posture error of the TWR-A with respect to the TWR-B’s
posture in the second simulation, where both robots have different initial
postures.

the state feedback controller can be designed via the LQR
method based on the linearized posture error dynamics. The
state feedback controller plays such an important role in
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the TTCS that the TWR can track a reference trajectory.
Performance of the resulting TTCS has been demonstrated
via numerical simulations. The simulation results show that
despite some errors, the robot equipped with the TTCS is
capable of tracking the reference trajectory regardless of the
initial postures of the robots involved.
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