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Abstract—K-nearest neighbor (KNN) rule is a very simple
and efficient non-parametric classification algorithm that is
widely used in machine learning. In this paper, we proposed
a attribute weighting local-mean pseudo nearest neighbor rule
(AWLMPNN). The main difference of AWLMPNN and local
mean-based pseudo nearest neighbor (LMPNN) is that they use
attribute weighting distance and Euclidean distance to measure
the distance between two samples, respectively. To illustrate the
effectiveness of the proposed AWLMPNN method, extensive ex-
periments on 30 real UCI data sets are conduced by comparing
with four competing KNN-based methods. The experimental
results show that the proposed AWLMPNN method is superior
to other methods, especially in the case of high dimensional
attributes with small sample size.

Index Terms—K nearest neighbors, local mean vector, at-
tribute weighting.

I. INTRODUCTION

THE K nearest neighbor (KNN) rule [1] as one of the
top ten algorithms in the field of data mining [2]. Since

its simple, efficient and competitive advantages, it has been
widely used and developed in the fields of pattern recognition
and machine learning. To classify a query point, KNN find
K nearest neighbors of query pattern from the training data
set, and assigns the query point to the majority class among
the K nearest neighbor samples.

From the decision-making process of KNN, we can see
that KNN is affected by three factors [2], [3]. Firstly, the
sensitivity of K value is a key factor in KNN-based classi-
fication. In order to select appropriate K values, the cross-
validation (CV) method discussed in [4] can obtain different
K values according to the size of the training set or the
distribution of classes for different data sets, which requires
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a lot of time. According to the classification accuracy of
Leave-One-Out cross validation is approximate concave for
the parameter K. [5] designs a search method to select the
best value of K. In [6], an adaptive selection of neighborhood
size based on statistical confidence is proposed. A dynamic k
value selection method for each sample is proposed by using
a simple clustering process [7].

Secondly, in the simple majority voting rule adopted
by KNN, the selected K nearest neighbors have the same
classification contribution to query point, which will lead
to enhanced K value sensitivity and weakened classification
effect. To solve this problem, some KNN-based weighted
voting methods are proposed [8]–[12]. Different weighting
functions are used to assign weight to K nearest neighbors
of query point. Finally, the KNN algorithm uses Euclidean
distance metric to describe the similarity between different
samples. This similarity calculation method results in that
the KNN algorithm is very sensitive to noise features and
susceptible to the influence of non-information features. In
order to solve this problem, a simple adaptive distance
measure is proposed in [13], Mahalanobis distance is used as
the distance measure [14], and both of them can improve the
classification effect of KNN. In addition, some representation
based KNN methods, such as coarse to fine K nearest
neighbor classifier, Collaborative-Representation-Based N-
earest Neighbor Classifier for Hyperspectral Imagery, a gen-
eralized mean distance-based K-nearest neighbor classifier
[15]–[17] can improve the classification performance and
generalization ability of KNN classifier to a certain extent.

In addition, there are many improved algorithms based
on KNN. For example, some algorithms are proposed in
terms of attributes. A nearest neighbor classification based
on attribute weighting has been developed in [18], which
calculates the weight based on entropy or Gini coefficient.
Although it can improve the classification performance, the
calculation proposed in that paper is based on the fact that
the given attributes are independent of other attributes. In real
data sets, attributes are not necessarily independent of each
other. A multi-attribute ranking method is proposed [19], and
the decision problem and two examples are given to prove
the practicability and effectiveness of the method. Lopez et
al. [20] proposed redefining nearest neighbor classification
in high-dimensional settings. By embedding the filtering
method of feature selection into the definition of distance
measure, the method encourages only the variables based
on the most relevant problems. This method is limited by
the number of selected features. Ensemble of a subset of
KNN classifiers proposed in [21], feature extraction is com-
bined with KNN algorithm to generate several sub-classifiers.
Bootstrap aggregating method is used to integrate to improve
classification performance, which requires a lot of time and
the number of sub-classifiers to be generated according to
different data sets. In order to reduce the negative impact
of existing outliers, especially in the case of small samples,
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Mitani and Hamamoto proposed local mean-based K-nearest
neighbor (LMKNN) rule [22]. LMKNN compute the distance
between query point and the local mean vector of every class,
and classifies the query point to the class with the smallest
distance among all classes. In pseudo nearest neighbor (PNN)
[23] the pseudo nearest neighbor is determined by the
weighted sum of the distance between the query point and
the k nearest neighbors of every class. Then, the class label
of the class of the pseudo nearest neighbor nearest to the
query sample is assigned to the query sample. Based on
the idea that LMKNN constructing local mean vector, some
KNN-based algorithms have emerged further overcome the
existing outliers and improve the classification performance.
Local mean-based pseudo nearest neighbor (LMPNN) [24],
LMPNN firstly calculates K local mean vectors by K nearest
neighbors of the query point in every class. Then, the distance
between the query point and the pseudo nearest neighbor of
every class is defined as the sum of the weighted distances
between the query point and its K local mean vectors. lastly,
query point are classified into the class of the pseudo nearest
neighbor with the smallest distance to query point. All the
above methods have been proved to be robust to outliers, with
low sensitivity to the K value, and satisfactory classification
results.

To further improve the performance of the KNN-based
classifier, a new attribute weighting method was proposed,
and it is combines with LMPNN to generate AWLMPNN al-
gorithm. Different from LMPNN, AWLMPNN uses attribute
weighting distance instead of Euclidean distance to measure
the distance between two samples. Compared with Euclidean
distance, the attribute weighting distance can fully consider
the contribution of different attributes to classification, so as
to determine a more appropriate nearest neighbor and achieve
better classification performance. To verify the classification
effect of the proposed AWLMPNN method, we conducted
experiments with other four KNN-based methods on 30
real data sets. A large number of experiments show that
the proposed AWLMPNN method has good robustness and
classification performance.

The rest of this paper is organized as follows. In the
Section 2, we briefly review the related KNN-based methods.
In the Section 3, AWLMPNN method is proposed and
analyzed in detail. In the Section 4, we summarize the
comparative experiments on several real data sets. Finally,
we give the conclusion in the Section 5.

II. THE RELATED CLASSIFICATION

In this part, we will briefly introduce KNN algorithm.
Let T = {xi ∈ Rd}Ni=1 be a training set with N training
samples in d-dimensional feature space, and there are m class
labels, each sample xi = (xi1, xi2, · · · , xid) corresponds
to its class label yi, where yi ∈ {c1, c2, · · · , cm}. let
T j = {xj

i ∈ Rd}Nj

i=1 denote a class of T from the class cj ,
with the number of the training samples Nj . For a query
point x, the KNN rule is implemented as follows:

1) Computing the distances between the query point x and
samples from the training sample set T . Then find K nearest
neighbors set TK(x) = {xi ∈ Rd}Ki=1 of x according to
these distances. The distance between x and the neighbor xi

is measured by the Euclidean distance metric by Eq(1).

d(x, xi) =
√
(x− xi)T (x− xi). (1)

2) The query point x are classified as the most frequent
class in TK(x) = {xi ∈ Rd}Ki=1.

c = argmax
j

∑
xi∈TK(x)

sign(xi, cj). (2)

where xi is one of the neighbors in the training set,
sign(xi, cj) ∈ {0, 1} is a indicator function that implies xi

whether belongs to class cj .

III. THE PROPOSED AWLMPNN METHOD

A. motivation

In machine learning, KNN-based classification methods
have become the most attractive classification algorithm in
many practical applications because of its simple, effective,
intuitive and competitive advantages. However, as discussed
in Section I, their performance is still affected by the existing
distance measures, especially in the case of high dimensional
attributes with small sample size. When making a classifi-
cation decision, the class of the query point depends on its
K nearest neighbors. So finding the right nearest neighbor
for the query point is crucial. However, in the traditional
Euclidean metric, Chebyshev metric, Manhattan metric and
so on, different attributes have the same contribution to the
determination of the nearest neighbor of query point. But
in practical problems, attributes often contribute differently
to the classification. Therefore, in order to make full use of
the contribution of different attributes to find a more suitable
nearest neighbor, this paper designs an attribute weighting
distance. The distance of two d dimension attribute samples
xs, xt is expressed as dm(xs, xt):

dm(xs, xt) =
d∑

l=1

wl × |xsl − xtl|. (3)

The attribute weight wl (l = 1, 2, · · · , d) is learn as
follows:

1) Generate d single attribute sample sets Tl = {xil ∈
R}Ni=1, (l = 1, 2, · · · , d) from the training sample set T
by feature extraction, where the class label of xil, (l =
1, 2, · · · , d) is yi, yi ∈ {c1, c2, · · · , cm}.

2) In the KNN-based classifier which uses Manhattan dis-
tance as the distance measure, Tl(l = 1, 2, · · · , d) is verified
by Leave-One-Out Cross Validation, then the classification
accuracy is recorded as al.

3) According to the classification accuracy al, the weight
of attributes is given, and the weight of the l-th attribute is
wl:

wl =
al∑d
l=1 al

l = 1, 2, · · · , d. (4)

Compared with the traditional Euclidean distance, the
attribute weighting distance fully considers the different
contribution of different attributes to the classification effect,
through determine a more appropriate nearest neighbor for
the query point to improving the classification performance.
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B. the AWLMPNN classification rule
The proposed AWLMPNN method determines the label of

query sample x through the following procedures:
1) The K nearest neighbors of x are found from T j of each

class cj in the training set T and represented by T j
K(x) =

{xj
i ∈ Rd}Ki=1. The K nearest neighbors xj

1, x
j
2, · · · , x

j
K

are sorted in ascending order in the light of their attribute
weighting distance to x. The attribute weighting distance
dm(x, xj

i ) between query point x and xj
i is as follows:

dm(x, xj
i ) =

d∑
l=1

wl × |xl − xj
il|. (5)

2) Calculate the local mean vector xi
j of the first i nearest

neighbors of the query point x from class cj

xi
j =

1

i

i∑
l=1

xj
l i = 1, 2, · · · ,K. (6)

let TK
j
= {xi

j ∈ Rd}Ki=1 donate the set of the K local
mean vectors corresponding to the K nearest neighbors in
the class cj , dm(x, xi

j), i = 1, 2, · · · ,K. are their attribute
weighting distances to x.

3) Different weights are given to K local mean vectors,
the weight wi

j of the i-th local mean vector xi
j from class

cj is calculate as follows:

wi
j =

1

i
i = 1, 2, · · · ,K. (7)

4) Find local mean-based pseudo nearest neighbor of the
query point x from per class. let xj

PNN denote local mean-
based pseudo nearest neighbor of x from class wj . The
distance dm(x, xj

PNN ) between x and xj
PNN is calculated

as:

dm(x, xj
PNN ) = (w1

j × dm(x, x1
j) + w2

j ×
dm(x, x2

j) + · · ·+ wK
j × dm(x, xK

j)). (8)

5) According to Eq(8), x is classified into class that has
the closest local mean-based pseudo nearest neighbor among
all classes.

c = argmin
cj

dm(x, xj
PNN ). (9)

C. the proposed algorithm
AS mentioned in Section 3.2 the pseudo codes of

AWLMPNN algorithm is shown in Algorithm 1.

IV. EXPERIMENTS

To verify the classification performance of proposed
AWLMPNN, we compare AWLMPNN with KNN, LMKNN,
PNN and LMPNN. Classification accuracy and F1 score are
commonly used in classification performance evaluation [25],
[26], so we will compare the classification accuracy and F1
score on 30 real data sets from UCI [27].

In addition, we use Wilconxon Signed-Ranks test, Fried-
man test and T-test to illustrate the advantages of the
proposed method. Since in machine learning, nonparametric
statistical testing plays an important role in comparing the
performance of classifiers on multiple data sets [28], [29].

Algorithm 1:The proposed AMLMPNN method.
Input:
x: a query point ,T = {xi ∈ Rd}Ni=1: training set,

T j = {xj
i ∈ Rd}Ni=1

j
: training subset from class cj ,

K: the neighborhood size, m: the number of classes in T .
c1, c2, · · · , cm: m class labels, N1, N2, · · · , Nm: the numbers
of training samples of m classes.

Output:
c: Class label of query point x.
Step 1: Generate d single attribute sample sets Tl = {xil ∈ R}Ni=1
(l = 1, 2, · · · , d) from the training sample set T by feature
extraction.
Step 2: for l=1 to d do
In the KNN-based classifier which uses Manhattan distance as the
distance measure, Tl(l = 1, 2, · · · , d) is verified by Leave-One-Out
Cross Validation, and the classification accuracy is recorded as al.
end for
Step 3: Calculate the weight of d attributes.
for l=1 to d do
wl =

al∑d

l=1
al

end for
Then set W = {w1, w2, · · · , wd}
Step 4: Calculate the distance between x and the sample in per
class cj . for i=1 to Nj do
dm(x, xj

i ) =
∑d

l=1
wl × |xl − xj

il
|

end for
Step 5: Find the K nearest neighbors of x from T j . The K nearest
neighbors are sorted in ascending order according dm(x, xj

i ), say
T j
K(x) = {xj

i ∈ Rd}Ki=1.
Step 6: Use T j

K(x) to compute the local mean vector xi
j

of the first i nearest neighbors of x , then calculate the distance
dm(x, xi

j) between x and xi
j .

for i=1 to K do
xi

j = 1
i

∑i

l=1
xj
l

dm(x, xi
j) =

∑d

l=1
wl × |xl − xj

il
|

end for
Set TK

j
(x) = {xi

j ∈ Rd}Ki=1 and
DK

j
= {dm(x, x1

j), dm(x, x2
j), · · · , dm(x, xK

j)}.
Step 7: Give the weight Wi

j
to the i-th local mean vector in the

set TK
j
(x).

for i=1 to K do
Wi

j
= 1

i
end for
Set Wi

j
= {W1

j
,W2

j
, · · · ,WK

j}.
Step 8: Use Wi

j
and DK

j
to find the pseudo nearest neighbor

based on the local mean vector xj
PNN according to the following

formula.
dm(x, xj

PNN ) = (w1
j × dm(x, x1

j) + w2
j × dm(x, x2

j).
+ · · ·+ wK

j × dm(x, xK
j))

Step 9: Classify the query point x to c.
c = argmincjdm(x, xj

PNN )

A. Data information

In this section, we will briefly describe the information
of all data sets encountered in the experiment. 30 real data
sets were collected from UCI machine learning database. All
data information including sample size, number of attributes
and number of classes are shown in table I. In order to
use the attribute weighting distance, all data sets need to
be preprocessed. First, some attribute values are digitized.
Secondly, in order to meet the experimental needs, some
data sets need to remove the small class samples. Finally,
We need to normalize the column values of the training
set. For example, we need to remove some classes with a
very small size of samples from the data of ‘Dermatology’,
‘Ecoli’, ‘Housevote’, ‘Lymphography’ and ‘Cleveland’. In
these data sets, the maximum number of samples and the
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TABLE I: The UCI data sets.

Data Samples Attributes Classes
Audi 772 17 2

Balance 625 4 3
Bands 365 19 2
Breast 683 9 2

Coimbra 116 10 2
Cryotherapy 90 6 2

Duser 403 6 4
Dermatology 338 34 5

Diabetes 520 16 2
Ecoli 220 7 2

Hayesroth 160 4 3
Heart 299 13 2

Hepatitis 80 19 2
HillValley 606 100 2
Housevote 232 16 2
Ionosphere 351 34 2

Lymphography 142 18 2
Newthyroid 215 5 3
Parkinsons 195 22 2

Pima 532 7 2
Cleveland 284 13 4

QSAR 1055 41 2
Seed 210 7 3

Robot 5456 4 4
Sonar 208 60 2
Tea 151 5 3

Vowel 990 13 11
Wdbc 569 30 2
Wine 178 3 3
Wpbc 198 32 2

minimum number of samples are 5456 and 80 respectively,
and the maximum number of attributes and the minimum are
100 and 4 respectively.

B. Experiments on real data sets

To evaluate the effectiveness and robustness of the pro-
posed AWLMPNN algorithm, experimental contrasts with
KNN, LMKNN, PNN and LMPNN are conduct on 30 UCI
data sets. These experiments were carried out by 10-fold
cross validation. The training samples are randomly selected
from each real data set, and the rest of the samples constitute
the test set. In the experiment, the K value traverses from 1
to 20, and the step size is 1. We have done 10 experiments
on every data set. The ultimate classification performance of
every algorithm for per data set is determined by the average
of 10 classification accuracies and F1 scores. F1 score is
given by

F1 =
2×Recall × Precision

Recall + Precision
. (10)

On the basis of F1 score, Micro-F1 (F1 score regardless of
classes ) and Macro-F1 (mean of F1 scores within the class)
were applied for estimating.

Experimental results of all used algorithms on the selected
30 datasets are shown in Table II, III and IV. The best
classification performance for each data set is shown in bold.
Table II shows the best classification accuracies of each
method on each real data set, and the corresponding K value
and standard deviation. Tables III and IV show the results
in terms of Macro-F1 and Micro-F1, respectively. According
to the tables, it is obvious that the proposed AWLMPNN
method achieves the best results in these real UCI data sets
compared with the other four competitive methods. Two

important facts need to be pointed out. First of all, in the case
of high dimensional attributes with small sample size, such as
‘Sonar’, ‘Bands’, ‘Coimbra’, ‘Heart’, ‘Parkinsons’, ‘wdbc’,
‘Diabetes’ and other data, the performance of AWLMPNN
is always significantly better than PNN, LMKNN, KN-
N and LMPNN. This obviously means that the proposed
AWLMPNN method is superior to other methods. Secondly,
among all the classification tasks, the proposed AWLMPNN
achieves the best classification accuracies in 23 out of 30
data sets, while KNN, LMKNN, PNN and LMPNN achieve
the best classification accuracies on 2, 2, 3 and 2 data sets,
respectively. Moreover, the F1 experimental results in Table
III and IV show that compared with the other algorithms,
the proposed AWLMPNN has a large advantage in F1 score.
The reason for this phenomenon is that compared with
PNN, LMKNN, KNN and LMPNN, AWLMPNN can get
appropriate nearest neighbors to make correct classification
decision. Finally, on all real data sets, AWLMPNN obtains
the highest average classification accuracy and the smallest
average standard deviation, which indicates that proposed
AWLMPNN has the most stable classification performance.

To further prove the robustness of AWLMPNN, the clas-
sification performance of AWLMPNN on each real data sets
with different K values is studied, and compared with PNN,
LMKNN, LMPNN and KNN. The experimental results are
shown in Figs. 1, 2, 3 and 4. It is worth noting that in the K-
value range, the classification effect of AWLMPNN is better
than the other four methods, and the classification difference
between AWLMPNN and PNN, LMKNN, LMPNN, KNN is
very significant in most cases, especially when the K value
is large. As shown in Figs. 1, 2, 3 and 4, we can observe
that the classification accuracy of PNN, LMKNN, KNN and
LMPNN mostly fluctuates with the change of K value, while
the classification accuracy of AWLMPNN is relatively less
affected. It is obvious from Figs. 1 and 2 that within the
interval of K, AWLMPNN is significantly better than the
other four methods. Therefore, the results of Figs. 1, 2, 3
and 4 show that, compared with the competition method, the
proposed AWLMPNN is the most robust to the neighborhood
size K, and has good classification performance.

However, the comparison of competing classifiers in clas-
sification accuracy is not statistically credible. Here, we
further use three nonparametric statistical tests: Wilconxon
Signed-Ranks test [30], Friedman test and T-test [31] to
compare the performance of the classifier.

Firstly, according to the results in table II, Wilconxon
Signed-Ranks test is used to compare AWLMPNN with
KNN, LMKNN, PNN and LMPNN in pairs. Let βi be the
divergence between the accuracy in classification of two
algorithms on the i-th among n data sets. Then βi are
sorted in the light of their absolute values, the corresponding
ranking of βi are recorded as rank(βi). Let R+ denote the
rankings sum of the data set whose one algorithms is superior
to the other, R− be the opposite. It should be noted that when
βi = 0, the ranking values of βi = 0 should be divided
equally into R+ and R−. If the number of βi = 0 is odd, a
ranking value will be ignored. R+ and R− are compute as
follow:
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TABLE II: The highest accuracy rates(%) of every algorithm with the relevant stds(standard deviations) and K value in the
parentheses.

Data KNN LMKNN PNN LMPNN AWLMPNN
Audi 97.55±3.81(1) 97.3±0.94(1) 97.38±1.08(1) 97.64±0.1(13) 99.83 ±0.15(1)

Balance 89.81±3.67(20) 92.02±3.95(13) 90.07±3.8(11) 90.97±3.94(19) 90.19±3.35(19)
Bands 71.02±2.9(1) 70.99±3.53(1) 71.76±1.95(2) 71.81±1.09(2) 76.58±0.4(11)
Breast 97.29±0.56(5) 97.51±0.47(7) 97.35±0.38(8) 97.19±0.37(17) 97.23±0.22(14)

Coimbra 71.2±1.94(7) 58.61±3.05(1) 60.84±2.52(1) 62.28±1.50(16) 73.49±2.03(20)
Cryotherapy 91.89±8.75(1) 92.33±8.66(1) 91.78±3.8(1) 92±2.12(2) 93.33±1.86(14)

Duser 87.74±1.51(5) 92.73±1.89(7) 90.67±1.32(10) 91.43±1.8(18) 93.5±1.04(19)
Dermatology 89.71±4.82(3) 93.35±3.18(3) 90.98±2.2(2) 95.14± 1.25(14) 97.63±0.32(9)

Diabetes 93.29±4.86(1) 94.5±1.96(3) 94.1±0.4(5) 95.37±0.67(20) 97.83±0.62(1)
Ecoli 98.14±0.82(3) 98.86±0.46(4) 98.68±0.46(3) 99.09±0.6(8) 98.95±0.45(13)

Hayesroth 71.33±7.32(1) 77.12±4.93(3) 71.34±1.46(7) 77.41±2.13(10) 75.65±0.90(8)
Heart 72.27±1.43(15) 60.4±1.82(12) 67.03±3.5(19) 62.37±1.88(18) 75.44±1.32(20)

Hepatitis 64.5±2.78(17) 64.75±2.4(4) 62.12±1.98(13) 66.38±3.82(17) 72.5±1.57(20)
HillValley 57.47±2.21(1) 59.75±2.34(6) 57.86±1.34(1) 60.78±0.85(13) 61.54±0.98(8)
Housevote 92.59±0.56(5) 94.93±0.87(19) 92.97±0.33(10) 94.62±0.7(18) 94.94±0.52(2)
Ionosphere 89.72±1.48(2) 90.13±0.86(13) 86.5±0.77(3) 89.49±0.71(19) 90.97±0.2(1)

Lymphography 79.45±1.07(7) 84.78±1.09(4) 82.86±1.15(4) 84.63±1.02(16) 88.45±2.29(19)
Newthyroid 94.54±2.6(1) 95.9±1.23(3) 94.37±1.53(1) 95.71±0.61(5) 97.43±0.37(4)
Parkinsons 85.32±1.54(5) 85.58±2.57(5) 86.43±1.15(6) 86.79±0.81(14) 95.33±0.35(15)

Pima 75.68±1.97(10) 78.29±2.97(16) 73.9±1.16(16) 74.32±1.46(19) 75.9±1.73(19)
Cleveland 55.87±3(18) 55.15±3.73(20) 55.57±3.49(17) 50.74±1.87(20) 60.85±0.89(11)

QSAR 82.19±1.36(7) 83.59±1(20) 82.65±0.76(14) 83.1±0.85(20) 86.9±0.9(11)
Seed 94.48±0.94(4) 90.86±0.49(14) 90.67±0.64(13) 91.19±0.62(5) 93.33±0.31(18)

Robot 97.27±1(1) 97.29±0.71(1) 97.33±0.39(1) 97.45±0.08(2) 97.73±0.13(2)
Sonar 82.34±5.73(1) 83.94±2.65(4) 83.5±0.38(14) 85.79±0.87(19) 89.57±0.85(7)
Tea 60.53±4.94(1) 57.85±4.75(1) 56.74±1.95(1) 59.53±1.92(2) 62.37±1.12(17)

Vowel 99.2±24(1) 99.22±12.5(1) 99.31±1.44(1) 99.27±0.3(1) 99.25±0.18(6)
Wdbc 93.55±0.62(12) 93.6±0.43(4) 93.28±0.42(19) 93.45±0.51(13) 97.31±0.38(15)
Wine 75.34±1.72(1) 76.32±1.15(1) 76.41±1.90 (3) 79.15±0.96(15) 98.55±0.60(15)
Wpbc 76.17±2.64(20) 72.8±2.17(20) 75.85±3.22(19) 71.4±1.65(20) 79.07±1.43(20)

Average 82.92±3.42 83.01±2.65 82.34±1.56 83.22±1.24 87.06±0.92

TABLE III: The highest Macro-F1(%) of every algorithm with the relevant stds(standard deviations) and K value in the
parentheses.

Data KNN LMKNN PNN LMPNN AWLMPNN
Audi 97.18±3.8(1) 97.18±10.2(1) 97.2±1.11(1) 97.52±0.13(13) 99.82 ±0.18(3)

Balance 62.6±1.97(10) 77.46±4.95(3) 62.95±2.21(10) 69.82±4.1(18) 68.24±3.62(20)
Bands 66.43±4.8(1) 66.53±3.95(1) 67.12±4.52(2) 67.72±1.53(2) 73.85±0.24(11)
Breast 97.06±0.71(5) 97.21±0.49(9) 97±0.44(8) 96.92±0.41(18) 96.95±0.24(14)

Coimbra 56.39±3.38(1) 57.56±3.28(1) 55.84±2.87(1) 59.54±1.84(18) 71.48±1.74(20)
Cryotherapy 90.89±8.8(1) 91.54±9.39(1) 90.80±4.45(2) 91.22±2.47(2) 92.64±1.74(11)

Duser 86.48±1.9(6) 91.58±2.06(7) 89.34±1.58(13) 90.27±1.87(20) 92.62±1.14(13)
Dermatology 86.20±6.45(1) 91.47±3.82(6) 88.41±2.99(4) 92.97±1.71(16) 96.94±0.45(14)

Diabetes 93.07±4.9(1) 94.32±2.15(4) 93.86±0.54(5) 95.01±0.73(19) 97.81±0.67(2)
Ecoli 97.75±0.9(3) 98.74±0.56(14) 98.47±0.56(4) 98.99±0.73(13) 98.83±0.48(20)

Hayesroth 69.22±7.55(1) 76.02±4.99(3) 70.65±2.83(9) 77.82±3.28(8) 75.92±1.51(5)
Heart 50.42±3.06(5) 51.2±1.36(5) 49.2±1.92(4) 49.87±1.23(3) 66.11±1.17(11)

Hepatitis 58.76±3.63(17) 61.15±2.96(13) 54.52±1.3(12) 63.48±4.3(17) 65.86±1.24(18)
HillValley 58.04±2.24(1) 59.51±2.32(7) 57.7±1.6(1) 60.02±0.7(11) 61.19±0.86(9)
Housevote 92.39±0.54(9) 94.82±0.92(7) 92.62±0.44(8) 94.56±0.75(17) 94.51±0.54(2)
Ionosphere 87.34±1.99(2) 88.49±1.12(13) 83.89±1.13(1) 87.13±0.71(19) 89.3±0.22(17)

Lymphography 78.4±1.68(7) 83.37±1.5(6) 80.24±1(4) 82.94±1.29(10) 86.84±2.25(17)
Newthyroid 90.26±5.17(1) 92.81±2.09(3) 91.12±2.72(1) 92.76±1.16(8) 95.3±0.78(5)
Parkinsons 78.16±5.37(1) 79.29±6.51(1) 80.21±4.23(8) 79.77±1.19(7) 93.48±0.57(12)

Pima 72.24±1.8(4) 74.51±3.32(17) 68.92±1.15(18) 70.34±1.69(20) 72.17±1.96(19)
Cleveland 26.21±1.32(8) 30.31±1.24(13) 25.35±0.93(1) 26.83±0.55(7) 39.54±0.83(5)

QSAR 80.18±1.14(3) 80.95±0.85(8) 80.84±0.78(15) 80.85±0.77(20) 85.09±0.91(17)
Seed 90.52±0.77(10) 90.59±0.68(2) 90.21±0.69(1) 90.49±0.59(3) 92.88±0.32(16)

Robot 96.88±1.01(1) 96.95±0.77(1) 96.94±0.45(1) 97.02±0.08(2) 97.30±0.18(2)
Sonar 81.62±6.12(1) 82.52±2.52(4) 82.81±0.45(12) 84.66±0.76(19) 88.92±0.93(7)
Tea 56.92±4.62(1) 55.03±5.2(1) 55.97±2.03(1) 56.44±1.63(1) 60.45±1.45(1)

Vowel 99.35±24.2(1) 99.28±12.9(1) 99.31±1.5(1) 99.26±0.28(1) 99.22±0.17(6)
Wdbc 92.83±6.3(14) 92.79±0.42(3) 92.74±0.52(11) 93.06±0.62(20) 97.06±0.45(16)
Wine 73.78±2.57(1) 73.9±1.26(1) 74.35±2(3) 76.51±1.17(17) 98.45±0.73(11)
Wpbc 51.62±2.94(3) 55.93±3.46(2) 52.92±2.25(2) 53.08±1.51(5) 51.62±0.69(3)

Average 77.31±4.05 79.43±2.93 77.38±1.71 79.23±1.33 83.35±0.95
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Fig. 1: The classification accuracies of every algorithm via K on all data sets.
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Fig. 2: The classification accuracies of every algorithm via K on all data sets.
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Fig. 3: The classification accuracies of every algorithm via K on all data sets.
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Fig. 4: The classification accuracies of every algorithm via K on all data sets.
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TABLE IV: The highest Micro-F1(%) of every algorithm with the relevant stds(standard deviations) and K value in the
parentheses.

Data KNN LMKNN PNN LMPNN AWLMPNN
Audi 97.33±3.72(1) 97.47±0.95(1) 97.31±1.04(1) 97.64±0.12(13) 99.84±0.17(2)

Balance 89.92±3.67(20) 91.92±3.96(12) 90.1±3.8(13) 90.9±4.02(20) 90.09±3.44(18)
Bands 71.06±2.97(1) 70.76±3.51(1) 71.98±1.92(2) 71.61±1.04(3) 77.03±0.53(10)
Breast 97.41±0.54(5) 97.5±0.44(8) 97.25±0.34(4) 97.29±0.37(20) 97.25±0.19(18)

Coimbra 58.89±3.16(1) 59.17±3.72(5) 58.67±2.26(1) 61.46±1.57(17) 73.07±1.94(16)
Cryotherapy 91.89±8.39(1) 92.44±9.04(1) 91.89±4.05(1) 93±2.32(2) 93.44±1.64(18)

Duser 87.74±1.51(5) 92.61±1.75(9) 90.84±1.49(10) 91.38±1.75(20) 93.44±1.02(20)
Dermatology 90.06±4.71(1) 93.25±3.16(4) 91.39±2.3(3) 94.82±1.25(14) 97.66±0.38(10)

Diabetes 93.12±4.79(1) 94.65±2(4) 94.13±0.51(3) 95.25±0.65(18) 97.98±0.67(1)
Ecoli 98.32±0.83(5) 98.95±0.49(14) 98.59±0.42(4) 99.09±0.59(12) 98.95±0.41(16)

Hayesroth 70.97±7.52(1) 76.93±4.78(3) 70.98±1.47(9) 77.46±2.07(15) 75.55±1.19(11)
Heart 67.47±2.74(20) 60.39±1.74(12) 66.97±3.48(17) 62.24±1.65(20) 75.08±1.37(20)

Hepatitis 64.13±2.89(17) 65±2.25(4) 61.5±1.89(13) 68.63±3.94(19) 73.13±1.86(14)
HillValley 57.51±2.32(1) 59.38±2.32(6) 57.99±1.46(1) 60.59±0.74(9) 61.25±0.96(5)
Housevote 92.71±0.52(5) 95±0.78(9) 93.06±0.4(14) 94.64±0.8(16) 95.18±0.56(2)
Ionosphere 89.63±1.54(2) 90.05±0.94(13) 86.32±0.74(2) 89.52±0.64(20) 90.86±0.15(16)

Lymphography 80.15±1.4(11) 84.72±1.13(5) 82.02±0.9(5) 84.26±0.95(7) 88.14±2.27(17)
Newthyroid 94.43±2.58(1) 96.14±1.25(3) 94.33±1.49(1) 95.63±0.62(6) 97.16±0.35(4)
Parkinsons 84.72±1.46(5) 85.57±2.63(5) 86.81±1.13(7) 86.55±0.81(16) 95.34±0.29(13)

Pima 75.52±1.94(9) 78.29±2.98(17) 74.09±1.35(15) 74.57±1.58(20) 75.69±1.75(18)
Cleveland 55.8±2.9(20) 55.01±3.75(20) 55.73±3.56(20) 50.67±2.01(17) 60.94±1.06(20)

QSAR 82.28±1.29(3) 83.62±1.03(8) 82.62±0.71(11) 83.12±0.86(20) 86.9±0.94(17)
Seed 91.14±0.82(9) 91±0.61(2) 90.86±0.55(20) 91.19±0.51(3) 93.29±0.28(10)

Robot 97.3±1.02(1) 97.32±0.72(1) 97.28±0.38(1) 97.43±0.08(3) 97.72±0.13(3)
Sonar 82.65±5.91(1) 83.17±2.63(4) 83.58±0.44(16) 85.3±0.7(16) 89.52±0.88(7)
Tea 60.03±4.98(1) 58.18±4.93(1) 57.54±2.17(1) 58.79±1.98(2) 63.03±1.3(12)

Vowel 99.29±24(1) 99.28±12.6(1) 99.15±1.45(1) 99.3±0.32(1) 99.28±0.2(6)
Wdbc 93.64±0.62(8) 93.52±0.38(4) 93.41±0.49(13) 93.43±0.53(19) 97.22±0.41(15)
Wine 76.57±1.86(1) 76.74±1.44(8) 76.48±2.02(1) 78.35±0.87(17) 98.65±0.59(15)
Wpbc 76.16±2.65(20) 72.89±2.33(19) 76.07±3.09(20) 71.07±1.7(20) 79.16±1.48(19)

Average 82.27±3.5 83.03±2.67 82.3±1.58 83.17±1.23 87.06±0.95

TABLE V: The pairwise contrasts of AWLMPNN with other four algorithms on all data sets employing Wilconxon Signed-
Ranks test (‘yes’ indicate the dramatic difference between two algorithms)

Pairwise comparison R+ R− Statistics(Z) P -value Significant difference
AWLMPNN VS. KNN 456 9 -4.60 4.29× 10−6 yes

AWLMPNN VS. LMKNN 427 38 -4.00 6.32× 10−5 yes
AWLMPNN VS. PNN 462 3 -4.72 2.35× 10−6 yes

AWLMPNN VS. LMPNN 442 23 -4.31 1.64× 10−5 yes

R+ =
∑
βi>0

rank(βi) +
1

2
×

∑
βi=0

rank(βi) (11)

R− =
∑
βi<0

rank(βi) +
1

2
×

∑
βi=0

rank(βi). (12)

set R = min(R+, R−), if n > 25, the statistics is define
as

Z =
R− 1

4n(n+ 1)√
1
24n(n+ 1)(2n+ 1)

. (13)

Z is approximately normal distribution. If Z < −1.96,
the null hypothesis was rejected at the 5% significance
level. Wilconxon Signed-Ranks test is used to compare the
proposed AWLMPNN classifier with the other four classifiers
in pairs, as shown in table V. It can be seen from table
V that R+ is significantly greater than R−, and statistical
Z < −1.96. Therefore, AWLMPNN is significantly out-
perform than the other four methods. As everyone knows
that p-value provides important information for statistical
hypothesis testing, which implies that the smaller the p-
value value, the more proof to reject the original hypothesis
[29]. Obviously, p-value was significantly less than 0.05.

In conclusion, the experimental results in table V show
that AWLMPNN is superior to KNN, LMKNN, PNN and
LMPNN.

TABLE VI: The comparison of multiple classifiers on 30
UCI data sets employing Friedman test.

Methond KNN LMKNN PNN LMPNN AWLMPNN
Mean rank 3.9 3.033 3.867 2.8 1.4

Then, Friedman test is used to perform comparative statis-
tical tests on KNN, LMKNN, PNN, LMPNN and AWLMPN-
N. In each data set, those algorithms are sorted according
to its classification performance. After that, the ranking of
top algorithm is record as 1, the second is record as 2, and
so on. In the case of a draw, an mean ranking is assigned.
Let Rj

i be the ranking of the jth of L algorithms on the ith
of n data sets, and the mean ranking of jth algorithms are
computed as Rj = 1

n

∑
i R

j
i . Under the null-hypothesis, all

the performance of algorithms is similar and so their ranking
Rj ought to be equal. The Friedman statistics

χ2
F =

12n

L(L+ 1)
[
∑
j

R2
j −

L(L+ 1)2

4
]. (14)

is distributed in accordance χ2
F with L-1 degrees of freedom
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when n > 10 and L ≥ 5.
To further assess the function of the AWLMPNN, we

use Friedman test to contrast the classification accuracy of
AWLMPNN with the other four algorithms. Their mean
ranking of algorithms are display in Table VI. On the basis
of Eq. (14), χ2

F = 49.95. If the effects of all algorithms
are similar, the average ranking is R = 3. It is obvious
from Table VI, the mean ranking Rj of per algorithm
is significantly different from R, and χ2

F is greater than
(χ2

F )0.05 = 9.49. Hence, there exist clear distinguish among
these five algorithms.

To illustrate the remarkable of Friedman test, We used
Holm post hoc test to statistically contrast AWLMPNN with
other four algorithms. The pairwise contrast statistics of
AWLMPNN with other algorithms is calculate as

Z = (Ri −R0)/SE (15)

where R0 and Ri are the mean ranking of AWLMPNN and
the ith of the other four algorithms in Table VI, respectively.

SE is obtained from formula
√

L(L+1
6n =

√
6×(6+1)
6×30 =

0.408. Z value is applied to obtain the relevant probability,
and then contrasted with appropriate α = 0.05. Table VII
displayed the sorted statistics and corresponding p-value.
As revealed in Table VII, because the relevant p-value are
much less than the adjusted α′s. AS a result, four original
assumptions are rejected, which means that the AWLMPNN
is remarkably better than other existing algorithms.

TABLE VII: The p−value in the Friedman test employing
the Holm post hoc test.

i Method Z = (Ri −R0)/SE P -value α/(k − i)
1 KNN 6.127 9× 10−10 0.0125
2 PNN 6.047 1.5× 10−9 0.0167
3 LMKNN 4 6.3× 10−5 0.025
4 LMPNN 3.341 6× 10−4 0.05

Finally, according to the results in table II, T-test was
used to compare AWLMPNN with KNN, LMKNN, PNN
and LMPNN. The results are shown in table VIII. Obviously,
the p-value is less than 0.01. Therefore, the experimental
results in table VIII show that the proposed AWLMPNN
is significantly different from KNN, LMKNN, PNN and
LMPNN.

TABLE VIII: The pairwise contrasts of AWLMPNN with
other four algorithms on all data sets employing T-test (‘yes’
indicate the dramatic difference between two algorithms)

Pairwise comparison P -value Significant difference
KNN VS. AWLMPNN 3.24× 10−5 yes

LMKNN VS. AWLMPNN 3.41× 10−4 yes
PNN VS. AWLMPNN 3.38× 10−6 yes

LMPNN VS. AWLMPNN 9.97× 10−5 yes

In a word, the proposed AWLMPNN classification perfor-
mance is widely verified in real data sets. The results can be
summarized as follows:

• The effectiveness and robustness of AWLMPNN have
been verified on a large number of real data sets, and it
is a promising pattern recognition classifier.

• In the case of high dimensional attributes with small
sample size, AWLMPNN has better classification per-
formance than other algorithms.

• The proposed AWLMPNN can overcome the sensitivity
of neighborhood size K and has good classification
performance.

• Compared with Euclidean distance, the attribute weight-
ing distance used in AWLMPNN can obtain more suit-
able nearest neighbors and make favorable classification
decisions.

V. CONCLUSION

In this paper, we introduce a new KNN-based rule
AWLMPNN. The main purpose of AWLMPNN is to over-
come the influence of non information features and further
improve the classification performance. In AWLMPNN, an
attribute weighting distance is designed, which fully consid-
ers the classification contribution of different attributes, so
as to find a more suitable nearest neighbor for classification.
To highlight the classification performance of this method,
we conducted comprehensive experiments on 30 real UCI
data sets, and compared with LMKNN, PNN, LMPNN and
KNN classifiers. Experimental results show that the proposed
AWLMPNN is effective and robust, and satisfactory classi-
fication results are obtained. In the future work, we plan
to adaptively select the value of neighborhood size K in
KNN-based classification, and design an adaptive weighting
method for K nearest neighbors or local mean vectors to
further improve the classification performance.
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