
Quantitative and Qualitative Analysis of
Overlapping Community Detection Algorithms

Günce Keziban Orman

Abstract—Communities are described as functional modules
in complex networks. Most of the existing algorithms are
dedicated to find network partition as communities although
in real-life, small groups can also represent functional mod-
ules. Recently, an overlapping community finder Ego Based
Merged Overlapping Communities, a.k.a EMOC, is introduced
as finding small groups. In this work, we concentrate on EMOC
which seems to find highly overlapping communities at small
size. In real-world social systems, these types of communities
correspond to small social groups such as family members or
coworkers sharing some members. We evaluate an analytical
and empirical comparative analysis of EMOC with foremost
algorithms in the literature. First, we perform a quantitative
analysis by using well-known evaluation metric; NMI. Second,
differently from ordinary performance evaluation methods, we
compare the topological properties of the algorithms’ estimated
community structures in order to evaluate their community
identification quality. Performance evaluation experiments have
been done on LFR artificial network benchmark. Furthermore,
we consult three real-world networks for representing the
use cases of EMOC. The results show that EMOC success-
fully identifies small and highly overlapping communities. Its
quantitative performance results are supported by qualitative
results. Although some algorithms might seem highly perform-
ing according to quantitative analysis, they might estimate
communities with non realistic topological properties.

Index Terms—Overlapping Community, Performance Evalu-
ation, Community Detection

I. INTRODUCTION

Complex networks, as graph modelling of complex sys-
tems, constitute a powerful mathematical representation for
studying the dynamics of interacting objects. One of the top
issues in this domain is finding communities in a complex
network [1], [2]. Communities are the network substructures
such that the nodes in the same community should be more
similar to each other than the ones of different communities
[1], [3]. As the definition analogy, communities can be seen
as the clusters of complex networks. They correspond to
functionally related objects in real-world systems. Finding
them help the researcher to discover the relation between
different modules, inferring missing attribute values and pre-
dicting unobserved connections, etc.[4]. As a natural result,
there are numerous applications such as well-known rec-
ommendation systems [5], viral marketing [6] or sentiment
analysis [7].

As any clustering problem, community detection is also
studied widely in different domains with different perspec-
tives [1], [8], [9], [10], [11]. Because there is no labelling or

Manuscript received November 1, 2021; revised November 9, 2021.
This work was supported by the Galatasaray University Research Fund
(BAP) within the scope of project number fba-2021-1063, and titled
”Niteliklendirilmiş çift yönlü ağlarda bağlantı tahmini ile öneri sistemleri
geliştilmesi”.

G.K. Orman is an Assistant Professor of Computer Engineering Depart-
ment, Galatasaray University, Istanbul, Turkey, (korman@gsu.edu.tr).

reference community structures, the definition of communi-
ties are described in a flexible manner. Rather than building
a consensus for formal definition, the needs of applications
are priored in the domain. Nevertheless, the most common
approach is finding network segments, a.k.a partitioning, in
which the communities do not share any node in common
[11], [8]. However, in [12], the authors underlined that real-
world social group segments have intersections. Thus, some
types of communities have some nodes in common. Those
types of communities are called overlapping communities.
We encounter them especially in social networks in which
discovering overlapping communities let us to reveal the
dynamics of social interactions[13]. There is a high interest
to overlapping community discovery as well [14], [15], [16],
[17], [18], [19], [20], [21], [22].

A rich comparative analysis of the prominent overlapping
algorithms are proposed in [18]. The interesting result of this
comparison is that the higher the communities intersections,
the worse the algorithms performance. The accuracy of the
algorithms is affected by the intersect node number and
the intersect community number. Some other limitations of
existing solutions are first, most of them put every node
into at least one community [17], [23], [24], [25] and
second, the results communities are large sized [17], [25].
However, in real world networks, some nodes can become
community-less whereas some communities can be small
sized. Indeed, finding community-less nodes can be quite in-
teresting because they might correspond to noise or outliers.
A flexible algorithm, EMOC (ego based merged overlapping
communities) is proposed in [26] for overcoming mentioned
limitations of previous solutions. EMOC let the user regulate
the size and the cohesiveness of the communities. First it
finds all small sized closed groups around each ego node
and second it merges similar node groups. It is not sensitive
to the overlapping level and also extracts a specific type of
outlier or noise. In [27], the authors studied the performance
evaluation of EMOC by comparing it with the foremost
overlapping community finders. This work is extending the
previous analysis. It is dedicated to both explain analytically
the algorithmic procedure and time complexity of EMOC and
propose an exhaustive empirical analysis based on the exper-
iments on artificial benchmark. Our main purpose is reveal
quantitative and qualitative performance limits of EMOC in
comparison with foremost overlapping community detectors.
We consider OSLOM [15], GCE [14], MOSES [16], COPRA
[17] and EGO-BASED [19] in this comparative study.

In the literature, there are many works dedicated for
quantitative performance analysis [18], [28]. They in general
propose a quantitative analysis on a benchmark including the
comparison of the numerical results obtained by measuring
the similarity between estimated and reference community
structures via an accuracy evaluation metric. For instance, in

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

[18] an extensive comparative analysis of foremost methods,
except the ego-centred network based ones, is performed.
They used LFR artificial network generation model to create
the benchmark [29] and modified NMI [30] to measure the
performance. These types of comparisons neglect the quality
of the estimated community structure. In [31], [32], the
authors underline the importance of the qualitative analysis
for disjoint community structure detection methods. They
have shown that although an algorithm takes a high score
by using a metric, e.g. NMI, it still can find unrealistic
community structure. Thus, in this work, we measure not
only the quantity but also the quality by examining some
topological properties of the resulting community structures
which are found by different algorithms.

Briefly, the two main contributions of this article is first
analytically describing EMOC algorithm and second eval-
uating the performance of foremost overlapping community
detection algorithms quantitatively and qualitatively to reveal
their limits and advantages for different types of networks.
During this comparison, we analyse in detail the properties of
EMOC. In the following section, we explain some prominent
works about overlapping community detection. In section III,
we give the definitions and methods related to the details
of EMOC. In section IV, we describe the LFR model, time
performance of EMOC and accuracy results of all algorithms
with their quantitative and qualitative comparisons respec-
tively. Finally, in the last section, we give a brief conclusion
and explain future aspects of this work.

II. RELATED WORKS

In this section, we focus on some prominent works about
overlapping community detection. We categorize existing
algorithms according to their detection strategy into four
classes. At first we explain them. At the end of this section,
we describe a comparative study of the algorithms.

Clique-based Methods: One of the most popular over-
lapping methods is k-clique percolation [23]. This method
first finds all the cliques of size k. It then places the adjacent
cliques in the same community. It works well if the network
contains dense substructures. However, searching the cliques
not only makes the algorithm very slow but also results in
a very limited number of communities. Another algorithm,
GCE, based on cliques is proposed in [14]. GCE at first
searches the maximum cliques and uses them as the seeds
of communities. It then tries to maximize a local fitness
function proposed by Lancichinetti et al. [30] by using greedy
optimization. Because this method does not search all cliques
and the expansion phase is performed by greedy, it works
faster.

Node Expansion Methods: Lancichinetti et al. developed
the method LFM similar to GCE [30]. But they utilized nodes
instead than cliques as the seeds of communities. In LFM,
they use the same fitness function as in GCE. This function
reflects the proportion of total inner links to all links to the
power of α , a resolution parameter, related to a community.
The performance of this algorithm depends directly on α .
Another method developed by Lancichinetti et al. is OSLOM
[15]. OSLOM takes into account statistically significance of
the communities for expansion. More clearly, it selects the
most significant community w.r.t global null model among all
possibilities. One can run OSLOM on the results of any other

algorithm to adjust the community structure. It not only finds
overlapping structure but also hierarchical one. Moreover,
we can detect the outliers or singleton communities with
OSLOM.

Information Propagation Methods: COPRA, differently
from previously described methods, detects the communi-
ties by using information propagation strategy [17]. Each
node takes the most commonly appearing label among its
neighbours synchronously at each expansion time interval.
Algorithm continues until the labels do not change. COPRA
uses the maximum community number to be found as an
input parameter. This algorithm is faster than most other
algorithms. However, COPRA does not produce robust re-
sults. More clearly, there can be a significant difference of
the results after two different applications of COPRA to the
same network. Another algorithm based on information prop-
agation SLPA [33] has a strategy very similar to COPRA.
Differently from COPRA, in SLPA, nodes do not choose the
labels independently than previous expansion time interval.
Every node has a memory to cache the label information
of previous time intervals. The more frequent the labels in
node memory, the more probable for the node to choose it.
SLPA does not take any input parameters such as community
number. Because of not forgetting the gained information of
previous expansion states, SLPA results are more robust than
COPRA.

Other Methods: The algorithm MOSES proposed in
[16] uses links as seeds and expands them according to
an objective function by using heuristic approximation. This
objective function is based on the joint distribution over the
set of communities, single connection probability of inner
and outer of community. The authors claim that MOSES is
successful at detecting highly overlapping structures. EGO-
BASED which is based on merging friendship groups of
ego-centred networks is proposed in [19]. This algorithm
extracts at first ego-centred network of each node. It then
detects the friendship groups in ego-centred networks as the
connected components after removal of the ego node. Finally,
it merges the friendship groups if intersecting node number
of two groups is one less than the size of one of those groups.
This algorithm uses first level neighbours of the ego nodes
when creating ego-centred network. Thus, it is possible to
ignore big friendship groups. Furthermore, when merging
groups, the proposed criteria can be too restricted to find
highly similar ones.

A descriptive state-of-art work about the most prominent
algorithms, related benchmarks and quality measures are
given in [18]. There is also an extensive comparative analysis
of all methods we explained above, except the ego-centred
network based one, regarding their performance on artificial
networks generated with different (1) overlapping node num-
ber and (2) number of communities that overlapping nodes
can belong. According to the results of modified NMI [30],
the performance of all algorithms decreases by the increase
of the value of those two parameters. In general, SLPA and
GCE give the best results. However, the authors conclude that
the detection in networks with high overlapping density and
high overlapping diversity still has space for improvements.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

III. METHOD

In this section, we concentrate on analytical properties
of EMOC. At first, we explain the preliminaries for further
usage. Then we detail algorithmic properties and complexity
of EMOC.

A. Preliminaries

Given a plain network G = (V,E), V is a set of n nodes
and E is a set of m links. Each node i ∈ V is also called
an ego. For each ego i, its ego-centred network at radius di,
Gdi

i = (V di
i ,Edi

i), is a sub network of G. Gdi
i is centred on

ego i and is surrounded with dth
i level neighbours of i. V di

i
is the set of ego i and its dth

i level neighbours. Edi
i is the set

of links between the nodes from V di
i . Note that if di = 1, all

the nodes in V di
i are the direct neighbours of ego. If G is a

connected network and di is equal to the diameter of G, Gdi
i

is as same as G. Two paths between two nodes i and j are
node independent, a.k.a node disjoint, if they do not have
any common internal nodes except i and j [34]. It is said
that i and j are k-node-connected if there is at least k ≥ 0
different node disjoint paths from i to j [35], [36]. Shortly,
it is called k-connected.

B. k-Connected Node Groups

Seeing real-world social phenomenons from the perspec-
tive of each person, we might discover multiple cohesive
groups around him. Some of those groups may represent
his family members, his coworkers or his social friends.
Those groups might have common members as well. For
instance, a coworker might be a social friend as well. It
is also possible that some connections are sole. It means,
without creating a cohesive group, some people individually
connects with some other people. We assume that the people
in the same cohesive group have more chance to build new
connections with each other than the people from different
groups. In network modelling, these kinds of cohesive groups
may correspond to the cliques or clique-like network objects.
A clique is a small network pattern in which every node is
connected with every other nodes. Actually, this definition
is too restricted for representing cohesive groups around
a person because it is not necessary that every pair of
person in a group is connected with each other. Another
way of representing those groups can be to regard simple
connectivity. But this time the definition of group can be too
relaxed for ensuring their cohesiveness. For instance, a large
circular sub-network is also connected but the density of
connection is too low to be named as cohesive. Between these
two limits, e.g. clique versus simple connectivity, EMOC
concentrates on the notion of k-connection of the nodes. It
defines a cohesive group as a group of nodes in which each
pairs of nodes are k-connected. For a given ego node i, it
extracts each ego-centred k-connected node groups Cip ⊆V di

i
related to ego i. It is shortly said k-connected group. Note that
if k is 1, which is its lowest value,

⋃
p Cip = V di

i . However,
if k is at its maximal value, several nodes may not belong to
any group.

By definition of k-connection, an important property that
let the EMOC finds communities arises. For k-connected
group whose size is larger than one, ∀k > 1, the nodes stay

connected even if one node is removed from the group.
This property is evident. According to the definition of k-
connection, if a k-connected group has more than k nodes, it
remains connected whenever fewer than k nodes are removed
[36]. Thus, removing one node does not affect the connectiv-
ity of the rest of the groups when k > 1. On the basis of this
property, each k-connected group remains connected even
if one removes the ego node. If there are several different
k-connected groups that are not interconnected via a node
other than ego, removing the ego will separate them. EMOC
uses this strategy for finding knit groups around egos. It
proposes a simple procedure which is given in algorithm 1.
This procedure considers ego-centred network of each ego.
For an ego node, at first it eliminates the nodes which are
not k-connected with the ego in studied ego-centred network.
It then finds the node groups which stay connected even in
case of absence of ego. Those types of groups correspond
to the connected components of ego-centred network after
removal of ego.

Algorithm 1 Finding Ego-centred k-Connected Groups

Require: Gdi
i , k, i

Ensure: Ci =Ci1, . . . ,Cip

1: for j ∈V di
i do

2: if nodeDis jointPathNumber(i, j)< k then
3: Gdi

i = remove(Gdi
i , j)

4: end if
5: end for
6: Gdi

i = remove(Gdi
i , i)

7: Ci = extractConnectedComponents(Gdi
i)

8: Ci = insertEgoToAll(Ci, i)

Let us try to explain the idea of finding ego-centred node
groups for different k values with an example. We represent
in figure 1-(A), ego-centred network of node i= 1 (coloureds
as black) at radius di = 3. Assume that we search 2-connected
groups. After checking the number of node disjoint paths,
nodes j = 2 and j = 11 will directly be eliminated. So,
those nodes will not be placed in any group. Note that
although node j = 2 has a direct contact with ego, it will
not appear in any ego-centred 2-connected group because of
not connecting with any node else. We see in figure 1-(B-
1), ego-centred network after elimination of not 2-connected
nodes. As it can be seen, there are two different cyclic groups
whose meeting point is ego. Removing ego results separation
of those groups but each of them still stay connected inside.
In figure 1-(C-1), we represent two 2-connected groups found
after removing ego with different colours. Ego belongs to
both of them. That is why; we paint it with two colours.
In case of looking for 3-connected groups in the same ego-
centred network, we obtain different results. After removing
not 3-connected nodes with ego, nodes 5,6,8 are remaining
(shown in figure 1-(B-2)). Removal of ego makes them stay
connected so there is only one node group including all the
nodes remaining (shown in 1-(C-2)).

The procedure which is given in algorithm 1 takes three
input parameters; (1) minimum number of node disjoint paths
(k), (2) ego-centred network (Gdi

i) and (3) ego (i) itself. It first
eliminates the nodes whose node disjoint path numbers to the
ego are less than k (lines 1, 2, 3, 4 and 5). Here, function

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

1

2

3

4

5

6 7

8
9

10

11

(A)

●●
●

●
● ●

●●

●

13
4

5
6 7

8
9

10

(B−1)

● ●
●

●

1 5
6

8

(B−2)

●
●

●
● ●

●●

●

13
4

5
6 7

8
9

10

(C−1)

● ●
●

●

1 5
6

8

(C−2)

Figure 1. (A) Ego-centred network of Node 1 at radius 3. Black node is ego and white nodes are its neighbours of radius 3. (B-1) Same ego-centred
network after removing nodes which are not 2-connected to ego. (B-2) Same ego-centred network after removing nodes which are not 3-connected to
ego.(C-1) 2-connected groups in same ego-centred network. Each different colour shows belonging to a different node group. Ego belongs to all groups.
That is why, it has two colours.(C-2) 3-connected group in same ego-centred network.

nodeDisjointPathNumber(. . .) in line 2 calculates the
number of disjoint paths between ego i and scanned node j.
EMOC uses push relabel max flow algorithm [37] for finding
the number of different paths between two nodes. It is one the
fastest methods that is based on mathematical optimisation.
The complexity of this step is O(|V di

i |3). It is calculated for
all nodes, so it makes O(|V di

i |4). Functions remove(. . .)
and insertEgoToAll(. . .), given in lines 6 and 8 respec-
tively, removes i from and inserts i to ego-centred network
respectively. In case of using edge list data structure, remove
operation demands one scan in the edge list of ego-centred
network for updating link and node structure of network. So,
it can be done in linear time O(|Edi

i |). Insert operation works
on the node sets of connected components. It does not need
to scan the connected component node sets but it only visits
each connected component node sets for adding ego. In total,
this task demands a linear time operation in O(|Ci|). Extract-
ing connected components after removal of ego (given in line
7 as function extractConnectedComponents(. . .))
demands traversing studied network once. This task can be
done with Breath-first Search approach. Running time of this
step is O(|V di

i |+ |Edi
i |). So overall running time of this algo-

rithm is O(|V di
i |4 + |Edi

i |+ |Ci|+ |V di
i |+ |Edi

i |) ∼ O(|V di
i |4).

As the longest process is to find disjoint path numbers
between two nodes, the overall complexity of the algorithm
is O(|V di

i |4). For extracting connected components O(V +
E) (line6)

C. Ego Based Merged Overlapping Communities

Once all k-connected groups in the entire network have
been found, EMOC merges the similar ones in order to
eliminate the separation of same or similar groups. It consid-
ers Jaccard coefficient, sim(S1,S2) = |S1

⋂
S2|/|S1

⋃
S2|, for

measuring the similarity of two groups S1 and S2 respectively.
The groups whose Jaccard coefficient are above the given
threshold are merged.

The pseudo code of merging process is shown in algorithm
2. Algorithm takes two input parameters; (1) the set S, whose
members are the node groups found for entire network,
and (2) the minimum ratio of the similarity (threshold). It
outputs overlapping community structure as the updated set
S . It firstly sorts S according to the size of node groups in
increasing order (line 1). Computing size of each group can

Algorithm 2 Merging Node Groups
Require: S, threshold
Ensure: S

1: while Si ∈ S do
2: while S j ∈ S do
3: if sim(Si,S j)≥ threshold then
4: union(Si,S j)
5: update(S)
6: end if
7: end while
8: end while

be done in constant time. We apply simple radix sort which
requires O(|S|) where |S| is the total number of node groups.
Then, The procedure checks, for each couple of node groups,
Si and S j, if their similarity is greater than given threshold
(line 3). Similarity can be computed in O(min(|Si|, |S j|)) with
the usage of hash table for storing the elements of one of
the node groups. In case of being sufficiently similar, these
two groups are merged (line 3) and the groups Si and S j are
updated. Merging phase can also be done in O(min(|Si|, |S j|))
with hash table. The algorithm continues until each couple of
node groups is processed. The average size of a node group
can be given n/|S|. So, overall time complexity of merging
phase is O(2× (n/|S|)×|S|2)∼ O(n×|S|).

EMOC at first, extracts ego-centred network of each
node i at radius di. This can be done in linear time by
using edge list representation of the graph. It then finds k-
connected groups related to each ego by using algorithm 1
and creates the global set S of node groups over entire
network. Finally, it applies algorithm 2 and creates the
overlapping community structure. Total time complexity of
these two steps is O(|E|+ |V di

i |4 +n×|S|). We assume that
|V di

i |4 ≫ n×|S| and |V di
i |4 ≫ |E| . It results O(|V di

i |4). This
complexity highly depends on the density of network and
the chosen radius value di to create ego-centred networks.
If network is sparse and di = 1, size of ego-centred network
will be logn [19]. So, time complexity will be O((logn)4).
In case of dense network, or high values of di, complexity
can be O(n4). Indeed, considering each node as an ego
gives the opportunity to make the computation in parallel
programming. Thus, in practice, time complexity can be
reduced effectively.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

EMOC considers three parameters: (1)di: Radius of ego-
centred network to adjust the size of the communities. As
this parameter can be constant for network, it can also change
from one node to another depending on the topology of the
network, (2) k: Number of node disjoint paths, to regulate
the cohesiveness of node groups, (3) threshold: Minimum
ratio of node groups similarity to merge them. Adjusting
values of these parameters requires topological analysis of
the studied network. Nevertheless, in the most basic form,
one can set constant di = 1, k = 2 and threshold = 0.8
for considering first-level ego-centred network, minimum
cohesiveness inside the groups and high similarity of the
groups. Note that decreasing the value of threshold may
result high overlapping of the communities. Depending on
the values of parameters, EMOC might result a specific
type of outliers or noise nodes. Considering the network on
figure 1-(A) as a whole network, setting di = 1, k = 2 and
threshold > 0.5, EMOC results two communities, {1,3,4}
and {1,5,6,7,8,9,10}. Two nodes, 2 and 11 remain. They
stay community-less. Those nodes have single connection
and are not in a cyclic group. Hence, they are not put into
any community. Changing the values of the parameters, the
topological types of those nodes change.

IV. PERFORMANCE EVALUATION

We conduct experiments on artificial networks to see the
performance and the limits of overlapping community detec-
tion algorithms. Current section is dedicated to explain these
experiments. We generate artificial networks with predefined
overlapping community structure by using LFR model [29].

A. LFR Artificial Network Generator

LFR model allows generating random networks with
power-law degree distribution and with predefined commu-
nity structure having power-law community size distribution
[29]. This is the most realistic model in the literature [28].
One can change the topology of generated networks with
various parameters, e.g. number of nodes n, desired average
⟨k⟩ and maximum degrees kmax, exponent γ for the degree
distribution, exponent β for the community size distribution,
cmin and cmax for minimum and maximum community sizes
respectively and mixing coefficient µ for the desired average
proportion of outer community links. It provides a rich
environment for evaluating the performance and the limits of
community detection algorithms. It is previously used for this
issue in many works [28], [18], [31]. The version of LFR we
consult at this work generates plain networks with predefined
overlapping community structure. In this version, we can also
control total number of nodes On which belong to more than
one community and maximum number of communities Om
that a node can belong in overlapping structure.

LFR determines at first the possible number of inner links
and membership numbers of each node by using µ , Om, On,
⟨k⟩, kmax and γ and the possible sizes of communities with
cmin, cmax and β . Once the initial network is generated by
using configuration model [38], the assignment of the nodes
to the communities is done by a rewiring process managing
generation of a bipartite network whose two sides are the
nodes and the communities of main network. In this bipartite
network, each node has as many links as its membership

Figure 2. Execution time of EMOC on different network sizes for
different di values. Top-left, top-right, bottom-left and bottom-right plots
correspond to the performance for di = 1, 2, 3 and 4 respectively. Given
that the execution time span for larger networks are too much, they are not
represented.

number and each community has as many links as its size.
We evaluate the performance of EMOC by comparing it with
5 different overlapping algorithms: GCE[14], OSLOM[15],
COPRA [17], MOSES[16] and EGO-BASED [19]. We im-
plement EGO-BASED by considering its pseudo-code given
in [19]. In this section, we first explain quantitative perfor-
mance results of the algorithms in terms of their NMI scores.
[30]. NMI is a well-known metric which is used before
for performance analysis of community detection algorithms
[28], [32], [30]. The version we use here is the modified one
for overlapping community structures. Finally, we perform
a qualitative analysis by explaining the changes of some
topological properties of estimated community structures in
comparison with the ones of reference structure.

B. Time Performance of EMOC

In section III-C, we underline that time performance of
EMOC depends on the density of network or the value of
parameter di. To see these effects, we generate LFR networks
with increasing n values. The values of the generation pa-
rameters are as follow: n = {5×101,102,103,104,105,106},
⟨k⟩= 5, kmax = 25, γ = 3, β = 2, cmin = 5, µ = 0.1, On = 50
and Om = 2. We set the values of cmax depending on the
values of n. So, it takes 10, 25, 25, 250, 2500 and 25000
respectively. In figure 2, we see execution time of EMOC for
the networks with increasing numbers of nodes in logarithmic
plots. Each plot in the figure represents time performance for
different di. Different colours of the curves symbolise the
execution time of different steps or total time of EMOC.
According to this, the larger the network, the higher the
execution time for any di value. The execution time for
the computation of merging process can be ignored when
comparing it with the computation of k-connected groups.

Almost all execution time of EMOC is spent for find-
ing k-connected groups for any n and di. For n > 105,

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

Table I
LFR NETWORK GENERATION PARAMETER VALUES

Parameters Values
1 µ {0.1,0.3,0.5}
2 (cmin,cmax) {(5,25),(10,50),(20,100)}
3 On {50,100,500}
4 Om [2,10]

execution time increases suddenly too much when di = 1
and 2. We observe a similar trend when di = 3 and 4
for n > 104 and n > 103 respectively. Indeed, the analytic
time complexity calculation is confirmed with experimental
results. However, as we indicated before, EMOC is suitable
for parallel programming because of handling each node
separately when finding k-connected groups. This can be a
solution for decreasing execution time.

C. Quantitative Comparison

We evaluate the performance of six algorithms by using
normalised mutual information, NMI. NMI is a well-known
metric which is based on information theory. It is frequently
used to assess the accuracy of estimated communities [28].
A modified version of NMI for overlapping communities is
proposed by Lancichinetti et al. [30]. As the traditional one,
modified NMI takes 0 if two compared overlapping structure
is totally dissimilar and it takes 1 if they are exactly same.
Previously, the modified version is used for comparing the
accuracy of the foremost overlapping community detection
algorithms in [18].

In our experiments, we mainly concentrate on the perfor-
mance changes w.r.t overlapping level change of the network.
That is why; we fix the values of some LFR parameters and
modify only few of them which are related to our aim.The
fixed parameter values are based on previous works [18],
[28]. Finally, we generate networks with n = 1000, ⟨k⟩= 10,
kmax = 50, γ = 3 and β = 2. The values of other parameters
are given in table I. The increasing values of µ in table I
allow us decreasing the level of community separation. We
assume that we generate networks with well, medium and
few separated communities for µ values given in table I
respectively. The different values of the second parameter
(cmin,cmax), minimum and maximum community size pair,
in table I allow us generating small, medium and large
communities respectively. We can adjust the overlapping
level with On and Om. We assume that we generate networks
with small, medium and large numbers of overlapping nodes
respectively for the values of On given in table I. The
values of last parameter Om allow us generating networks
with increasing numbers, from 2 to 10, of overlapping
communities that a node can belong. We mainly interpret
the results of the algorithms performances according to their
behaviour to the increase of Om. We generate 10 networks
for the combination of each parameter values given in table I.
We run all 6 algorithms on each network and consider
the average performance on 10 networks. Amongst these
algorithms, we run COPRA 10 times for each network to
ensure its consistency. We set three parameters of EMOC as
di = 1, k = 2 and threshold = 0.8. The explication we give in
this section is valid for all the results we have found although
we only present some examples of NMI plots.

2 4 6 8 10

0.
0

0.
4

0.
8

µ=0.1

Om

N
M

I

●
●

● ● ● ● ● ● ●
●

●
● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

µ=0.3

Om

N
M

I

●
● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

µ=0.5

Om

N
M

I ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED

Figure 3. NMI Result comparison of six algorithms for (cmin,cmax) =
(5,25), On = 50. Top-left plot is for well-separated communities (µ = 0.1).
Top-right plot is for medium-separated communities (µ = 0.3). Bottom-left
plot is for few-separated communities (µ = 0.5)

1) Sensitivity to Community Cohesiveness: In figure 3, we
represent NMI results of the algorithms when we increase
Om for different µ . For µ = 0.1, all the algorithms take NMI
> 0.8 (figure 3 top-left). When Om ⩽ 5, OSLOM and MOSES
are the most performing ones. GCE, EMOC and COPRA
follow them. EGO-BASED seems the least performing one.
We observe a few linear decrease of the performance with the
increase of Om. The two ego based methods are less sensitive
to this fact. Amongst them, EMOC seems more performing
than EGO-BASED. Considering the increase of µ , we notice
that especially the performance of EMOC, EGO-BASED and
COPRA decreases. However, EMOC and EGO-BASED still
can keep their performance stable to the increase of Om.
COPRA does not exhibit a robust behaviour especially when
µ = 0.5 (figure 3 bottom-left).

2) Sensitivity to Community Size: We show NMI results
of all algorithms according to different community sizes on
different plots in figure 4. Apparently, for all algorithms,
the easiest case is the case that the network has small
communities whose sizes change between 5 and 25 (figure 4
top-left). When community sizes are between 10 and 50,
the algorithms performance is still good (figure 4 top-right).
However, we observe a linear decrease for all algorithms
except ego based ones with the increase of Om. Two ego
based methods keep a stable performance. Amongst them,
EMOC results are as good as other algorithms while EGO-
BASED is one step backward than them. Especially, when
Om > 8, EMOC and OSLOM perform the best. Here, we
want to remind that running parameters of EMOC is set for
finding small communities (di = 1). So, it is not surprising
that its performance for large communities is not as good as
the ones for small communities.

3) Sensitivity to Overlapping Density: To see the be-
haviour of the algorithms for increasing overlapping den-

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

2 4 6 8 10

0.
0

0.
4

0.
8

cmin=5

Om

N
M

I

●
●

● ● ● ● ● ● ●
●

●
● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

cmin=10

Om

N
M

I

● ●
● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

cmin=20

Om

N
M

I

● ● ● ● ●

●
● ●

●

● ● ● ● ●

●
● ●

●

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10

0.
0

0.
4

0.
8

Om

N
M

I

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED

Figure 4. NMI Result comparison of six algorithms for µ = 0.1, On = 50.
Top-left plot is for small communities ((cmin,cmax) = (5,25)). Top-right plot
is for medium communities ((cmin,cmax) = (10,50)). Bottom-left plot is for
large communities ((cmin,cmax) = (20,100))

sity, we experiment on increasing On values. Here, we
also increase Om values till 15 to realise the level of the
stability of algorithm performances. In figure 5, we represent
NMI results of the algorithms for networks generated with
On = 50, 100 and 500 in plots top-left, top-right and bottom-
left respectively. Here, the easiest case for all algorithms
is On = 50. When the numbers of overlapping nodes in-
crease to 100, we observe a visible linear decrease on
the performance of all algorithms except ego based ones.
EMOC’s performance is as similar as the case of On = 50.
Amongst the expansion based methods, MOSES exhibit
better performance than the others even for high Om values.
It is claimed that MOSES is successful for detecting highly
overlapping structures [16]. As seen in top-right plot, EMOC
performs as well as MOSES for Om ⩾ 6. Its performance is
higher than all algorithms when Om > 9. For these networks,
EMOC has a stable and robust performance even if we
increase On and Om. In case that the half of the nodes in
the network overlaps (figure 5 bottom-left), the decrease of
the performance of all algorithms with the increase of Om
becomes more visible. The performance of the algorithms
OSLOM, GCE and MOSES decrease logarithmic. Amongst
them, MOSES has a smoother decreasing trend. COPRA has
a sudden decrease. Even for low Om values, its performance
is worse than the others. Two ego based methods result
similar performance trends and NMI values.

By overall observation of the results for every parameter
combination, we see that the performance of the algorithms
GCE, OSLOM and MOSES are similar and good when
communities do not overlap too much. However, their per-
formances are affected by overlapping density and diversity.
In contrast to this fact, two ego based methods seems more
stable than the others for changes on overlapping level.
Amongst them EMOC exhibits better results than EGO-

2 4 6 8 10 14

0.
0

0.
4

0.
8

On=50

Om

N
M

I

●
●

● ● ● ● ● ● ● ● ● ● ● ●●
●

● ● ● ● ● ● ● ● ● ● ● ●

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

On=100

Om

N
M

I

●
●

●
● ● ● ● ● ● ●

●
● ● ●

●
●

●
● ● ● ● ● ● ●

●
● ● ●

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

On=500

Om

N
M

I

●

●
●

●
●

●
●

●
●

●
● ● ● ●

●

●
●

●
●

●
●

●
●

●
● ● ● ●

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

2 4 6 8 10 14

0.
0

0.
4

0.
8

Om

N
M

I

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED

Figure 5. NMI Result comparison of six algorithms for µ = 0.1,
(cmin,cmax) = (5,25). Top-left plot is when there is few number of nodes
which belong to more than one community (On = 50). Top-right plot is
when there is medium number of nodes which belong to more than one
community (On = 100). Bottom-left plot is when there is large number of
nodes which belong to more than one community(On = 500)

BASED in many cases. Especially, if the communities are
well-separated and their sizes are small, EMOC results are
as good as the most performing algorithms. Nevertheless, a
performance decrease is observed for large or non-cohesive
communities. In the next section, complementary qualitative
analysis is explained.

D. Qualitative Comparison

To decide the quality of the estimated community structure
of the algorithms, we analyse their topological properties
and compare them with the reference structure. In [31], the
authors focus on the distribution of community-level topo-
logical properties (e.g. hub dominance, scaled link density,
community size). Here, we work on overlapping commu-
nity detectors. Our aim is revealing their behaviour to the
changing overlapping state of the networks. Thus, we mainly
concentrate on the topological properties reflecting their
overlapping status. We study six properties: (1) number of
communities, (2) median of community size, (3) community
size distribution, (4) maximum number of communities that a
node overlaps, (5) number of total overlapping nodes and (6)
number of community-less nodes. Amongst those properties,
(4) and (5) are in fact determined by the generator parameters
Om and On of LFR respectively. We use those properties
for assigning the compatibility of estimated structures with
the reference one. Moreover, we also want to reveal how
the algorithms differentiate amongst each other in terms of
finding overlapping nodes. The properties (1), (2) and (3) that
we consult give us an idea about if an estimated community
structure looks like the reference one in the perspective of
their sizes. By its construction, community size distribution
of reference structure follows power-law distribution. That is

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

the reason why we are oriented at median rather than mean.
In the following part of this section, the readers find graphical
representation and the interpretation of those topological
properties for the algorithms and LFR reference structure.
The different coloured lines at each plot represent the value
of the mentioned topological properties trends for increasing
Om values. Because for di = 3 and 4 execution time span of
larger networks than 105 and 104 respectively is too much,
they are not represented.

In figure 6, number of communities found by each algo-
rithm and generated by LFR is shown when increasing the
values of Om. Each plot represents the results for different
cmin and cmax (see table I). Accordingly, we notice that the
number of communities in reference structure increases from
50 to 100 with the increase of Om when community size is
small (cmin = 5). Except EGO-BASED, all estimated struc-
tures have a similar numbers of communities to the reference
one. EGO-BASED seems to find much more communities
than reference and the rest of the algorithms. We observe a
similar trend when community size is medium (cmin = 10).
However, when community size is large (cmin = 20), EMOC
behaves similarly with EGO-BASED. It finds much more
communities than reference. Because those two algorithms
have a similar strategy of detection and they work with small
node groups at radius 1 around each ego node, it is not
surprise that they find small but more communities than
the reference. One of the assumptions of EMOC is that it
finds small communities which might correspond to the small
friendship groups or family members in real-world social
networks.

2 4 6 8 10

0
50

15
0

cmin=5

Om

C
om

m
un

ity
 N

um
be

r

●

● ●
● ●

● ●
● ●

●

● ●
● ●

● ●
● ●

2 4 6 8 10

0
50

15
0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
50

15
0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
50

15
0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
50

15
0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
50

15
0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
50

15
0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
10

0
20

0
30

0

cmin=10

Om

C
om

m
un

ity
 N

um
be

r

● ● ● ●
● ●

● ● ●
● ● ● ●

● ●
● ● ●

2 4 6 8 10

0
10

0
20

0
30

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
10

0
20

0
30

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
10

0
20

0
30

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
10

0
20

0
30

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
10

0
20

0
30

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
10

0
20

0
30

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
20

0
60

0

cmin=20

Om

C
om

m
un

ity
 N

um
be

r

●
●

● ●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

2 4 6 8 10

0
20

0
60

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
20

0
60

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
20

0
60

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
20

0
60

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
20

0
60

0

Om

C
om

m
un

ity
 N

um
be

r

2 4 6 8 10

0
20

0
60

0

Om

C
om

m
un

ity
 N

um
be

r

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED
REFERANS

Figure 6. Number of estimated communities found by each algorithm
and LFR generated reference structure for µ = 0.1, On = 50. Top-left
plot is for small communities ((cmin,cmax) = (5,25)). Top-right plot is for
medium communities ((cmin,cmax) = (10,50)). Bottom-left plot is for large
communities ((cmin,cmax) = (20,100))

Regarding median of estimated and reference community
sizes (see figure 7), we notice that two ego-centring methods
find communities whose median ranges between 10 and 20

2 4 6 8 10

0
5

10
15

cmin=5

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

●

● ● ● ●
● ● ● ●

●

● ● ● ●
● ● ● ●

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

cmin=10

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

● ● ●
●

● ● ●
● ●

● ● ●
●

● ● ●
● ●

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
5

10
15

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
10

20
30

40

cmin=20

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

2 4 6 8 10

0
10

20
30

40

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
10

20
30

40

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
10

20
30

40

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
10

20
30

40

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
10

20
30

40

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

2 4 6 8 10

0
10

20
30

40

Om

M
ed

ia
n

of
 C

om
m

un
ity

 S
iz

e

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED
REFERANS

Figure 7. Median of the size of estimated communities found by each
algorithm and LFR generated reference structure for µ = 0.1, On = 50. Top-
left plot is for small communities ((cmin,cmax) = (5,25)). Top-right plot is
for medium communities ((cmin,cmax) = (10,50)). Bottom-left plot is for
large communities ((cmin,cmax) = (20,100))

independently from LFR generation parameter values. For
other 4 algorithms’ results and also for the reference struc-
ture, median values depend on LFR generation parameter
values. In general, we observe that the higher the community
sizes, the less similar the estimated communities to the
reference one for all algorithms. Amongst them, EMOC has
three parameters that might help the user to adjust the result
community sizes. In these experiments, we execute EMOC
with its default parameter values. However, increasing the
radius (di) or decreasing the similarity threshold of merging
node groups may result larger communities. In order to have
a deeper knowledge about the sizes of estimated commu-
nities, we examine the size of all generated communities.
In figure 8, we represent probability density for different
{cmin,cmax} values both for estimated structures and the
reference one. Note that LFR uses power-law distribution
for community size. Nevertheless it respects all its parameter
values when generating networks. As a result, final commu-
nity size distribution has still heavy tail (as it is in power-
law distribution) but it looks more like Poisson distribution
(see black line plot in figure 8). We see that EMOC, EGO-
BASED, GCE and MOSES community sizes range between
5 and 30 independently than {cmin,cmax} LFR generation
parameters. Thus, even if the reference communities are
large, these algorithms find smaller ones. We notice that the
most similar community sizes to the reference is the one of
OSLOM.

In figure 9, we show maximum number of communities
that a node overlaps when Om increases for different On.
Here, we want to notice that Om is the control parameter
when we look for estimated Om for different algorithms.
Thus, it is a natural trend that reference structure has a
linear increase with the increase of Om. For any algorithm,

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

0 5 10 20 30

0.
00

0.
05

0.
10

0.
15

cmin=5

Community Size

D
en

si
ty

0 10 30 50

0.
00

0.
10

0.
20

cmin=10

Community Size

D
en

si
ty

0 20 60 100

0.
00

0.
04

0.
08

cmin=20

Community Size

D
en

si
ty

−
−
−
−
−
−
−

EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED
REFERANS

Figure 8. Density of community sizes found by each algorithm and
LFR generated reference structure for µ = 0.1, On = 50, Om = 6. Top-left
plot is for small communities ((cmin,cmax) = (5,25)). Top-right plot is for
medium communities ((cmin,cmax) = (10,50)). Bottom-left plot is for large
communities ((cmin,cmax) = (20,100))

2 4 6 8 10

0
5

10
15

20

On=50

Om

M
ax

im
um

 O
ve

rla
p

●

● ●

●
●

●

● ●

●

●

● ●

●
●

●

● ●

●

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

On=100

Om

M
ax

im
um

 O
ve

rla
p

●
● ●

●
●

●

●
●

●

●
● ●

●
●

●

●
●

●

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

10
15

20

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

On=500

Om

M
ax

im
um

 O
ve

rla
p

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p

2 4 6 8 10

0
5

15
25

Om

M
ax

im
um

 O
ve

rla
p ● EMOC

COPRA
GCE
OSLOM
MOSES
EGO−BASED
REFERANS

Figure 9. Maximum number of overlapping communities found by each
algorithm and LFR generated reference for µ = 0.1, (cmin,cmax) = (5,25).
Top-left plot is when there is few number of nodes which belong to more
than one community (On = 50). Top-right plot is when there is medium
number of nodes which belong to more than one community (On = 100).
Bottom-left plot is when there is large number of nodes which belong to
more than one community(On = 500)

we also expect such a linear increase. As it can be seen in
figure 9, COPRA does not find any overlapping community
for any case. It seems MOSES and OSLOM find community
structure with the most similar maximum overlapping com-
munity to the reference one for any case. However, we also

notice that when half of the nodes overlap (On = 500), they
differentiate from the reference. Especially, OSLOM seems
not to find as many overlapping communities as the reference
one for this case. About GCE, we notice that it cannot find
as many overlapping communities as the reference one when
Om > 5 for On = {50,100}. Two ego-centring methods find
much more overlapping communities than the reference one
for any case. Amongst them, we observe a more linear trend
for EMOC. EMOC is designed for finding small and highly
overlapping communities. These graphical results confirm its
compatibility for this aim.

In figure 10, we see estimated On values by the algorithms.
COPRA does not find any overlapping nodes for any On
control parameter values. It seems all the algorithms result
different On from the reference one when half of the nodes
overlap. For other two cases (On = {50,100}), OSLOM finds
as much overlapping nodes as the reference one. MOSES
finds little more while GCE finds little less. Two ego-
centring methods result much more overlapping nodes than
the reference one. Amongst them EGO-BASED puts all
nodes into more than one community for any case while
EMOC results %30 of overlapping nodes in the network.

2 4 6 8 10

0
20

0
60

0

On=50

Om

O
n

●
●

●
●

● ● ● ●
●

●
●

●
●

● ● ● ●
●

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10

0
20

0
60

0

Om

O
n

2 4 6 8 10
0

20
0

60
0

On=100

Om

O
n

●
●

● ● ● ● ●
● ●

●
●

● ● ● ● ●
● ●

2 4 6 8 10
0

20
0

60
0

Om

O
n
2 4 6 8 10

0
20

0
60

0
Om

O
n
2 4 6 8 10

0
20

0
60

0
Om

O
n
2 4 6 8 10

0
20

0
60

0
Om

O
n
2 4 6 8 10

0
20

0
60

0
Om

O
n
2 4 6 8 10

0
20

0
60

0
Om

O
n

2 4 6 8 10

0
40

0
80

0

On=500

Om

O
n

●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

2 4 6 8 10

0
40

0
80

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

Om

O
n

2 4 6 8 10

0
40

0
80

0

Om

O
n

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED
REFERANS

Figure 10. Number of overlapping nodes found by each algorithm and
LFR generated reference for µ = 0.1, (cmin,cmax) = (5,25). Top-left plot
is when there is few number of nodes which belong to more than one
community (On = 50). Top-right plot is when there is medium number of
nodes which belong to more than one community (On = 100). Bottom-left
plot is when there is large number of nodes which belong to more than one
community(On = 500)

We also examine the number of community-less nodes
found by each algorithm. In the reference community struc-
ture, LFR puts all nodes into at least one community.
Thus, we expect that the algorithms should not result any
community-less nodes. You can find some examples of the
found community-less node numbers for different On and
Om values in figure 11. Although we present here only some
examples of the figures, the results are valid for all cases.
Accordingly, we notice that except GCE and MOSES, all
the algorithms put all the nodes into at least one community.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

2 4 6 8 10

0
10

30
50

On=50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

2 4 6 8 10

0
10

30
50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
10

30
50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
10

30
50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
10

30
50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
10

30
50

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

60
10

0

On=100

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

2 4 6 8 10

0
20

60
10

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

60
10

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

60
10

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

60
10

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

60
10

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

0
40

0

On=500

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

2 4 6 8 10

0
20

0
40

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

0
40

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

0
40

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

0
40

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

2 4 6 8 10

0
20

0
40

0

Om

C
om

m
un

ity
le

ss
 N

od
e

N
um

be
r

● EMOC
COPRA
GCE
OSLOM
MOSES
EGO−BASED

Figure 11. Number of overlapping nodes found by each algorithm and
LFR generated reference for µ = 0.1, (cmin,cmax) = (5,25). Top-left plot
is when there is few number of nodes which belong to more than one
community (On = 50). Top-right plot is when there is medium number of
nodes which belong to more than one community (On = 100). Bottom-left
plot is when there is large number of nodes which belong to more than one
community(On = 500)

However those two algorithms output some community-less
nodes. Especially, GCE finds many community-less nodes.
Their numbers are affected both by Om and On. For MOSES,
it seems when there is too much overlapping node with many
overlaps between communities (Om > 6 and On = 500), it
cannot place many nodes into the communities. We want to
remind here that those two algorithms’ NMI score are too
high to be compared with some other algorithms. However,
here we discover that they might result many community-
less nodes. Hence, the reliability of quantitative comparison
of the algorithms might be open to criticism. One single
measure is not efficient to explain the performance of the
algorithms but it should be supported by qualitative analysis
which enlightens the properties of the algorithms. We also
want to underline that algorithms OSLOM and EMOC might
find outliers or noise nodes(see Section III for EMOC and
[30] for OSLOM). If it exists, they result community-less
nodes. However those community-less nodes correspond to
a specific type of outliers. Because LFR does not generate
networks with those types of nodes, those two algorithms do
not find community-less nodes.

Interpreting quantitative and qualitative results together,
we summarise the behaviour of the algorithms for different
kinds of networks. Here, we explain shortly our results for
each algorithm. EMOC is convenient for finding small and
medium sized communities. It can find highly overlapping
structures. Because it is ego-based, it can be used for finding
different communities that a node can belong. When the
communities are not well-separated, EMOC may not find
appropriate communities. It can detect specific types of
outliers. COPRA cannot find overlapping structure. It is not
robust. There is a risk that COPRA puts all nodes into one

●

●

●●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

1

2

34

5

6 7

8
9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29
30

31

32

3334

Zachary Club Network Communities
After Fission

1

2

34

5

6 7

8
9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29
30

31

32

3334

EMOC communities for
d_i=1, k=2

1

2

34

5

6 7

8
9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29
30

31

32

3334

EMOC communities for
d_i=1, k=3

Faction of Club Members

 1:Mr. Hi−Strong 2:Mr. Hi−Strong
 3:Mr. Hi−Strong 4:Mr. Hi−Strong
 5:Mr. Hi−Strong 6:Mr. Hi−Strong
 7:Mr. Hi−Strong 8:Mr. Hi−Strong
 9:John−Weak 10:None
11:Mr. Hi−Strong 12:Mr. Hi−Strong
13:Mr. Hi−Weak 14:Mr. Hi−Weak
15:John−Strong 16:John−Weak
17:None 18:Mr. Hi−Weak
19:None 20:Mr. Hi−Weak
21:John−Strong 22:Mr. Hi−Weak
23:John−Strong 24:John−Weak
25:John−Weak 26:John−Strong
27:John−Strong 28:John−Strong
29:John−Strong 30:John−Strong
31:John−Strong 32:John−Strong
33:John−Strong 34:John−Strong

Figure 12. Zachary Karate Club Network. The different colours of nodes
represent belonging to different communities. Nodes with multiple colours
belong to multiple communities. Left and right plots represent ground-truth
and EMOC communities for di = 1, k = 2 and threshold = 0.8 respectively.

community. However, it is a fast algorithm. Hence, it can be
combined with another algorithm to refine the result commu-
nity structure. GCE is successful to find small and medium
sized communities. It cannot catch highly overlapping parts.
GCE is not affected by community separation level too much.
Thus, it is convenient to find communities even if they are
not visible at first sight. However, this algorithm does not put
many nodes into any community. Thus, its result structure
should be misleading. OSLOM, like GCE, is not affected
by community separation level too much and it cannot catch
highly overlapping parts. Differently from other algorithms,
it is successful to find small, medium and also big sized
communities. OSLOM can result outliers or noise nodes.
Likewise, MOSES is not affected by community separation
level too much and it cannot catch highly overlapping parts.
It is good for detecting small and medium sized communities.
As GCE, many nodes might remain community-less. So,
its result structure might be misleading. EGO-BASED finds
both small and medium sized communities. It is affected by
community separation level too much. Thus, it might not
be good for detecting non-visible communities. Differently
from all the mentioned algorithms, it assigns more than one
community for every node. Hence, it detects over overlaps
which might be misleading for the user.

E. Results on Real-World Networks

We apply EMOC on two real-world networks. The first
one is well-known Zachary karate club network [39]. This
network is created by observing Zachary club members for
2 years. It shows the relations of 34 club members. Club
members split into two groups because of political conflict
between karate trainer John (node #34) and club president
Mr. Hi (node #1). There are two natural communities whose
leaders are those two members. These communities are

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

represented by different colours in top left plot of figure 12.
The faction of each club member is also declared as strong
or weak connection with one of the leaders or none. We
observed the effect of EMOC parameter values on Zachary
karate club network.

We find 4 communities (shown in top right plot of fig-
ure 12) when the parameters are at their default values.
Natural communities of Zachary network seem to be split
by EMOC. Union of red and green communities of EMOC
substantially correspond John’s group. Likewise, yellow and
blue communities of EMOC constitute Mr. Hi’s group. There
are 5 overlapping nodes (#1, 3, 9, 32, 33). Mr. Hi (node #1)
belongs to three communities that 2 of them correspond to
his group after split. Evaluating centrality scores, overlapping
nodes have the highest betweenness centrality. Overlapping
nodes are either lying in-between two groups or they are em-
bedded in the core centre of the groups. The most interesting
result is about node #9. Its betweenness score is not as high
as others. This node was a weak supporter of John before the
split but he joined Mr. Hi’s group afterwards [39]. EMOC
puts him into two communities that each of them correspond
to the groups of different leaders in reality. Two nodes (#10
and 12) are not placed into any community. Regarding their
topological position, node #12 is connected only with node
#1 (Mr. Hi). Node #10 has only two connections. The faction
of this node is marked as none. Node #10’s two friends are
Mr. Hi’s strong supporter and John himself. His idea about
leaders is neutral and his friends are homogeneous. As a
result, although he is placed in one of the groups in reality,
we cannot claim that he is embedded there.

When we increase the minimum number of disjoint paths
from k = 2 to k = 3, EMOC naturally finds more and smaller
communities (see bottom-left image of Figure 12. Not only
major communities are split but also many nodes becomes
community-less. Among them, node #10,17 and 19 did not
belong to any group after the split. EMOC could catch
those nodes as community-less when we increase k value.
Observing general topology of the nodes overall, only the
tightly knit groups did not dissolve. Perhaps, the ideal EMOC
parameter values depend on both network size and its density.
In general, EMOC finds consistent communities with real
groups in Zachary Karate network. Overlapping nodes have
important topological situation. Community-less nodes can
be either non-effective or easily affected by other people.

Second real-world network we deal with is Facebook Net-
work [40]. This network is a combination of 10 ego-centred
networks that each of them includes the social circles of ten
different Facebook users. There are 4039 nodes correspond-
ing 10 ego and their friends and 88234 links representing the
friendship relation of them. This network is ego-centralised
by its construction. We apply EMOC with same parameter
values. We examine a possible relation between numbers of
communities that a node belongs and topological properties.
For this reason, we represent in figure 13 the scores of page
rank, betweenness, closeness and degree centralities with the
numbers of overlapping communities for each node. As it
is case for Zachary karate network, in Facebook, the most
overlapping nodes (#108 and 1685, points at the top-right
corners of each plot) are the most central ones. Their page
rank score is also high. Those nodes correspond to two egos
having hub position in the network. Some nodes belonging

●

●●●●●●●●
●
●●●
●●●●●●
●●
●
●●●
●●

●●●●●●● ●●●●●●
●●
●●●●●●
●●●●●
●
●●

●

● ●●●●●● ●●●

●
●●●●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●
●● ●●●●●●●

●

●●●●●
●
●
●●●
●

●

●●
●
●●●●●●●●●●●●●

●
●
●●●
●●●●●●●●● ●●●●●●●●
●●●●● ●●● ●●●
●● ●● ●●
●●●●●●●●●●●
●
●
●

●●●●●●●●● ●
●●
● ●
●
●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●● ●●

●
●
●●●●
●
●●
●
●●●●
●
●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●
●●
●
●
●●●●
●●

●
●●●●●●

●●●
●
●●●●●●
●
●●
●●●●●●

●

●●●●
●

●●●●● ●●●●
●

●●
●

●●● ●
● ●

●●
●

●

●
●

●●●●●●●●●●
●

●
●●● ●

●
●●●●

●
●

●● ●●●●
●●●●

●
●

●

●●●●
●●●

●●●●● ●

●

● ● ●●
● ●●

●●
●●●●●●

●●●●● ●●●●●● ●●●●●
● ●●● ●

●
●●●●●●●● ●

●

●●●● ●●●

●

●
●●●● ●●●

●●●● ●
●

●●
●

●●
●●●

●●
●●●● ●

●● ●●
●

●● ●●● ● ●● ●●●●●
●●●●●●●

●
●●●

●●
●●●●● ●●●●

●
● ●●● ●

●
●

●
●

●
●●

●●
●● ●●●

●●●●●●
● ●

●●● ●● ●●●●● ●●
●●● ●●●●● ●●● ●●

●
●●

●●●●● ●● ●● ●● ●●●●●●●●● ●
●

●● ●●●●
●

● ●● ●
●● ●●●●● ●● ●

● ●●●●●●●●●● ●●● ●●● ●● ●●●●● ●● ●● ●● ●●● ●

●

●●●●●●●
●●● ●

●

●●●●
●

●

●
●● ●●●●●

●
●●●●●

●
●●●●
●
●●●

●●●●●●● ●●●●●●●●●●
●

●
●

●●●●
● ●●●●●●●●●● ●● ●●●● ●●● ●● ●
● ●●●●●
●

●●●●●
●●●●●●●●●●● ●●

●
●● ●●

●
● ●●● ●●●●●

●●●● ●●
●●

●●
●●

●
●

● ●
●●●
●●●● ●● ●●
●●●●●●● ●● ●●
●
●●

●
●●●● ●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●
●

● ●● ●● ●● ●●●●●●●● ●●●●
●

●

● ●● ●● ●●●● ●● ●
●●● ●●●●●● ●● ●●● ●●
●● ●●● ●● ●●●● ●●●● ●●●●●● ● ●●● ●● ●● ●●●●●
●●●● ●●● ●●● ●●● ●
● ●●●●●● ●●●

●●
●

● ●●●● ●●
●
●●

● ●●●●●●● ●●● ● ●●●
●●● ●●●●●●
●●● ●●●●
● ●● ●●● ●●●● ●

● ●● ●● ●●
●●●●
●

●●● ●●●
●

●● ●●●●●
●●
●● ●●●●● ●●●

● ●●●● ●●
●

● ●● ●● ●●● ● ●●●
●●● ●●●●●●
●

● ●●●●●●● ●●●●● ●● ●●●●
●
●
●● ●● ●

●
●●●●
●●●●●●● ●●●● ●● ●● ●● ●

●● ●●●● ●●●●
●●● ●●●

●
●●● ●●●

●
●● ●●
●●

●●● ●●
●

●●● ●● ●●●●
●●
●●● ●●● ●● ●● ●●
●● ●●

● ●●●●● ●●●●●
●

●●●●
●● ●●●● ●

● ●●●●
● ●
●
●● ●●●●●

●
●●● ●●●●● ●●● ●●● ●● ●●●●
●● ●●● ●● ●●●● ●● ● ●●● ●● ●●● ●●
●● ●●● ●● ●●● ●● ●●●●
●●●● ●●●
●

●
●●●●●
●

●●● ● ●●● ●●
●● ●●

●●
● ●● ●●

●●●
●●

● ●● ●●● ●●● ●●●
●●
● ●●● ●●●

●
●●●● ● ●● ●●●● ●●●●●
●

● ● ●
●● ●●● ●●●●●●

●
●● ● ●● ●●● ●●● ● ●●●

● ●● ●●● ●●●
●● ●

●
● ●
●
●●

●
●

●● ●●
● ●

●
●

●
● ●●● ●●● ●● ●●

●●
●●

●
●●● ●●●●●●●
●●●

●
●●●

●
●●● ●●●●

●● ●●
●

●●● ●●● ●●● ●● ● ●●
●

●●● ●●● ●●●●
●● ●●
●

●●● ●●
●

●
●

● ●●● ●●●●● ●●●●
● ●
●●

●
●●●● ●●

●
●● ●●

●
●●

● ●●●
●● ●
●
●● ●

● ●● ●●
● ●● ●●●

●● ●●●● ●●●●● ●●●
●● ●
●●●● ●● ●●●●● ●● ●●● ●● ●●●●● ●● ●● ●● ●●●
●

●
● ●●●● ●●●● ●● ●● ●●●●●●

●

● ● ●●●
●

●●● ●●●●● ●● ● ●●
●● ●

●
●

●
●●● ●

● ●●● ●
● ●●●● ●● ●●●●

●
●●●●●

●● ●● ●● ●●●●
●
●●●
●●●● ●●●

● ●●●
●
●●●●●●
●
●●●● ●●●● ● ●● ●● ●
●

● ●●●●● ●● ●
● ●●●●●
●

●
●●●

●
● ●●●●●● ●

●
●●● ●●● ●● ●
●●●●

●
●●●●●
●

●
●

●●●
●
● ●● ●

●● ●● ●● ●● ●●● ●●
● ●● ●●●●●●●

●●● ●
●●●● ●●● ●●● ● ● ●●●●●

●
●●●●

●●●● ●● ●
● ●

●●●●● ●● ●● ●

●

●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●
●
●●●
●●●●●●●●●●●●●●
●●
●●●
●
●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●
●

●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●
●●●●●●●●●
●●●●●
●●
●
●●●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●●●
●●
●●
●●●●●●●●●
●●●
●●●●●●●
●●●●●●●●●●●●
●
●
●●●●●●●●●
●
●●●
●
●●●●●●
●●●●●●●
●●●
●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●
●●●
●●●●●●●
●●●
●
●●●●●●●●●
●
●●●●●●
●
●●●

●
●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●
●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●
●
●
●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●
●●●●
●●●●●●●●●●●
●●
●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●
●●●●●
●●● ●●
●●●●
●●●●●●●●●● ●●
●●●●●●●●● ●●● ●●●●●●●●●
●
●●
●
●●●●

●
●●●●●

●
●●● ●●●●
●● ●●
●
● ●●●●
●●●● ●●
●●●●●● ●●●● ●●●●●●●●●●● ●●
●●●●●
●●●●
●●
●●●●●
●
●●●●●●
●
●●●●●●●●●●●● ●●●●●●●●● ●●● ● ●●●●●●●
●
●●●● ●
●
●●●●●●●●●
●
●●●
●●●●●●●●●
●
●
●●●●● ●●●●●●●●
●
●●●●● ●● ●●●●●
●
● ●●
●
●●●●●●
●
● ●
●●●●●●●●●●●
●●
●●●●●●●●
●●
●●●●●●●●●●● ●●● ●●
●●●●●●●●
●

●●●
●●●●●
●
● ●● ●●
●
● ●●● ●●●●● ●●● ●●●●●●●
●
●●●●●
●●●●●●●

●● ●●
●● ●

●●●●●
●●●●●●

●●
●●●●●●●

●●
●●●●●
● ●●
●●
●
●●●●●●●●●●
●
●
●
●●●●● ●●●
●
● ●●●●●●●●●●
●●●●
●●● ●●●
●
●
●●●●●●
●
●●●●●
● ●●● ●

●
●●
●●●●●●● ●●
●●●
●●●●●●●●●●●●●●●●
●
●●●
●●●●
●●●●●
●●●●●
●
●
●
●
●
●●●●●●●

●
● ●●●● ●●●●
●
●●●●● ● ●●●●●
●● ●●●●●●●●●●●●
●
●●

●
●●● ●●●●●●●●●
●
●●●●●●● ●●●●●●●●●●
● ●
●●●●●
●●●●●● ●●● ●●●●
●●●●
●
● ●●●●●

●● ●●
●
●●●●●●
●●●● ●●
●
●●●
●●●●● ●●
●
●●● ●●●●●●●
●● ●●●●●●●●●●●●●●● ●
●●
●●
●●●
●●●
●

●●
●●
●
●●●●●●
●

●
●●●●●●
●●
●
●● ●●●●●
●

●●●●● ●
●●●●●●●●●●●
●●●●●●● ●●●
●●●●●●●●
●●
●●●●●● ●●

●
●● ●●● ●
●●●●
●
●
● ●●●●●●
●
●●●●● ●●
●
●●

●

●●●●
●
●●●●●
●●●●●●●
●●
●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●●
●●●●●●●●●●
●●
●●●●●●
●●●●●●●●
●
●
●●●●
●●●
●
●●
●

●●
●
●●●●
●
●
●●●●●
●
●●●●●
●●●●●●●●
●●●●
●
●●●
●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●●●
●
●●
●
●●●
●
●●●●●
●
●
●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●
●●
●
●●
●
●●●
●
●●●●●
●
●●●●●●●●●●
●●●●●●●●
●

●

●●●●●●●
●
●●●
●
●●●●●●●●
●
●●●●●●
●●●●●●●●●●●
●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●
●●
●●●●
●●●●●●●●●●●●
●
●●●●●
●
●
●●
●●
●●●●●●●●
●

●●●●●●
●
●
●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●
●
●
●
●●●●●●
●●
●●●●●●

5 10 15

0.
00

0
0.

00
4

Community Number

P
ag

e
R

an
k

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●
●

● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●

●

●●●● ●●●●●● ●●●● ●●● ●●●● ●● ● ●●● ●● ●●●●●●●●●●● ●● ●●● ● ●●●●● ●● ●● ●●●● ●●●● ●●

●

●●●● ●●● ●●●●● ●

●

● ● ●●● ●● ●● ●●●●●● ●●●●● ●●●●●● ●●●●● ● ●●● ● ●●●●●●●●● ● ●●●●● ●●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●●●● ● ●● ●● ●●● ●●● ● ●● ●●●●●●●●●●●● ●●●● ●● ●●●●● ●●●● ●● ●●● ● ●● ●●

●

●● ●

●

●● ●●● ●●●●●● ● ●●●● ●● ●●●●● ●● ●
●

● ●●●●● ●●● ●● ●●● ●●●●● ●● ●● ●● ●●●●●●●●● ● ●●● ●●●● ●● ●● ●●● ●●●●● ●● ●● ●●●●●●●●●● ●●● ●●● ●● ●●●●● ●● ●● ●● ●●● ●
●
●●●●●●●●●● ●

●

●●●● ●●●●● ●●●●● ●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●● ●● ●●●● ●●● ●● ●● ●●●●●● ●●●●●●●●●●●●●●●● ●● ●●● ●●●● ●●● ●●●●● ●●●● ●●●● ●● ●●● ●● ●●●●●●●● ●● ●●●●●●●●● ●● ●●●●● ●●●●

●

●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●● ●● ●● ●● ●● ●●●●●●●● ●●●● ●●● ●● ●● ●●●● ●● ●●●● ●●●●●● ●● ●●● ●●●● ●●● ●● ●●●● ●●●● ●●●●●● ● ●●● ●● ●● ●●●●● ●●●● ●●● ●●● ●●● ●● ●●●●●● ●●●●●● ● ●●●● ●●●●●● ●●●●●●● ●●● ● ●●●●●● ●●●●●● ●●● ●●●● ● ●● ●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●● ●●● ●●●●●

●

●●● ●●●●● ●●●● ●●●● ●●●● ●● ●● ●●● ● ●●● ●●● ●●●●●● ●● ●●●●●●● ●●●●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●●●●● ●●●● ●● ●● ●● ●●● ●●●● ●●●●●●● ●●●● ●●● ●●● ●●● ●● ●●●●● ●●● ●●● ●● ●●●● ●● ●●● ●●● ●● ●● ●●●● ●●● ●●●●● ●●●●● ●●●●● ●● ●●●● ●● ●●●●● ●●●● ●●●●● ●●●● ●●●●● ●●● ●●● ●● ●●●●●● ●●● ●● ●●●● ●● ● ●●● ●● ●●● ●● ●● ●●● ●● ●●● ●● ●●●● ●●●● ●●●●● ●●●●● ●●●● ● ●●● ●●●● ●● ●●● ●● ●●●●● ●●● ●● ●●● ●●● ●●● ●● ● ●●● ●●●● ●●●● ● ●● ●●●● ●●●●●●● ● ●●● ●●● ●●●●●●● ●● ● ●● ●●● ●●● ● ●●●● ●● ●●● ●●●●● ●●● ●●●●
●

● ●● ●●● ●●● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ●●●●●●● ●●● ●●●● ●●●● ●●●●●● ●●● ●●● ●●● ●●● ●● ● ●● ●●●● ●●● ●●●●●● ●●● ●●● ●●●● ●● ●●● ●●●●● ●●●● ● ●●●

●

●●●● ●● ●●● ●●● ●●● ●●●●● ●●●● ●● ●● ●●● ●● ●●● ●● ●●●● ●●●●● ●●● ●● ●●●●● ●● ●●●●● ●● ●●● ●● ●●●●● ●● ●● ●● ●●● ●●● ●●●● ●●●● ●● ●● ●●●●●●

●

● ● ●●●● ●●● ●●●●● ●● ● ●●●● ●●● ●●●● ●● ●●●
●

● ●●●● ●● ●●●● ●●●●●●●● ●● ●● ●●●●●●●● ●●●● ●●●● ●●● ●●●●●●●●●●●● ●●●● ● ●● ●● ●●● ●●●●● ●● ●● ●●●●●● ●●●●●● ●●●●●● ●●●●● ●●● ●● ●●●●●● ●●●●● ●● ●●●●●● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ●●●●●●●●●● ●●●●● ●●● ●●● ● ● ●●●●●●●●●● ●●●● ●● ●● ●●●●●● ●● ●● ●

●

●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●● ●● ●●●● ●●●●●●●●●● ● ●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●

●

●●
●

●●●

5 10 15

0.
0

0.
2

0.
4

Community Number

B
et

w
ee

nn
es

s
C

en
tr

al
ity

●

●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●

●

●●●●●
●

●●
●
●●●●●●●●●●●● ●●●●●●●
●
●●●●●●●●●●●● ●●●
●
●●●

●

●●●●●●●●●●●
●●

●
●
●●
●
●●●●●●●●●●

●

●●●●●●●●●
●
●●●

●
●●●●●
●
●●●●●● ●●● ●●●
●
●

●

●

●

●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●● ●●●●●●●●●●●
●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●
●
●●●●●●
●
●
●
●●●● ●●●●●●●●●●
●
●●●●●●●●

●

●
●
●●

●

●●●
●
● ●

●

●●

●

●●

●

●●
●

●

● ●

●●

●

●

●

●

●●●●●●●●

●
●

●

●

●●

● ●

●

●
●
●●

●

●

●

●
●●

●
● ●

●●●

●

●

●

●
●●

●

●

●

●
●

●

●
●●

●

●

●
● ●●● ●● ●

●

●
●

●●
●
●

●
●●●●

●
●

●
●
●●

●
●
●
●
●

● ●

●
●

●

●

●●●
●
●

●
●●

●

●

●
●
●
● ●

●
●

●●

●
●●● ●●●

●

●●● ●

●

●●

●
●●

●●
●

●●●
●
●● ●

●
● ●●

●

●
●

●

●●
●

●●

●

●●
●●
●
●●
●
●●
●

●

●●
●

●

● ●●●
●●
●

●●●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●
● ●
●● ●●●●●● ●

●

●●● ●● ●●●●
●

●

● ●
●

●

●

●●●●

●

●●

●

●

●

●●
●●

●●●
●

● ●● ●● ●●●●●●●●●

●

●●● ●
●
●●

●

● ●●

●

●● ●

●
●
●●

●

●

●

● ●●●●●●●●●● ●●● ●
●

●
●

● ●●●●●
●
● ●● ●● ●

●

● ●

●

●●●●●●●●●●

●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●

●

●●●●●●●● ●

●

●●●●● ●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●●●● ●● ●●●●

●

●●

●

●

●

●

●

●●●●● ●●●●●●●●●●●●●●●●

●

●

●

●●

●●●

● ●●●

●●

●●● ●●●●

●

●●●

●

●

●

●●

●

●

●

●●●●●●● ●●

●

●●●●●●●● ●● ●●●●●

●

●

●●

●

●

●

●●
●

●●
●
●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●

●● ●● ●● ●● ●●●●
●

●●● ●●●
● ●
●● ●●
●

● ●●
●

● ●● ●
●
●● ●●●●●● ●● ●●● ●●●● ●●●

●
● ●●●● ●●●● ●

●
●●●● ● ●●● ●● ●● ●●●●● ●●●● ●●● ●●●

●

●● ●● ●●●●●● ●●●●●● ● ●●●● ●
●

●●●● ●●●●●●● ●●●
● ●

●●●●● ●●●●●● ●●● ●●●● ● ●● ●●● ●●●● ●● ●● ●● ●● ●●●●
●

●●●
●

●●
●

●● ●●●●●

●

●●
●

●●●●● ●●●●
●

●●● ●●●● ●● ●
●

●●● ●
●

●● ●●● ●●●●●●
●

● ●●●●●●● ●

●

●●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●●●●●

●

●●● ●●

●

●
●

● ●●●
●●

●●
●

●●●●
●
● ●●●●

●
●●
●●

● ●●● ●● ●●●●● ●
●

● ●●● ●●
●

●●● ●● ●●●
●

●● ●● ●● ●●●●
●

●● ●●●●● ●●●●● ●●●●● ●● ●●●● ●● ●●●●● ●●●● ●●
●
●● ●●●● ●●●●● ●●●
●
●● ●● ●●●●●●
●

●● ●● ●●
●
● ●● ●

●●
● ●●

●
●●

●
● ●● ●●●

●●
●●● ●●

●
●●●

●
●●● ●●●●● ●●●●●

●

●●● ● ●
●

●
●●

●● ●● ●●●
●

● ●●●
●

●
●

●● ●● ●●● ●●● ●●● ●● ● ●●● ●●●● ●●●● ●

●

● ●
●

●
●

●●●●●●● ●

●●●
●●●
●
●●●●●● ●● ● ●● ●●●

●
●● ● ●●
●

● ●●

●

●● ●●●●●
●
●● ●●●●

●

● ●● ●●● ●●● ●● ●●● ●●●
●

●
●

● ●● ●●● ●●
●

●●●●●●● ●●●

●

●●●
●

●
●● ●
●●●●

●
●●●

●●
● ●●● ●●● ●● ●

●

●
●●

●●
●

●● ●●
●

●●●
●

●● ●
●
●

●
●●● ●● ●●● ●●●

●
● ●●●● ●

●
●●

●

●●●● ●● ●●● ●
●
●

●
●●

●
●●●● ●●●● ●● ●● ●●● ●● ●●● ●● ●
●●

● ●
●

●●● ●
●

● ●● ●●●●● ●● ●●●●●

●

● ●●● ●● ●●●●● ●●

●

● ●● ●●●
●

●●

●

●●● ●●●● ●● ●● ●●●●●●

●

● ●

●
●

●● ●
●

● ●●●
●

● ●● ●
●

●●
●

●●● ●●●● ●● ●●●

●
●

●●●● ●●

●

●●● ●●●●●●●● ●●
●

● ●●●
●
●●●● ●●●● ●●●●

●

●● ●●●●●●●●
●
●●● ●●●●
● ●
●

●
●

●
●● ●●●●● ●● ●● ●●●●●● ●●●

●
●●

●
●
●

●●● ●●●●●
●
●● ●● ●●●
●

●● ●●●●● ●●

●●
●●●● ●● ●●●

●●
●● ●●

●
●● ●● ● ●● ●●●
●
●●

●
●●● ●●●●● ●●● ●●● ● ●

●
●●●●●●●●● ●●●● ●● ●● ●●●●●● ●●

●
●

●
●

●
●●
●
●●●
●
●●●●●

●

●●●●●

●

●●●●●●●
●●
●●●

●

●
●●
●●●●●
●●

●●●
●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●
●●●

●

●●
●
●●●●●●●●●●●●●●●
●
●
●
●●
●
●

●●●●●

●●

●●

●

●●●●
●
●●●●
●●●

●●●●●●●
●
●●
●
●●

●

●●

●●

●●●●●●●●

●

●●●●●
●
●●●●●●●●●●●●●
●
●

●●●●●●●●

●

●●●●●
●

●●●●●●●
●
●

●●

●●●
●●●●

●
●●

●●●●

●●
●●●
●●
●
●
●

●

●
●
●●●●●●●
●
●●●●●
●
●●●●

●

●
●
●●●

●

●●

●

●
●
●

●

●

●

●
●
●●
●
●
●
●
●
●

●●●

●

●●●●●●●●●●●
●
●●●●●●●

●●
●●●●●●●●●●●●●●
●
●
●
●●●●
●●

●●

●

●●●

●

●●●●●●●●●

●

●
●●●

●●●●
●
●●●●●

●

●●
●●
●
●
●●●

●

●●

●
●●●
●●
●
●●●

●

●●●●●●●●●●●●
●
●●●

●

●●●●●
●
●

●●
●
●
●
●●
●●

●
●
●
●●●●
●●
●●

●
●●●
●
●●●
●
●●●●●●●●●●●●
●
●●●
●
●●●●
●
●●●●●●

●
●
●●●
●
●●●●
●
●●●

●●
●●●●●●●●●●●●●
●
●●●

●

●
●●
●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●

●
●●

●

●

●

●
●
●●
●
●●

●●

●●

●

●●●●●●●●●●●●●●●

●

●●●●
●
●

●

●●
●●

●●●●●

●●●●●
●●●
●
●●
●
●●●●●●●●●

●●
●●

●

●●●●●●●●
●
●
●
●●

●

●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●
●●

●●
●
●
●
●●
●●

●●●●●●
●
●●
●●
●●●●●●
●●

●●●●●●●●●●●

●

●●●●●●●●●●●●
●●

●●●●●

●

●●●

●

●●●●●●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●●●●●●● ●●● ● ●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●

●

●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●
●

● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●● ●● ●●●● ●●●●●

●
●●●● ● ●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●

●
●●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●

●

●●

●

●●●●●●●●●●●●●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●
●●●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

5 10 15

0.
20

0.
30

0.
40

Community Number

C
lo

se
ne

ss
 C

en
tr

al
ity

●

●●●●●●●●
●
●●●●●●●●●●●
●
●●●
●●
●●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●
●
● ●●●●●● ●●●
●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●
● ●●●●●●●

●

●●●●●
●
●●●●
● ●
●●
●
●●●●●●●●●●●●●

●

●●●●●
●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●
● ●● ●●●●●●●●●●●●●
●●● ●●●●●●●●● ●
●●
● ●
●
●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●● ●●
●●
●●●●
●
●●
●●●●●
●
●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●
●●
●
●●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

●●●●
●

●●●●● ●●●●
●

●●

●
●●●
●

● ●
●●

●

●

●
●

●●●●●●●●
●● ●
●

●●● ●
●

●●●●
●

●
●

● ●
●●●

●●●●

●
●

●

●●
●
●

●●●
●●

●●● ●

●

● ● ●●
● ●●

●
●

●●●●●●
●●●●● ●●●●●●
●●

●●●
● ●

●● ●
●

●●●●●●●● ●

●

●●●● ●●●

●

●

●●●● ●●●
●●●● ●
●

●●
●

●●
●●●

●●
●●●● ●

●● ●
●

●

●● ●
●● ● ●● ●
●●●●
●●●●●●
●

●
●●●

●
●

●●●●● ●●●●
●

● ●●● ●
●

●
●

●

●
●●

●●
●● ●●● ●●●●●● ●

●
●●● ●● ●●●●●

●●
●●● ●●●●● ●●●

●●
●

●● ●●●●● ●● ●● ●● ●●●●●●●●● ● ●●● ●●●●

●

● ●●
●

●● ●●●●● ●●
●

● ●●●●●●●●●● ●●● ●●● ●● ●●●●● ●● ●● ●● ●●● ●

●

●●●●●●●
●●● ● ●
●●●●

●
●
●
●● ●●●●●

●
●●●●●

●
●●●●
●
●●● ●●●●●●● ●●●●●●●●●●

●
●

●
●●●●
● ●●●●●●●●●● ●● ●●●● ●●● ●● ●
● ●●●●●
●

●●●●●●●●●●●●●●●● ●● ●
●● ●●

●
● ●●● ●●●●● ●●●● ●●●●

●●
●●

●
●

● ●
●●●
●●●● ●● ●●
●●●●●●● ●● ●●
●
●●

●●●●● ●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●

●
● ●
● ●● ●● ●●

●
●●●●● ●
●●●

●●

● ●●

●
● ●

●

●

●
●

● ●
●
●

●
●
●
●●●● ●●
●●

● ●●

●
●

●●● ●
● ●

●
●●

●
●●
●

●●●●●

● ●
●●● ●● ●●

●●●
●

●

●
●●● ●

●● ●
●● ●●●

●

●
●

●

●

●
●
● ●
●

●●

●

●

● ●
●●● ●●

●
●●

●

●●●●
●●

●
●
●

●
● ●
●●
●

●● ●●●●●
● ●●● ●●●
●

● ●
●

●●
●

●
●

●
● ●

●

●
● ●● ●●

●●●●
●

●●●
●●

●

●

●
●

●●●
●

●
●

●

●● ●●●
●
● ●●●
● ●●●
●

●
●

●

● ●

●

●● ●
●
● ● ●●●

●

●
●

●●●
●
●●

●

●
●

●●
●

●

●●
●
●●●● ●● ●●●●

●

●
●

●

●● ●

●

●
●

●

●
●●●
●●

●
● ●●●● ●● ●

● ●

●

●

●● ●●●
● ●●

●●

●●● ●●
●●

●●
● ●●
●

●

●
●

●●

●●

●
●
●

●
●

●

●●

●
●● ●

●
●
●

●
●

●●● ●
●

● ●
●

●
● ●●

●
● ●

●

● ●●
●●

● ●●●●●

●

●●●●

●●
●●●● ●

● ●●●●

●

●

●

●

● ●●
●●●

●

●●
●

●●●●● ●
●● ●●●

●● ●●●●
●

● ●●

●
●●
●
●●● ●● ●

●
●● ●● ●●●

●
●

●●
●●●

●●

●●●

●●
●●

●● ●●
●
●

●●
●●

●
●
●●●

●

●

●●
● ● ●

●●
●

●

●● ●● ●

●

●
●

●
●●

●●●

●●

● ●
●

●●● ●●● ●
●
●

●●

● ●
●●

●
●●

●

●●
●
●

● ●● ●●
●

● ●●
●
●●
●

● ● ●

●

● ●
●

● ●●●●●●

●

●● ●
●● ●●● ●●● ● ●●●

●

●
●

●●● ●●●

●
● ●

●
●

●
●
●●

●

●

●

● ●●

●
●
●

●
●
● ●●
● ●
●●
●

● ●
●

●
●

●●

●

●●●
●●●●●●●
●
●● ●
●●●

●

●●●
●●

●

●

●● ●

●

●

●

●● ●
●●

●●
●

●● ● ●● ●
●
●● ●
●● ●●●●

●

● ●●

●

●●

●

●●

●

●

●

● ●●

●

●●●●● ●
●
●●

● ●
●
●

●

●●
●
●

●
●

●

●●
●●

●

●●
● ●●●
●

● ●

●

●

● ●

● ●
●

●●

● ●

●

●

●●

●
● ●

●

●

● ●
●●

●
● ●●●

●
●

●
●
●

●● ●
● ●
●
●

●● ●
● ●●
● ●● ●●●
●●

●
● ●● ●

●
●
●

●

●

●

●

●●

●●

●●●● ●

●

●● ●●
●
●●

●

●

●
● ●

●●

●
●●

● ●●●●● ●● ●
●●

●● ●

●

●
●
●●

●

●

●

●●
● ●

● ●
●
●● ●● ●●●

●

●

●
●●●

●
●
●

●● ●
● ●

●●●

●

●●●

●
●

●● ●
●●

●

●●●

●

●●●
●●●

●

●●●
●

●●●● ● ●● ●●
●
●

● ●
●
●●

●
●

●

●

●

●●●
●●

●

●

●●●

●

● ●●●

●●
● ●

●

●●

●

●●
● ●
● ●

●
●●

●

●

●
●●●●

●

●

●

●●●

●

●
●

●
●●

●
●● ●

●

●● ●●● ●●
●

●● ●
●
●●
●

●●

●●

● ●
●●●● ●●

● ●

●

● ● ● ●●●
●

●

●

●●
●
●

●●●● ●
● ●
● ●

●

●●●● ●● ●● ●

●

●●●
●

●●

●
●

●●
●
●

●●
●●

●

●●
●

●●
●●●

●

●●

●

●

●

●

●
●
●●

●●
●
●

●●●

●●●

●
●
●

●

●●
●

●

●●●
●

●

●●
●●●●●

●

●●
●

●●
●
●

●●
●
●●●

●

●●
●

●
●●●●
●
●●

●

●

●

●
●
●
●●●●●●●
●
●

●

●●●●●
●
●
●
●

●

●

●●

●●●

●
●●
●

●

●
●

●

●
●
●

●●●●

●●
●

●
●
●
●

●

●
●●
●
●

●●●

●●

●

●●
●●

●●

●
●

●●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●●
●

●●
●
●
●●

●●●

●●

●

●●

●●

●
●
●
●

●●

●●
●
●
●
●
●●
●●

●

●
●
●●●●

●
●●

●

●

●●
●●●
●
●
●

●
●

●●

●●●●
●●
●
●●
●
●

●●●

●

●
●

●

●

●

●

●

●●

●●

●●

●
●

●●

●
●
●
●
●
●●

●

●

●

●●

●●●

●
●

●●

●

●●●
●
●

●
●
●●
●

●

●

●

●

●●
●●

●●
●●

●

●●
●

●

●
●●

●

●●

●
●
●●

●

●

●●

●●

●

●●

●
●
●●

●

●●●

●

●●
●
●

●

●
●

●●

●

●
●
●

●●

●

●
●
●
●

●●

●●●
●
●

●●

●

●

●
●

●●●●

●●

●

●

●
●
●

●●
●
●

●●●
●
●
●
●●●

●

●●
●

●●

●

●
●
●
●
●

●

●
●●

●

●

●
●
●●

●●
●
●
●●

●

●

●●
●
●
●

●

●

●

●●

●

●●●

●

●●●●
●

●
●

●
●

●

●

●

●

●
●●●

●

●●

●

●
●

●
●●
●●
●
●
●

●

●
●
●●
●●●●

●

●●
●
●●
●

●●●

●

●●●
●●●
●●

●

●●●●

●

●
●

●●

●
●
●
●

●
●
●●●●●●
●

●

●●●●

●

●●●●●●

●
●

●
●●●
●

●
●

●
●
●

●

●
●●●
●
●
●●
●●●

●

●

●●

●●●
●

●

●
●

●●

●

●●
●●

●

●●●

●

●

●
●

●
●●●●

●●●
●
●
●●

●●

●●●●

●

●●●●●

●●
●●
●●●

●

●●

●

●

●●

●

●
●

●●●
●
●
●
●●

●●

●
●
●

●

●
●

●●

●

●●●●●

●
●
●

●●

●
●

●●
●
●●●

●

●
●●

●

●●
●

●

●●

●
●

●

●●●

●

●

●
●

●

●
●●

●

●●●

●

●●

●

●

●
●●

●
●●

●●●

●
●
●

●
●
●●●●

●

●●●

●●
●●
●

●●
●

●●
●●
●●

●
●●●●
●
●●
●●●●●
●
●●●●
●●
●

●●

●
●●●
●
●●●●●
●
●●● ●
●
●●●
●
●●●●● ●●
●

●●●●●●●●●
●
●●
●
●
●●●

●
●●●●

●●
●●● ●●●●
●
● ●
●
●
●

●●●●
●●●● ●
●
●●
●
●
●● ●●●
●

●●
●●●●
●●●
●
● ●●
●●
●
●●
●
●●●
●
●
●●●●●

●
●●
●●●●
●
●●●●●
●●●●
●
●● ●●
●
●●●●●● ●●● ● ●
●●
●●●●
●
●
●●● ●

●

●●●●●●●●●
●
●●●
●●●●●●●●●
●●●●
●●
●

●
●●
●●●●●

●

●●
●●
● ●● ●●●●●
●
● ●●
●
●
●●
●●●
●
● ●
●●●
●●
●●●●●●
●●
●●
●●●
●●
●
●
●
●●
●
●
●●●●●
●●

●
●●

●●
●●●●
●●●●
●

●●●
●
●
●●●
●
● ●● ●●

●

● ●
●●

●●
●●
●

●●● ●●●●●●
●
●
●
●●
●
●●●●
●●●● ●
●

●
●

●
● ●
●●●●●

●●●●●●
●
●

●●●●●●
●
●●
●
●
●●●
●

●
●
●
●

●
●●●●●●●●
●
●
●
●

●
●
●
●
●
●

●●●
●
● ●●
●●
●●●●
●
●
●●
●●
●●
●

●●●

●

●
●●●●●
●
●

●●●●●
●

●●
● ●

●
●●
●
●
●●●●●

●
●
●●●
●
●●●●
●●●●●●●●●●●
●
●●●
●●●●
●
●
●
●●
●●
●●
●●
●
●
●
●
●●●
●
●●●

●
● ●●●● ●●
●●
●
●
●
●●
● ●

●
●●
●
●
●●

●●●●●●●●●
●●●
●
●●

●
●●
● ●
●●●●●●●●
●
●●●●●
●● ●●●●
●
●●●●●
●

●●●●●●
●●
●●●● ●●
●

●●●●
●
●
●●
●● ●●●●●

●● ●
●
●
●●●●
●●
●
●●
●

●●
●

●●●
●
●●●● ●●

●

●
●
● ●●●●●●●
●● ●●●●●●●●●●●●
●●● ●

●
●
●●
●
●●
●●●
●

●●
●●
●
●●●
●
●●
●

●
●●●
●●
●
●●
●
●
●

●
●●●●
●

●
●
●
●● ●
●●
●
●●●●●●●●
●
●●●●●●

●●
●

●●●
●
●●●●
●
●

●●●●●
●

●●
●

●● ●●
● ●
●●●
●
●
●
●

●●●●●●

●

●●●●● ●
●
●
●
●

●

●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●
●
●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●
●●●●●●●
●
●●
●

●●●●●●●
●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●
●
●●
●●●●
●
●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●
●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●
●

●●●●●●●
●
●●●
●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●
●
●●●●
●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●

●
●●●

5 10 15

0.
00

0.
10

0.
20

Community Number

D
eg

re
e

ce
nt

ra
lit

y

Figure 13. Relation between nodal topological measures and the numbers
of communities that Facebook users belong. Each red circle in the plots
corresponds to the scores of one node. Top-left, top-right, bottom-left,
bottom-right plots show the relation between community numbers and page
rank, betweenness, closeness and degree centralities respectively

to low numbers of community have high page rank scores.
Looking at them in more detail, we notice that those nodes
are not central themselves but they have direct connection
with important hubs. As a result, their page rank score is
high because of knowing important people.

Third real-world network is well-known dolphin social
network [41]. There are 62 nodes with 159 links. According
to [3], there are two communities in this network. Later on,
with sub communities, it is stated as having four communi-
ties. Previous studies are dedicated to find network partition
as dolphin communities. Looking at Figure 14, one can dis-
cover overlapping community results. OSLOM tends to find
big communities with few numbers of overlapping nodes.
COPRA and GCE find smaller communities. However, CO-
PRA seems to find no overlapping nodes, while GCE finds
them. MOSES and EMOC finds the smallest communities.
Among all algorithms, only EMOC can discover the nodes
belonging to more than two communities and identifies
several different type outliers. For instance node #62 is the
most isolated node and put into no community by EMOC
(see top-left network in the figure). Node #58 is an important
bridge but is not situated in any closed cyclic connection.
That’s why, it is in its own community. The examples
are numerous. Briefly, considering three real-world network
experiments, EMOC in general finds small communities.
Some of them corresponds to highly interconnected node
groups which do not have relation between each other except
connecting to the same hub. In general the most overlapping
nodes are those hubs. Other highly overlapping nodes are
bridges connecting different communities. The community-
less nodes are different types of outliers such as the people
having unexpected behaviour or people who have no more
connections than one in whole network.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

1

2
3

4

5

6
7

8

9

10
11

12

13

14

15
16

17
18

19

20
21

22 23

24

25

26

27

28

2930

31

32 33
34

35

36

37

38

39

40
41

42

43

44
45

46
47

48

49

50

51
52

53

54

55

56

57

58

59

6061

62

EMOC

1

2
3

4

5

6
7

8

9

10
11

12

13

14

15
16

17
18

19

20
21

22 23

24

25

26

27

28

2930

31

32 33
34

35

36

37

38

39

40
41

42

43

44
45

46
47

48

49

50

51
52

53

54

55

56

57

58

59

6061

62

COPRA

1

2
3

4

5

6
7

8

9

10
11

12

13

14

15
16

17
18

19

20
21

22 23

24

25

26

27

28

2930

31

32 33
34

35

36

37

38

39

40
41

42

43

44
45

46
47

48

49

50

51
52

53

54

55

56

57

58

59

6061

62

GCE

1

2
3

4

5

6
7

8

9

10
11

12

13

14

15
16

17
18

19

20
21

22 23

24

25

26

27

28

2930

31

32 33
34

35

36

37

38

39

40
41

42

43

44
45

46
47

48

49

50

51
52

53

54

55

56

57

58

59

6061

62

MOSES

1

2
3

4

5

6
7

8

9

10
11

12

13

14

15
16

17
18

19

20
21

22 23

24

25

26

27

28

2930

31

32 33
34

35

36

37

38

39

40
41

42

43

44
45

46
47

48

49

50

51
52

53

54

55

56

57

58

59

6061

62

OSLOM

Figure 14. Overlapping community structures of Dolphin network found by different algorithms.

V. CONCLUSION

In this work, we examine the algorithm EMOC analyt-
ically in detail and perform a qualitative and quantitative
analysis to evaluate its overlapping community structure
detection performance by comparing it with five foremost
methods in the literature. EMOC is based on a definition of
k-connected group around each ego. A k-connected group
is a cohesive group in which every couple of nodes have
at least k different node disjoint paths between them. As
it handles each node separately, EMOC is convenient for
parallel programming. To understand its detection perfor-
mance, we consult to not only quantitative analysis, as it
is the most common method for algorithms performance
comparison, but also qualitative analysis which includes
to reveal the topological quality of the result community

structure. Qualitative analysis is usually ignored in such
comparative studies although it helps to better understand
the real performance. In our experiments, we use an artificial
network benchmark generated by LFR model. Comparing
EMOC with other algorithms, it is highly performing to find
small and well-separated communities with high overlapping
nodes. In real world social systems, they might be family
members or close friend groups. Indeed, the experiments on
Zachary Karate Club and facebook networks are validated
that EMOC finds small and highly overlapping communi-
ties. Its performance is not affected by changing amount
of overlapping nodes or overlapping communities. In the
literature, existing approaches are limited on these issues.
Thus, EMOC can be a solution for finding the communities
at any overlapping level.

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

On one hand different perspectives related to the develop-
ment of EMOC can be listed as; first, examining the roles of
EMOC’s input parameters on the topology of detected com-
munities, second, applying it on different types of real-world
networks and interpreting the results and third, developing a
strategy to automatically and dynamically determine EMOC
parameter values according to the topological positions of
the nodes. Moreover, it is also possible to modify EMOC for
weighted and directed networks. Modifications for directed
networks can easily be done by considering link directions
at the ego-centred network creation and finding the numbers
of node disjoint paths. For weighted networks, it is possible
to put an additional criterion for node disjoint path search or
to merging strategy. On the other hand, our results reveal
important facts about algorithm comparison. We see that
although some algorithms have high score on performance
metrics, their estimated community structure might be mis-
leading. Hence, we want to ameliorate algorithms perfor-
mance evaluation in three ways. First, we want to use other
metrics such as omega index and other topological properties
related to overlapping community structure. Second, we want
to analyse in detail the weak points of metrics and propose a
more complete ones which overcome current issues. Third,
we want to develop new topological measures for assigning
the roles of nodes into the overlapping state.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Phys. Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[2] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, pp. 167–256, 2003.

[3] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” PNAS, vol. 99, no. 12, pp. 7821–7826, 2002.

[4] J. Yang, J. McAuley, and J. Leskovec, “Community detection in
networks with node attributes,” in ICDM, 2013, pp. 1151–1156.

[5] J. Chen, Y. Tang, J. Li, C. Mao, and J. Xiao, “Community-based
scholar recommendation modeling in academic social network sites,”
in WISE, 2014, vol. 8182, pp. 325–334.

[6] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Trans. Web, vol. 1, no. 1, May 2007.

[7] P. Parau, A. Stef, C. Lemnaru, M. Dinsoreanu, and R. Potolea, “Using
community detection for sentiment analysis,” in ICCP, Sept 2013, pp.
51–54.

[8] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” JSTAT Mech., p. P10008,
2008.

[9] P. Pons and M. Latapy, “Computing communities in large networks
using random walks,” in ISCIS 2005. Springer Berlin Heidelberg,
2005, vol. 3733, pp. 284–293.

[10] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, no. 2, p. 026113,
2004.

[11] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” PNAS, vol. 105, no. 4, p. 1118,
2008.

[12] J. Yang and J. Leskovec, “Overlapping communities explain core-
periphery organization of networks,” Proceedings of the IEEE, vol.
102, no. 12, pp. 1892–1902, Dec 2014.

[13] F. Reid, A. McDaid, and N. Hurley, “Partitioning breaks communities,”
in ASONAM, 2011, pp. 102–109.

[14] C. Lee, F. Reid, A. McDaid, and H. Neil, “Detecting highly over-
lapping community structure by greedy clique expansion,” in SNA-
KDD10, 2010.

[15] A. Lancichinetti, F. Radicchi, J. Ramasco, and S. Fortunato, “Finding
statistically significant communities in networks,” PLoS ONE, vol. 6,
no. 4, p. e18961, 2011.

[16] A. McDaid and N. Hurley, “Detecting highly overlapping communities
with model-based overlapping seed expansion,” in ASONAM, 2010, pp.
112–119.

[17] S. Gregory, “Finding overlapping communities in networks by label
propagation,” New Journal of Physics, vol. 12, no. 10, p. 103018,
2010.

[18] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: The state-of-the-art and comparative study,”
ACM Comput. Surv., vol. 45, no. 4, pp. 43:1–43:35, Aug. 2013.

[19] B. Rees and K. Gallagher, “Overlapping community detection by
collective friendship group inference,” in ASONAM, 2010, pp. 375–
379.

[20] X. Chen and J. Li, “Community detection in complex networks using
edge-deleting with restrictions,” Physica A: Statistical Mechanics and
its Applications, vol. 519, pp. 181 – 194, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378437118315358

[21] H. Jin, W. Yu, and S. Li, “Graph regularized nonnegative
matrix tri-factorization for overlapping community detection,”
Physica A: Statistical Mechanics and its Applications,
vol. 515, pp. 376 – 387, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378437118312251

[22] T. Chakraborty, S. Ghosh, and N. Park, “Ensemble-
based overlapping community detection using disjoint
community structures,” Knowledge-Based Systems, vol.
163, pp. 241 – 251, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950705118304258

[23] I. Derenyi, G. Palla, and T. Vicsek, “Clique percolation in random
networks,” Physical Review Letters, vol. 94, no. 16, 2005.

[24] J. Xie, B. Szymanski, and X. Liu, “Slpa: Uncovering overlapping
communities in social networks via a speaker-listener interaction
dynamic process,” in ICDMW, Dec 2011, pp. 344–349.

[25] S. Gregory, “A fast algorithm to find overlapping communities in
networks,” in ECML PKDD ’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 408–423.

[26] G. K. Orman, O. Karadeli, and E. Çalışır, “Overlapping communities
via k-connected ego centered groups,” in Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2015, ser. ASONAM ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 1598–1599.
[Online]. Available: https://doi.org/10.1145/2808797.2809351

[27] G. K. Orman, “Multiple communities of ego in social networks,” in
Lecture Notes in Engineering and Computer Science: Proceedings of
The World Congress on Engineering 2021, London, U.K, 7-9 July,
2021, pp. 128–133.

[28] G. Orman and V. Labatut, “A comparison of community detection
algorithms on artificial networks,” in DS, 2009, vol. 5808, pp. 242–
256.

[29] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities,” Phys. Rev. E, vol. 80, p. 016118, Jul 2009.

[30] A. Lancichinetti, S. Fortunato, and J. Kert??sz, “Detecting the over-
lapping and hierarchical community structure in complex networks,”
New Journal of Physics, vol. 11, no. 3, p. 033015, 2009.

[31] G. K. Orman, V. Labatut, and H. Cherifi, “Comparative evaluation
of community detection algorithms: a topological approach,” JSTAT
Mech, vol. 2012, no. 08, p. P08001, 2012.

[32] G. Orman, V. Labatut, and H. Cherifi, “Qualitative comparison of
community detection algorithms,” in DICTAP, vol. 167, 2011, pp. 265–
279.

[33] J. Xie and B. K. Szymanski, “Towards linear time overlapping com-
munity detection in social networks,” in PAKDD, 2012, pp. 25–36.

[34] D. R. White and F. Harary, “The cohesiveness of blocks in social
networks: Node connectivity and conditional density,” Sociological
Methodology, vol. 31, no. 1, pp. 305–359, 2001.

[35] M. L. Balinski, “On the graph structure of convex polyhedra in
n-space.” Pacific J. Math., vol. 11, no. 2, pp. 431–434, 1961. [Online].
Available: https://projecteuclid.org:443/euclid.pjm/1103037323

[36] R. Diestel, Graph Theory, ser. Electronic library
of mathematics. Springer, 2006. [Online]. Available:
https://books.google.com.tr/books?id=aR2TMYQr2CMC

[37] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-
flow problem,” J. ACM, vol. 35, no. 4, pp. 921–940, 1988.

[38] M. Molloy and B. Reed, “A critical point for random graphs with a
given degree sequence,” Random Structures and Algorithms, vol. 6,
no. 2/3, pp. 161–179, 1995.

[39] W. W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of Anthropological Research, vol. 33, pp.
452–473, 1977.

[40] J. J. McAuley and J. Leskovec, “Learning to discover social circles in
ego networks.” in NIPS, 2012, pp. 548–556.

[41] R. A. Rossi and N. K. Ahmed, “The network data repository
with interactive graph analytics and visualization,” in Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
[Online]. Available: http://networkrepository.com

IAENG International Journal of Computer Science, 48:4, IJCS_48_4_39

Volume 48, Issue 4: December 2021

__

