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Abstract—The economic load dispatch (ELD) in the power

system is to reasonably allocate the output power of each
generating unit under the premise of satisfying the operation
constraints and the balance of supply and demand, so as to
optimize the total cost of power generation as the objective
function. Taking the system power balance and the upper limits
and lower limits of generator output as constraints in the ELD
problem, its mathematical model was established. A differential
evolution (DE) algorithm based on different strategies is
proposed to solve the ELD problem. Aiming at three ELD
examples, the most suitable differential evolution strategy for
the ELD problems was found through the results of simulation
experiments. Under the same starting conditions, DE algorithm,
particle swarm optimization (PSO) algorithm, genetic
algorithm (GA) and simulated annealing (SA) algorithm were
used to conduct simulation experiments to verify the superiority
of DE algorithm. Experimental results show that the proposed
DE algorithm has the best performance in solving ELD
problems.

Index Terms—power system, economic load dispatch,
differential evolution algorithm

I. INTRODUCTION

LECTRICITY is the lifeblood of national economic
development, as well as the energy foundation of

industry, production and manufacturing. The safe and stable
operation of the power system has become the lifeblood of
national economic development. In practice, the fuel cannot
be completely converted into electrical energy during the
power generation process of a power plant. The process is
often accompanied by losses. Part of the electrical energy is
lost due to the unreasonable operation of the generator set,
and some is lost during the transmission of electrical energy,
which will make the power plant have the relatively higher
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power generation cost and a serious waste of resources.
Therefore, under the premise of satisfying the demand for
power generation, how to reduce energy consumption, reduce
power generation costs, and ensure the quality of power
generation have become the top priority of the development
of the power system. If the economic load dispatch (ELD) of
the power system can be reasonably optimized, the energy
structure configuration can be further optimized and the
energy utilization efficiency can be improved [1]. ELD
problem is a nonlinear, multi-dimensional optimization
problem with multiple constraints, which is based on the
premise of meeting the energy balance and constraint
conditions, reasonably adjusting the output power of each
generator set, and the goal of minimizing the cost of power
generation is finally realized. The solution of power system
ELD problem plays a huge role in improving energy
utilization efficiency and rapid social and economic
development, and the load dispatch and optimization of
multiple generator sets in power plants are regarded as the
most important part of power system economic dispatch [2].

Many scholars use mathematical methods to construct
economic dispatch models of power systems to explore this
high-dimensional, nonlinear, and constrained optimization
problem. Traditional economic dispatch methods focus on
solving the quadratic function model of the generating unit,
but they have extremely strict requirements on the initial
value, objective function, and constraint conditions. When
the dimension of the problem is too higher, it may cause the
convergence to be too slow and fall into the local maximum.
Traditional mathematical methods have limitations in dealing
with this problem [3]. However, as the scale of the power
system continues to expand and the complexity becomes
higher and higher, more constraints need to be considered
when calculating such problems, and there are higher
requirements for the performance of the algorithm to be
solved. Therefore, many scholars have adopted evolutionary
programming (EP) [4], particle swarm optimization (PSO)
[5], genetic algorithm (GA) [6], harmony search (HS) [7],
Moth-Flame Algorithm (MFO) [8], simulated annealing (SA)
[9] and other heuristic intelligent optimization algorithms to
solve such high-dimensional, nonlinear, constrained
optimization problems.

Differential Evolution (DE) algorithm is an intelligent
optimization algorithm that searches for global optimal
solutions. DE algorithm simulates the natural evolution
process of organisms [10]. Because DE algorithm is simple
and easy to implement, few control parameters and strong
search ability, DE algorithm has been extensively studied and
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has been successfully applied to flow shop scheduling [11],
uniform amplitude and unequal spacing antenna array
synthesis [12], image edge detection [13], reactive power
optimization scheduling [14], digital FIR filter design [15]
and other fields. In this paper, a DE algorithm based on
different strategies is proposed to solve ELD problem. The
structure and content of the paper are arranged as follows.
The second section introduces the mathematical model of
ELD problem, the third section introduces DE, the fourth
section is experimental simulation and result analysis, and the
last section is the conclusion of the paper.

II. ECONOMIC LOAD DISPATCH PROBLEM IN POWER
SYSTEM

The power system generates electricity through generator
sets, transmits and distributes the generated electric energy,
and maintains the balance of power supply and demand.
Therefore, the power supply in the power system and the
distribution of the load of the generator sets restrict the
operation of the power system to a certain extent. Through
the reasonable dispatch and distribution of power generation
resources, it has a great influence on the structural
optimization of the power system and the development of
social economy.

A. Model of Economic Load Dispatch Problem
The objective of economic load dispatch (ELD) problem in

electric power system is to reasonably adjust the output
power of each generator and minimize the generation cost
under the condition of meeting the load demand during
dispatching period. At the same time, constraints such as
generator set power constraints, power balance constraints
and network transmission loss should be satisfied. In this
paper, the total cost of power generation is taken as the
objective function to obtain the mathematical model of ELD
problem [16] and solve the ELD problem.

B. Objective Function
In the treatment of traditional ELD problems, a

second-order polynomial function is used to calculate the fuel
cost of a generator set, and the optimization technology of
mathematical programming is adopted. The quadratic
polynomial function requires that the incremental cost curve
be monotonically increasing or piece-wise linear. The
specific quadratic polynomial function can be described as:

2
1

n
t i i i i ii

MinF P P  


   (1)

where, tF is used as the total fuel cost of generating
electricity by the generator set, iP is used as the power
generation of the -i th generator set, , ,i i i   are used as the
cost coefficients of the generator set i. and n is the number of
generator sets.

C. Constraints
In actual working state, the generator set is subject to its

own limitations and operating constraints, and needs to meet
the power balance constraints of the system. When the actual
power transmission distance is long, the power loss in the
transmission process cannot be ignored. Transmission loss
has a great influence on adjusting the output power of the
generator set and will increase the generation cost. In this

paper, the B coefficient matrix is used to simulate the loss
during the transmission process so as to obtain the active
network loss of the electric energy during the transmission
process. As a simple method for calculating the system
network loss, the total output power of all generating sets
must be equal to the sum of the total demand for power
supply and the loss during transmission, which is specifically
expressed as:
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where, DP is the total actual power demand; LossP is the total
transmission loss; ijB , 0iB , 00B are the B coefficients. The
output power of the generator set is limited to a certain range
to ensure the safe and stable operation of the system, which is
described as:

,min ,maxi i iP P P  (4)

where, ,miniP and ,maxiP are the minimum and maximum
allowable output power generation of the -i th generator set
respectively.

The actual power system ELD has many more constraints,
and these constraints will also be coupled with each other,
which makes the power system ELD more complicated. In
this paper, when studying the ELD problem, the system
power balance and the power limit constraint of the generator
set are taken as constraints.

III. DIFFERENTIAL EVOLUTION ALGORITHM

Differential evolution (DE) algorithm is an adaptive global
search optimization algorithm that iteratively seeks the
optimal solution among the target swarm [10]. It originally
originated from the solution of Chebyshev polynomial
problems. Later, it was discovered that the DE algorithm has
advantages in the global search ability when solving complex
optimization problems compared with other evolutionary
algorithms. Due to its simple principle, fewer required
parameters, high stability, and fast speed, the DE algorithm
has been widely used to solve problems such as
multi-objective optimization and constrained optimization
[17]. The main parameters of DE algorithm include scaling
factor F, crossover probability CR and population size NP.
The values of scaling factor F and crossover probability CR
have great influence on experimental results. Moreover,
differential evolution algorithm has some shortcomings in
local search ability and convergence speed, and may fall into
local optimum.

A. Algorithm Initialization
DE algorithm is a population intelligent evolution method.

Its initialization requires that the initial population be
generated under specific constraints and distributed as
completely as possible in the entire search space. Individuals
in the population are randomly generated, and each
individual is a candidate solution in the entire search space,
the principle of which is shown in FIG. 1. Let D be the
dimension of the problem and the population size be NP.

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_17

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 



Fig. 1 Example diagram of DE algorithm initialization.

Generally, the population size is usually large, which
requires that the minimum  1 2

min min min min, ,..., DX X X X and
maximum  1 2

max max max max, ,..., DX X X X of a given individual
vector be limited before initializing the population. Finally a
target vector of the population composed of NP
D-dimensional vector individuals is generated.

 
.

1 2
, i. i.G, ,..., i 1 2

i G

D
i G GX X X X ， ，，...,NP (5)

where, .i G
X is the i-th individual vector in the population, and

D is the spatial dimension of individual vector.
Due to the large population, it is necessary to search all

regions for individual distribution and adopt the random
numbers to generate initial values. The position update of
each component in the population individual vector is
realized by Eq. (6).

 , , max , max , mini j i j i j i jX X rand X X    (6)

where , ,i jX is the j-th component of the individual vector iX ,
, maxi jX is the maximum value of the j-th component of the

individual vector iX , , mini jX is the minimum value of the j-th
component of the individual vector iX , and rand is a random
number within [0,1].

B. Mutation Operation
The difference between DE algorithm and other

optimization algorithms is mutation operation. Mutation is

based on the original population through individual
differences to produce new individuals so as to achieve the
search for spatial regions. After initializing the population
and iteration, the target vector will be mutated to produce a
series of mutated vectors  1 2

, , , ,, ,..., D
i G i G i G i GV V V V . Suppose the

mutation-generating individual is Vi,G+1, and three different
individuals a, b, and c are selected from the population. The
mutation operation process shown in Eq. (7) will produce a
mutated individual.

 , 1 , , ,i G a G b G c GV X F X X     (7)

where, F is the scaling factor used to control the differential
vector scaling of the variation, and its value range is generally
[0, 2];  , , 1, 2,...a b c NP and a b b i   ;

DE algorithm has many mutation strategies, which have
different effects on the performance of DE algorithm, they all
have their own mutation characteristics [18]. When facing
different problems, they have their own advantages and
disadvantages. According to the specific situation, different
strategies can be used to analyze the specific model. The
common mutation strategies of DE algorithm are listed in
Table 1.

Among them, DE/rand/1 strategy is often used in DE
algorithm. DE1 strategy mutation vector generation process
is shown in Fig. 2. DE1 and DE2 strategies are the two most
basic mutation strategies in DE algorithms. The DE1 strategy
will produce intermediate individuals when mutating
individuals in the population, but this strategy searches in the
global space and has defects in operating speed. The DE2
strategy has a strong purpose. It selects the optimal individual
from all current individuals, has strong purpose and
advantages in local retrieval and convergence speed, but it
may fall into the local optimal situation. DE3 strategy is a
synthesis of DE1 and DE2 strategies, with better global
search and higher stability. The DE4 strategy increases the
amount of random disturbance on the basis of the DE2
strategy, where the population diversity is better and the
convergence speed is slower than DE2. the DE5 strategy
includes random disturbance and optimal disturbance, which
balances the global search and local search capabilities.

TABLE 1. MUTATION STRATEGIES OF DE ALGORITHM

Name Expression

DE1 DE/rand/1/bin  1 1 2i rand rand randV X F X X   

DE2 DE/best/1/bin  1 2i best rand randV X F X X   

DE3 DE/rand/2/bin    1 2i i best i rand randV X X X F X X      

DE4 DE/best/2/bin    1 1 2 3 4i rand rand rand rand randV X X X F X X      

DE5 DE/rand-to-best/1    1 2 3 4i best rand rand rand randV X X X F X X      

Note: Where ,  0,1 ;  0,2F .
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Fig. 2 Variation vector generation diagram based on DE/rand/1 strategy.

C. Crossover Operation
The crossover operation is very important in DE algorithm.

The crossover operator determines the ratio of the
intermediate individuals to the evolved individuals in the
population, which increases the diversity of the population
and avoids falling into local optimum. The global search
capability and convergence speed can be significantly
improved by appropriate crossover operation. This paper
adopts the binomial crossover method. When the generated
value does not exceed the crossover probability CR, the
binomial crossover is used for the variant individuals. The
crossover operation is shown in Eq. (8).

, 1
i,G+1

,

    rand(0,1) CR or j = j
u

    otherwise

j
i G randj
j
i G

v

x
  



(8)

Where, CR is the crossover probability, The greater the CR,
the greater the crossover probability,  0,1CR ;  1,randj D ;

,
j
i Gv is the vector of the variant individual; ,

j
i Gx is the target

vector. The binomial crossover is shown in Fig. 3.

D. Selection Operation
The selection operation of DE algorithm adopts the greedy

selection method. The optimal individual is selected from the
comparison of the individual fitness after the crossover. The
smaller the fitness individual, the closer to the target vector,
thereby completing the population update. The selection
operation is described as follows.

1
m

    ( ) ( )

    otherwise

t t t
m m mt
t
m

u f u f x
x

x


  


(9)

Fig. 3 Schematic diagram of binomial crossover.

where, t
mu is the experimental vector; f is the fitness function;

 tmx is the target vector.

E. Algorithm Flowchart
The DE algorithm is widely used in solving complex

optimization problems because of its advantages of simple
principle, fewer required parameters, high search accuracy,
high stability and fast speed. The DE algorithm mainly
includes four links: initialization, mutation, crossover and
selection. The DE algorithm is initialized first, and then the
algorithm circulates mutation, crossover and selection until
the termination condition of the algorithm is satisfied and the
global optimal solution is obtained. The initialized
population is randomly generated with the search space as the
boundary, and changes are made through the differences
between individuals in the population. The combination
generates mutant individuals. Each mutation in the loop will
get a mutation vector.

The mutation vector and the target vector are
cross-operated to obtain a new solution. Then find
individuals with better fitness and keep them to achieve
evolution, and continue to iterate to find the best individuals.
When the termination condition is satisfied, the iteration ends
and the global optimal solution is obtained. The flowchart of
the DE algorithm is shown in Fig. 4.

Fig. 4 Flow chart of differential evolution algorithm
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IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

A. Experimental Parameter Setting and Simulation Cases
According to the unit fuel cost coefficient of the ELD

problem in the power system and the generator set power
limit constraint and power balance constraints in the
constraint conditions and the transmission loss simulated by
the B coefficient matrix, the objective function and constraint
conditions of the above-mentioned power system ELD are
integrated with the DE algorithm. Through the initialization
and setting of the initial value, the total fuel cost of the
generator set obtained by the objective function is
continuously iterated through mutation, crossover, and
selection operations, and the total power generation cost with
higher adaptability is updated. When certain conditions are
met, the iteration is stopped, and the optimal total fuel cost of
the generator set is obtained.

In the simulation experiment, three actual ELD problem
cases of different sizes are selected, namely 6 generator sets
(total demand 700MW), 6 generator sets (total demand
800MW) and 13 generator sets (total demand 1800MW), and
DE algorithm is used to solve the three cases. In order to test
the effect of DE algorithm to solve ELD problem. The DE
algorithm is compared with GA, PSO algorithm, SA
algorithm. In order to ensure the stability and reliability of the
experimental results, each ELD case is independently
optimized and run 20 times during the experiments.

(1) Case 1

The ELD case of this power system has a total of 6
generator sets, and the power demand is 800MW [14]. The
unit fuel cost coefficients ( i , i , i ), the power limit( maxP
and minP ) constraints of the generator set are listed in Table 2.
The B coefficient matrix is adopted to simulate the network
loss so as to obtain the active power loss of the power system
in the transmission process. The B coefficient matrix is
described as follows.

0.00014 0.000017 0.000015 0.000019 0.000026 0.000022
0.000017 0.000060 0.000013 0.000016 0.000015 0.000020
0.000015 0.000013 0.000065 0.000017 0.000024 0.000019
0.000019 0.000016 0.000017 0.000071 0.000030 0.000025
0.000

ijB 

026 0.000015 0.000024 0.000030 0.000069 0.000032
0.000022 0.000020 0.000019 0.000025 0.000032 0.000085

 
 
 
 
 
 
 
 
 

(2) Case 2

TABLE 2. FUEL COST COEFFICIENT PER UNIT SYSTEM AND POWER LIMIT OF
GENERATOR SET (800MW)

Unit i i i maxP minP

1 0.15240 38.53973 756.79886 10 125

2 0.10587 46.15916 451.32513 10 150

3 0.02803 40.39655 1049.9977 35 225

4 0.03546 38.30553 1243.5311 35 210

5 0.02111 36.32782 1658.5596 130 325

6 0.01799 38.27041 1356.6592 125 315

The ELD case of this power system has a total of 6
generator sets, and the power demand is 700MW [14]. The
unit fuel cost coefficients ( i , i , i ), the upper and lower
limits maxP and minP ) of the active power constraint value of
the generator set are listed in Table 3. The B coefficient
matrix is adopted to simulate the network loss so as to obtain
the active power loss of the power system in the transmission
process. The B coefficient matrix is described as
follows.

4

0.14 0.17 0.15 0.19 0.26 0.22
0.17   0.6  0.13 0.16 0.15 0.2
0.15 0.13 0.65 0.17 0.24 0.19
0.19 0.16 0.17 0.71 0.3 0.25
0.26 0.15 0.24 0.3 0.69 0.32
0.22 0.2 0.19 0.25 0.32 0.85

ijB e

 
 
 
 

  
 
 
 
 

(3) Case 3

The ELD case of this power system has a total of 13
generator sets, and the power demand is 1800MW [15]. The
unit fuel cost coefficients ( i , i , i ), the power limit( maxP
and minP ) constraints of the generator set are listed in Table 4.
The B coefficient matrix is adopted to simulate the network
loss so as to obtain the active power loss of the power system
in the transmission process. The B coefficient matrix is
described as follow.

TABLE 3. UNIT SYSTEM FUEL COST COEFFICIENT AND POWER LIMIT OF
GENERATOR SET (700MW)

Unit i i i maxP minP
1 0.007 7 240 100 500

2 0.0095 10 200 50 200

3 0.009 8.5 220 80 300

4 0.009 11 200 50 150

5 0.008 10.5 220 50 200

6 0.0075 12 120 50 120

TABLE 4. FUEL COST COEFFICIENT PER UNIT SYSTEM AND POWER LIMIT OF
GENERATOR SET (1800MW)

Unit i i i maxP minP
1 0.0028 8.1 550 0 680

2 0.0056 8.1 309 0 360

3 0.0056 8.1 307 0 360

4 0.00324 7.74 240 60 180

5 0.00324 7.74 240 60 180

6 0.00324 7.74 240 60 180

7 0.00324 7.74 240 60 180

8 0.00324 7.74 240 60 180

9 0.00324 7.74 240 60 180

10 0.00284 8.6 126 40 120

11 0.00284 8.6 126 40 120

12 0.00284 8.6 126 55 120

13 0.00284 8.6 126 55 120
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0.14 0.12 0.07 0.01 0.03 0.01 0.01 0.01 0.03 0.05 0.03 0.02 0.04
0.12 0.15 0.13 0 0.05 0.02 0 0.01 0.02 0.04 0.04 0 0.04
0.07 0.13 0.76 0.01 0.13 0.09 0.01 0 0.08 0.12 0.17 0 0.26
0.01 0 0.01 0.34 0.07 0.04 0.11 0.50

ijB

        
    

       
   



0.29 0.32 0.11 0 0.01
0.03 0.05 0.13 0.07 0.90 0.14 0.03 0.12 0.10 0.13 0.07 0.02 0.02
0.01 0.02 0.09 0.04 0.14 0.16 0 0.06 0.05 0.08 0.11 0.01 0.02
0.01 0 0.01 0.11 0.03 0 0.15 0.17 0.15 0.09 0.05 0.07 0
0.01 0.01 0 0.50 0.

        
        
   
  12 0.06 0.17 1.68 0.82 0.79 0.23 0.36 0.01

0.03 2 0.08 0.29 0.10 0.05 0.15 0.82 1.29 1.16 0.21 0.25 0.07
0.05 0.04 0.12 0.32 0.13 0.08 0.09 0.79 1.16 2 0.27 0.34 0.09
0.03 0.04 0.17 0.11 0.07 0.11 0.05 0.23 0.21 0.27 1.4

  
      
      
       

4

0.01 0.04
0.02 0 0 0 0.02 0.01 0.07 0.36 0.25 0.34 0.01 0.54 0.01

0.04 0.04 0.26 0.01 0.02 0.02 0 0.01 0.07 0.09 0.04 0.01 1.03

e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
 

    

B. DE Algorithm to Solve ELD Problem with Quadratic
Objective Function

(1) Case 1

The maximum number of iterations is 200, the number of
population individuals NP is 20, F=0.5, CR=0.9. Through
simulation experiments, the output power, total output power
of the generator sets and the loss during the transmission
process of the 6 generator sets of each DE strategy under the
total demand of 800MW are obtained. The simulation results
are listed in Table 5. In order to ensure the reliability and
stability of the results, 20 experiments are carried out for this
case based on the DE algorithm with different strategies. The
statistical results of the total power generation cost data
obtained are listed in Table 6. The convergence curves of DE
algorithm based on different strategies to solve Case 1 are
shown in Fig. 5.

TABLE 5. TOTAL DEMAND OF 800MW AND POWER LOSS

DE1 DE2 DE3 DE4 DE5

1P 32.5994 32.5999 32.5981 32.5999 32.6036

2P 14.4764 14.4831 14.4976 14.4831 14.4912

3P 141.5449 141.5440 141.5126 141.5440 141.5455

4P 136.0390 136.0414 136.0366 136.0414 136.0380

5P 257.6656 257.6588 257.5033 257.6588 257.6557

6P 243.0058 243.0035 243.1835 243.0035 242.9962
Total

generation
(MW)

825.3311 825.3307 825.3317 825.3307 825.3302

Power loss 25.3311 25.3307 25.3317 25.3307 25.3302

TABLE 6. COMPARISON TO SOLVE THE 800MW TOTAL DEMAND PROBLEM
WITH DIFFERENT DE STRATEGIES

Algorithm Best Worst Ave Std

DE1 41896.628616 41919.389621 41898.033074 5.07639

DE2 41896.628616 41896.628772 41896.628614 3.48827E-05

DE3 41896.628616 41901.196420 41896.879274 1.01935

DE4 41896.628616 41896.628616 41896.628616 2.23949E-11

DE5 41896.628617 41919.427755 41897.866837 5.08603

Fig. 5 Convergence curves of DE algorithm with different strategies.
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(2) Case 2

The maximum number of iterations is 200, the number of
population individuals NP is 20, F=0.5, CR=0.8. Through
simulation experiments, the output power, total output power
of the generator sets and the loss during the transmission
process of the 6 generator sets of each DE strategy under the
total demand of 700MW are obtained. The simulation results
are listed in Table 7. In order to ensure the reliability and
stability of the results, 20 experiments are carried out for this
case based on the DE algorithm with different strategies. The
statistical results of the total power generation cost data
obtained are listed in Table 8; The convergence curves of DE
algorithm based on different strategies to solve Case 1 are
shown in Fig. 6.

(3) Case 3

The maximum number of iterations is 200, the number of
population individuals NP is 30, F=0.5, CR=0.5. Through
simulation experiments, the output power, total output power
of the generator sets and the loss during the transmission
process of the 13 generator sets of each DE strategy under the
total demand of 1800MW are obtained. The simulation
results are listed in Table 9. In order to ensure the reliability
and stability of the results, 20 experiments are carried out for
this case based on the DE algorithm with different strategies.
The statistical results of the total power generation cost data
obtained are listed in Table 10. The convergence curves of
DE algorithm based on different strategies to solve Case 1 are
shown in Fig. 7.

Table 5-10 and Fig. 5-7 show the comparison of the total
cost of power generation by the DE algorithm with different
strategies for different ELD problems. Under the same initial
conditions for Case 1, it can be seen form Table 5-6 and Fig.
5 that the DE algorithm with DE1 and DE3 strategies have a
better convergence speed compared with other strategies.
Transmission loss and stability are within the normal range,
and the total cost of power generation is similar. In Case 2, it
can be seen from Table 7-8 and Fig. 6 that DE algorithm with

DE1 and DE3 strategies have better convergence speed and
stability than other strategies, and the transmission loss is
within the normal range. The total cost of power generation is
similar. In Case 3, it can be seen from Table 9-10 and Fig. 7
that DE algorithm with DE1 strategy has a faster convergence
speed, DE algorithm with DE1 and DE3 strategies have
better stability, the transmission loss is within the normal
range and the total cost of power generation is similar.
Therefore, in the DE algorithm, compared with other
strategies, DE1 strategy and DE3 strategy have better
optimization performance in solving the above-mentioned
ELD problem of power system.

TABLE 7. TOTAL DEMAND OF 700MW AND POWER LOSS

DE1 DE2 DE3 DE4 DE5

1P 323.6373 323.6387 323.6374 322.81790 323.8248

2P 76.6857 76.6833 76.6857 76.1018 78.1014

3P 158.4359 158.4411 158.4359 160.1730 158.7900

4P 50.0000 50.0000 50.0000 50.0000 50.0000

5P 51.9765 51.9723 51.9765 51.6606 50.0000

6P 50.0000 50.0000 50.0000 50.0000 50.0000
Total

generation
(MW)

710.7354 710.7354 710.7355 710.7533 710.7162

Power loss 10.7354 10.7354 10.7354 10.7533 10.7161

TABLE 8. COMPARISON OF DIFFERENT STRATEGIES TO SOLVE THE 700MW
TOTAL DEMAND PROBLEM

Algorithm Best Worst Ave Std

DE1 8422.610918 8422.610918 8422.610918 0

DE2 8422.610918 8422.615789 8422.611558 0.00123225

DE3 8422.610918 8422.610918 8422.610918 0

DE4 8422.610921 8422.649343 8422.614546 0.008973683

DE5 8422.616863 8422.882278 8422.682071 0.05335483

Fig. 6 Convergence curves of DE algorithm with different strategies.
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TABLE 9. TOTAL DEMAND OF 1800MW AND POWER LOSS

DE1 DE2 DE3 DE4 DE5

1P 551.0771 551.0787 551.077 551.0773 555.8795

2P 250.7343 250.7411 250.7343 250.7345 251.8332

3P 197.7811 197.7833 197.7812 197.7808 199.4951

4P 105.471 105.4778 105.471 105.4709 106.3021

5P 118.521 118.5191 118.521 118.5209 119.4199

6P 132.9236 132.9153 132.9237 132.9235 132.4069

7P 119.2334 119.2269 119.2334 119.2334 117.754

8P 69.4721 69.4729 69.4721 69.4721 64.5276

9P 82.9984 82.9973 82.9984 82.9985 80.4736

10P 40 40 40 40 40

11P 40 40 40 40 40

12P 55 55 55 55 55

13P 55 55 55 55 55
Total generation

(MW) 1818.212 1818.212 1818.212 1818.212 1818.092

Power loss 18.2120 18.2120 18.2120 18.2120 18.0919

TABLE 10. COMPARISON OF DIFFERENT STRATEGIES TO SOLVE THE
1800MW TOTAL DEMAND PROBLEM

Algorithm Best Worst Ave Std

DE1 18097.448206 18097.862123 18097.489598 0.127400964

DE2 18097.448206 18097.448355 18097.448224 3.71074E-05

DE3 18097.448206 18097.862123 18097.468902 0.092554655

DE4 18097.448206 18097.448206 18097.448206 7.46498E-12

DE5 18097.454523 18098.887884 18097.745853 0.409139974

Fig. 7 Convergence curves of DE algorithm with different strategies.

C. Different Algorithms to Solve ELD Problem with
Quadratic Objective Function

Based on the Table 2-4 and the B coefficient matrix used
to simulate the active loss in the transmission process, the
MATLAB 2015 software was used to simulate the above
three cases. The DE algorithm with DE1 strategy and other
intelligent optimization algorithms are used to carry out
simulation experiments and optimization performance
comparison on three cases.

(1) Case 1

Through simulation experiments, the output power of the
6 generator sets of DE1 and other optimization algorithms
under the total demand of 800MW, the total output power of
the generator sets and the loss during transmission are
obtained. The results of the simulation data are listed Table
11. In order to ensure the reliability and stability of the
results, different algorithms have been tested for this case 20

times, and the statistics of the total power generation cost
data obtained are shown in Table 12, and the average value
is shown in Fig. 8.

TABLE 11. TOTAL DEMAND OF 800MW AND POWER LOSS

DE1 PSO GA SA

1P 32.5994 32.5788 26.8541 32.5987

2P 14.4764 14.447 43.1880 14.4819

3P 141.5449 141.5283 148.8517 141.5453

4P 136.03900 136.0693 210 136.0371

5P 257.6656 257.6379 257.6379 257.6622

6P 243.0058 243.0717 212.0031 243.0055
Total generation

(MW) 825.3311 825.3330 898.534776 825.3307

Power loss 25.3311 25.3330 98.5348 25.3307

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_17

Volume 49, Issue 1: March 2022

 
______________________________________________________________________________________ 



TABLE 12. COMPARISON OF DIFFERENT METHODS TO SOLVE THE 800MW
TOTAL DEMAND PROBLEM

Algorithm Best Worst Ave Std

DE1 41896.628616 41896.628772 41896.628624 3.4883E-05

PSO 41896.628617 41971.851656 41908.766405 19.2617

GA 42149.360207 44294.158430 42587.589435 458.3791

SA 41896.628617 41919.427755 41897.866837 2.2349E-06

Fig. 8 Comparison of average values of different algorithms.

(2) Case 2

Through simulation experiments, the output power of the
6 generator sets of DE1 and other optimization algorithms
under the total demand of 700MW, the total output power of
the generator sets and the loss during transmission are
obtained. The results of the simulation data are listed Table
13. In order to ensure the reliability and stability of the
results, different algorithms have been tested for this case 20
times, and the statistics of the total power generation cost
data obtained are shown in Table 14, and the average value
is shown in Fig. 9.

TABLE 13. TOTAL DEMAND OF 700MW AND POWER LOSS

DE1 PSO GA SA

1P 323.6373 323.637335 308.859105 323.630597

2P 76.6857 76.685680 81.676399 76.684846

3P 158.4359 158.435869 144.463235 158.434590

4P 50.0000 50.000000 54.641698 50.000252

5P 51.9765 51.976536 68.244275 51.985223

6P 50.0000 50.000000 53.058370 50.000040
Total generation

(MW) 710.7354 710.735419 710.943082 710.735547

Power loss 10.7354 10.7355 10.9431 10.7355

TABLE 14. COMPARISON OF DIFFERENT METHODS TO SOLVE THE 700MW
TOTAL DEMAND PROBLEM

Algorithm Best Worst Ave Std

DE1 8422.610918 8422.610918 8422.610918 0

PSO 8352.610922 8352.687698 8352.615199 0.017091678

GA 8365.241933 8796.624687 8538.900494 143.88403

SA 8422.610928 8422.611161 8422.610983 6.07079E-05

Fig. 9 Comparison of average values of different algorithms.

(3) Case 3

Through simulation experiments, the output power of the
13 generator sets of DE1 and other optimization algorithms
under the total demand of 1800MW, the total output power
of the generator sets and the loss during transmission are
obtained. The results of the simulation data are listed Table
15. In order to ensure the reliability and stability of the
results, different algorithms have been tested for this case 20
times, and the statistics of the total power generation cost
data obtained are shown in Table 16, and the average value
is shown in Fig. 10.

TABLE 15. TOTAL DEMAND OF 1800MW AND POWER LOSS

DE1 PSO GA SA

1P 551.0771 581.7161944 452.4684 551.0513

2P 250.7343 266.0899011 272.5888 250.7431

3P 197.7811 111.8574303 145.3423 197.7875

4P 105.471 110.346984 82.98931 105.4714

5P 118.521 123.0967603 119.668 118.5205

6P 132.9236 138.3928127 142.5267 132.9464

7P 119.2334 123.7906827 99.31256 119.2206

8P 69.4721 80.10255253 62.69935 69.46761

9P 82.9984 94.30118514 86.35865 83.00267

10P 40 40 120 40.00007

11P 40 40 58.73861 40.00011

12P 55 55 120 55.00012

13P 55 55 55.05186 55.00024
Total generation

(MW) 1818.212 1819.694503 1817.745 1818.212

Power loss 18.2120 19.6945 17.7446 18.2120

TABLE 16. COMPARISON OF DIFFERENT METHODS TO SOLVE THE 1800MW
TOTAL DEMAND PROBLEM

Algorithm Best Worst Ave Std

DE1 18097.448206 18097.862123 18097.489598 0.127400964

PSO 18127.064356 18194.621148 18156.466157 19.84730303

GA 18136.937192 18324.170586 18211.419914 52.89982023

SA 18097.448263 18097.448526 18097.448343 6.63778E-05
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Fig. 10 Comparison of average values of different algorithms.

The Table 11-16 and Fig. 8-10 show the comparison of
the total cost of power generation with different intelligent
optimization algorithms for different requirements. All
algorithms run under the same initial conditions. In Case 1,
the Table 11-12 and Figure 8 clearly indicate that the total
cost of power generation obtained by using DE1 algorithm
to solve this case is 41896.628624$/h, which is lower than
the total cost of power generation obtained by PSO, GA and
SA algorithms. The transmission loss of DE1, PSO and SA
are small. It can be seen from the standard deviation that
DE1 and SA have the best stability. The running time of
DE1 algorithm is 0.307s, which is faster than other
algorithms. In Case 2, the Table 13-14 and Figure 9 clearly
indicate that that the cost of solving this case obtained by
PSO algorithm is the least, which is 8352.615199$/h. The
cost obtained by DE1 and SA algorithm is close, only 0.83%
higher than that of PSO. All algorithms have relatively small
transmission losses. It can be seen from the standard
deviation that DE1 has the best stability, and the running
time of DE1 algorithm is 0.425s, which is faster than other
algorithms. In Case 3, the Table 15-16 and Figure 10 clearly
indicate that the cost obtained by SA algorithm to solve this
case is the least, which is 18097.448343$/h. The cost
obtained by DE1 algorithm is 18097.489598$/h, and there is
little difference between the cost obtained by DE1 and SA.
All algorithms have relatively small transmission losses. It
can be seen from the standard deviation that SA has the best
stability, and DE1 algorithm also has good stability.
However, the running time of SA algorithm is the longest,
and the running time of DE1 algorithm is 0.307s, which is
faster than other algorithms. In general, DE1 algorithm
performs best in solving ELD problems compared with other
intelligent optimization algorithms.

V. CONCLUSION

In this paper, the DE algorithm based on different
strategies are applied to solve the ELD problem. According
to the simulation experiments results, the DE strategy that is
most suitable to deal with the ELD problem of the power
system is found. The results can clearly show that under the
same initial conditions, the DE1 strategy used in the DE
algorithm has a faster convergence speed and better stability.
Then the DE algorithm is compared with PSO algorithm,
GA algorithm and SA algorithm under the same starting
conditions. Experimental results show that DE algorithm is

better than other intelligent optimization algorithms in
solving ELD problems.
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