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Abstract-- Plant diseases remain a threat to global food supply, as 

it causes unimaginable loss of food and revenue. Intelligent 

mobile plant disease diagnostic system has however become 

valuable due to its usefulness for the early diagnosis and 

detection of plant diseases using leave images even when there 

are no availability of competent and adequate experts in such 

locations. The objective of this paper is to develop an intelligent 

mobile plant disease diagnostic system that runs on a 

smartphone. The diagnostic system is based on NASNet-Mobile, 

a lightweight convolutional neural network (CNN) architecture 

using the images of the plant leaves for plant disease diagnosis. A 

mobile application is developed for both android and iOS 

smartphones to capture the plant leaf images. The system runs on 

a web service that gets diagnosis from the CNN model.  The plant 

leave images captured using the developed mobile application are 

sent through the web service and the recognition of the plant 

disease is achieved using NASNet-Mobile CNN model. The 

proposed NASNet-Mobile CNN model plant disease diagnostic 

system achieved an accuracy rate of 99.31%. 

 
Index Terms-- Agriculture, Deep Learning, Image Processing, 

Machine Learning, Plant Disease Identification 

I.  INTRODUCTION 

LANT diseases are a huge constraint to the production of 

agricultural crops [1]. They decrease plant production, and 

as such pose a threat to the global food supply and the 

livelihood of the farmers cultivating the crops [1]. Every 

agricultural crop is vulnerable to diseases and these diseases 

can be caused by either bacterial, fungal, or viral pathogens 

[1]. Study has indicated that about 25% of world crop 

production is lost due to diseases year after year [2]. In places 

like Panama, the economic impact of loss from diseases has 

resulted in whole plantations being abandoned [3]. These 

losses are significant and they lead to financial and economic 

losses on the part of the farmers. Similarly, it could lead to 

famine that can subsequently lead to loss of life. Literature 

showed that potato blight in Ireland (1845-1846) and the 
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Bengal famine epidemic (1943) are a few of the devastating 

socio-economic repercussions of plant diseases [3]. 

Plant diseases manifest in physical changes in the parts of 

the plant like roots, leaves, stems, etc. Traditionally, diagnosis 

is made through observation of changes in certain parts of the 

plants (i.e. color of the leaf), and this allows expert observers 

to assess the type of plant disease and its severity. Visual 

assessments have been successfully applied over the years [4]. 

However, diagnosis made via optical observation of physical 

characteristics of the plant has a considerably high degree of 

complexity [5]. This high degree of complexity means that 

experienced agronomists and plant pathologists might 

misdiagnose the plant diseases [5]. The accurate and early 

diagnosis of the disease is important to the disease 

management efforts as they are the preliminary steps that are 

required before an efficient disease management plan is 

formulated. If a diagnosis is wrong or if it is made late, this 

can result in a poorly coordinated disease management plan 

that will inevitably lead to loss of agricultural crops. An 

effective system for disease diagnosis is important, as this 

would help anybody regardless of experience from the novice 

farmer to the experienced agronomist when diagnosing 

infected plants from the optical observation of the leaves [6]. 

Also, the ease of accessibility of an efficient diagnostic system 

to farmers in the form of a mobile application will be of great 

advantage as this would be particularly useful in regions of the 

world with infrastructural and financial challenges that limit 

their access to specialized equipment like microscopes and 

DNA sequencing-based methods that are used for early 

diagnosis. 

Machine learning systems have experienced tremendous 

growth in the last couple of years due to the increased power 

of computation systems such as Graphical Processing Units 

(GPU) systems that have allowed for the growth and 

development of new methodologies and models. One of those 

is deep learning systems [7], which are artificial neural 

network (ANN) architectures that have a significant number of 

layers for processing as against traditional neural network 

methodologies that do not possess many processing layers [5]. 

Deep learning, a subset of machine learning, has recently 

attracted a lot of attention due to its ability to analyze patterns 

(unsupervised) and make classifications (supervised) better 

than other models [8].  Deep learning models have been used 

successfully in multiple domains like image recognition [9], 

data mining [10], and other applications that require high 

degree of processing. Deep learning models based on 

Convolutional neural networks (CNNs) have also been utilized 
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in the domain of agriculture for use cases like counting of 

fruits [11], detection of fruits [12], the recognition of plants 

[13], and particularly in use for diagnosis of diseases [5, 6, 14-

17]. CNNs make up some of the most powerful techniques to 

model complex processes and for pattern recognition in 

applications that use huge amount of data like image pattern 

recognition. This is because CNNs possess an automatic 

features extraction capability that allows them to extract the 

images from the input images without any feature engineering 

of any kind, and thereby avoiding complex preprocessing on 

images [18]. According to Lee, et al. [19], applications using 

machine learning in developed countries is greater than 60% 

and is already being used for novel purposes like its use for 

diabetes diagnosis [20] to its uses in mobile voice recognition 

and dialog systems like Apple’s Siri, the Google Assistant, 

Amazon’s Alexa and Microsoft Cortana [21].  Its usage must 

be therefore be encouraged for plant disease diagnosis domain 

as many farmers around the world do not have access to the 

sophisticated technologies needed for the fast and efficient 

diagnosis required for early plant disease detection. Also, with 

the penetration of mobile phones in recent years globally, 

farmers in the developing nations can have access to 

cellphones that can be leveraged in the near future for use as a 

diagnostic tool for farmers [22].  

The remainder of this paper is organized as follows. In 

Section II, the literature review that briefly describes past 

research work done in the domain is presented. Section III 

details the materials and methods, with the datasets and the 

model used in this paper. In Section IV, the experimental 

setup is presented, and the experimental results are discussed, 

while the conclusion is drawn in Section V. 

II.  LITERATURE REVIEW 

Plant diseases can be confirmed using disease detection 

techniques and there are numerous ways in which plant 

diseases can be detected and diagnosed. These techniques can 

be broken down into two, the direct and indirect methods. The 

direct methods consist of the methods that make a scientific 

diagnosis using serological and molecular methods. The 

indirect methods consist of biomarker-based and plant 
properties/stress-based disease detection [23]. Various parts of 

a plant can manifest the physical characteristics that are 

evidence of vegetable pathologies. Although a lot of research 

work has been done into diagnosing plants using parts of the 

plants like the roots [24], kernels [25], fruits [26] [27], stems, 

and leaves, this research work concentrates on leaves. 

One of the earliest successful deep learning architectures 

plant disease classification was the AlexNet, and it was 

developed by Krizhevsky, et al. [28]. The authors trained a 

large CNN using datasets from the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) competitions, the 

ILSVRC-2010, and ILSVRC-2012 subsets, and they contained 
over 1.2 million images. The authors used a neural network 

that consisted of five different convolutional layers, some with 

max-pooling layer and three layers that are all fully connected 

with a 1000-way softmax. The neural network used had 60 

million parameters, 650,000 neurons. The size of the database 

used made overfitting a possibility. Hence the authors used the 

‘dropout’ regularization method to prevent overfitting. The 

authors were able to get top-1 and top5 error rates of 37.5% 

and 17.0%, which was a lot better than others at that time. The 

research study showed how successful deep learning could be 

when applied to images. The research work presented is 

similar to the one conducted by Mohanty, et al. [6] on plant 
disease diagnosis. The authors compared the performance of 

two deep learning models, GoogLeNet and AlexNet in 

detecting plant diseases, the researchers used a public dataset 

that contained 54,306 healthy and diseases images of plant 

leaves to identify 26 diseases and 14 different crop species to 

achieve an accuracy of up to 99.35% on a test set. However, 

the images used to train the plant diseases were captured in 

controlled conditions and not in actual real conditions in the 

field. Cap, et al. [29] also developed a system for on-site plant 

leaf disease detection using deep learning, the authors focused 

on the leaf localization method using wide-angle images taken 

on-site as against traditional narrow ranged images that 
contained one or limited number of targets in the image. The 

authors believed that deep learning diagnosis done on narrow 

range images are not practical for real life scenarios where the 

angle of capture might be wide and contain multiple number 

of targets. The authors were able to detect ‘fully leaf regions’ 

from wide range images and make a diagnosis using a CNN 

model trained on a dataset of 60,000 images gotten from the 

Saitama Agricultural Technology Research Center, Japan. The 

authors were able to achieve a performance of 78.0%. Khan, et 

al. [30], in a study for real-time plant health assessment, used 

transfer learning to accurately detect leaf diseases. The authors 

used a dataset that included images from fruit trees (apple, 
grape, peach, and strawberry) and vegetable plants (potato and 

tomato) and used the Amazon Web Services (AWS) machine 

learning services for training and deployment. To train the 

model, the authors used the AWS Sagemaker, which is a 

cloud-based environment for training and testing. The 

proposed model is called the DeepLens Classification and 

Detection Model (DCDM) and is based on a Deep 

Convolutional Neural Network (DCNN). After training, the 

model is then deployed on an Internet of Things (IoT) device 

called the AWS DeepLens which is a DL based camera 

equipped with 4 Mega-Pixel sensors used for ML related 

project implementation. The authors evaluated the 
performance of the DCDM architecture and compared it 

against other CNN architectures including DenseNet, 

DarkNet, ResNet-50, AlexNet, VGG-16, VGG-19, 

SqueezeNet. The DCDM architecture with an average 

accuracy of 98.78% on test images achieved an improved 

performance over the other architectures and was also better in 

terms of its computational processing time. 
There has been some efforts to harness the power of mobile 

computing alongside deep learning for the use of plant disease 

recognition. Wang, et al. [31] decided to tackle the challenge 

of early disease diagnosis problem in plants using mobile 

applications. The authors underlying diagnosis technology was 

an image processing algorithm based on candidate hotspot 

detection used alongside statistical inference method. This 

technology was used by a mobile application that captured 

images and had the image diagnosed online and returned a 

result. The approach used by the authors however required a 

considerable amount of feature engineering. Valdoria, et al. 
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[32] developed an android application that detected plant 

diseases on terrestrial plants in the Philippines and achieved an 

accuracy of 80% on the developed app. Pan, et al. [33] in 

research to develop a smart mobile diagnosis system used 

densely connected convolutional networks to develop an 

intelligent diagnosis system for citrus plant diseases that used 

mobile services computing. The authors built an image dataset 

that contained citrus diseases of six different varieties and 

trained a densely connected convolutional networks 

(DenseNet). The developed system was deployed as an applet 

on the WeChat platform where the users can upload images 

and get a response with diagnosis of the uploaded image. The 

results had the accuracy exceeding 88%. Elhassouny and 

Smarandache [34] proposed the use of a smart mobile 

application model that utilises deep CNN to recognize tomato 

leaf diseases. The model was trained on 7176 images of 

tomato leaves to recognize the 10 most common types of 

tomato leaf diseases. The deep CNN implemented in the 

study, called MobileNets, is optimized for mobile devices that 

reduces the amount of computation in the first layers.  

 
TABLE I 

Quantitative Data of Dataset Images 

 

Mrisho, et al. [35] presented a deep learning model called 

Nuru. Nuru was developed by PlantVillage as a simple and 

inexpensive way for in-field diagnosis of the viral cassava 

diseases–CMD and CBSD without the use of an internet 

connection. Nuru is especially useful in rural places around 

the world with low internet penetration. In the study, the 

authors evaluated the diagnostic capability of Nuru against 

agricultural extension officers and farmers in the diagnosis of 

cassava diseases. Nuru was able to diagnose symptoms of 

cassava at an accuracy of 65%, higher than those of 

agricultural extension officers (40–58%) and the farmers (18–

31%). This app shows the potential of the use of deep learning 

in plant disease diagnosis using mobile applications and the 

comparison of effectiveness of the developed model against 

farmers and agricultural extension officers.  

III.  MATERIALS AND METHODS 

In this research project we aim to develop a mobile 
application that uses deep learning to diagnose plant 
diseases. 

A.  Datasets 

The PlantVillage dataset is a dataset that contains 54,309 

images of both healthy and diseased plants. The dataset 

contains images of size 256x256 of 14 crops and 38 different 

healthy and diseased plants. The images in the dataset were 

taken at experimental research stations with association with 

Land Grant Universities in the USA (e.g. Florida State, Penn 

State amongst others) [36].  The crop species in the dataset are 

Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach, Bell 

Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, and 

Tomato. The dataset contains three varieties of the images 

namely: colour, grayscale and segmented.  

 

 
 

Fig. 1.  Sample Images from the PlantVillage Dataset 

This research work uses the colour images in the dataset, as 

previous research works have demonstrated that the 

segmented and grayscale versions do not improve the 

performance of the trained model.  

 

Fig. 1 shows sample images of the database and table 1 gives 

an overview of the dataset. The entire database is split into 

training and validation sets, by randomly splitting the 54,309 

images. The split used is 80/20 with 80% forming the training 

set, and 20% form the validation set. The 80/20 split is used 

mostly in neural network applications, other splits (like the 

70/30, 75/25) do not have sufficient impact on the 

performance of the developed model [37]. This study utilizes 

43, 447 for training the NASNet-mobile model and 10862 are 

used to validate the performance of the model for the plant 

leave images. 

Plant Images 

(Number) 

Apple 3172 

Blueberry 1502 

Cherry 1906 

Corn 3852 

Grape 4063 

Orange 5507 

Peach 2657 

Bell Pepper 2475 

Potato 2152 

Raspberry 371 

Soybean 5090 

Squash 1835 

Strawberry 1565 

Tomato 18162 
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Fig. 2.  Difference between traditional and convoluted neural network 

B.  Deep learning-based classification 

Machine learning use-cases require the need for creating a 

classifier, and then applied the classifier to the extracted 

features from their experiment dataset. This is easily achieved 

in normal use-cases, but for complex tasks like disease 

recognition, the feature engineering required consumes 

immense time and effort. The automatic extraction of features 

is what makes deep learning models stand out. Fig. 2 shows 

the differences between the traditional machine learning 

approach and deep learning approach. Deep learning approach 
is built on artificial neural networks (ANN). Neural 
networks constitute layers of multiple neurons; connections 
are made between neurons in adjacent layers. The neurons 
must learn to convert a mapped input already pre-
processed and pre-extracted featured into its corresponding 
output. Although a traditional deep learning architecture can 

extract features automatically, there was a need for CNN to 

reduce the number of potential parameters present in the 

neural network, and also train the models efficiently in less 

time. CNNs are a class of neural networks that allow for 
low variations in inputs and need low preprocessing before 
executing [38]. Fig. 3 shows the difference between a 
common neural network and a convoluted neural network. 

A convolution layer in the neural network allows for the 
possibility to process images regardless of size or 
complexity with fewer parameters. This is done because the 
number of weights that the network needs for training is 
determined by the number and the size of the convolution 
kernels, but not the number of features or weights or image 
size. 

 

 
 

Fig. 3.  Fully Connected Neural Network & Convoluted Neural Network. 

 

CNNs are made up of three different parts, convolution, 

pooling, and fully connected layers and a detailed description 

of this is shown fig. 4. Feature extraction is carried out in the 

convolution and the pooling layers with the fully connected 

layer for classification.   

 

 

 
 

Fig. 4.  CNN Model in detail 
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    1)  NASNet 

NASNet is a model that was developed by the Google ML 

group in 2017 while working on novel ways to build 

ConvNets, and It is based on the Neural Architecture Search 

(NAS) idea conceptualized by the group [40]. 

 

    2)  NAS 

The Neural architecture search (NAS) method developed 

by [41] is a method used to find the best architectures based 

on gradients. Zoph and Le [41] observed that a neural 

network’s connectivity and structure can be specified by a 

string of variable length. This makes it possible to generate the 

string using a recurrent network that acts as “The controller”, 

with string as a representation of “Child Network”.  

The child network is then trained on the real data with 

accuracy on the validation set of the data produced. Using the 

accuracy as a reward signal, the policy gradient is computed to 

update the controller as seen in fig. 5. As such over the next 

iterations, the controller learns and gives higher probabilities 

to architectures of higher accuracy thereby returning strings 

(child networks) with higher accuracies. Using NAS, Zoph 

and Le [41] were able to design a novel ConvNet model that 

performed better than most human-designed architecture. The 

resulting model tested was able to achieve a test error rate of 

3.65, which is 0.09 percent better and 1.05x faster than the 

previous model that was designed using a similar architectural 

scheme. 

 

 
 

Fig. 5.  Representation of the Neural Architecture Search 

 
    3)  Composition of NASNet 

NASNet is a CNN architecture constructed using the 

scalable NAS method afore-mentioned and the approach of 

the Google ML group was based on reinforcement learning. 

There is a parent AI, a Recurrent Neural Network (RNN) “The 

Controller” that reviews the efficiency of the child AI “Child 

Network” in a CNN and adjusts the architecture of the “Child 

Network”. These adjustments are made on the number of 

layers, the regularization methods, weights and more, are used 

to improve the efficiency of the “Child Network" as seen in 

fig. 6. The operational blocks available to the controller RNN 

to build the child network is listed below: 

 

 Identity 

 1 × 3 then 3 × 1 convolution 

 1 × 7 then 7 × 1 convolution 

 3 × 3 dilated convolution 

 3 × 3 average pooling 

 3 × 3 max pooling 

 5 × 5 max pooling 

 7 × 7 max pooling 

 1 × 1 convolution 

 3 × 3 convolution 

 3 × 3 depthwise-separable—convolution 

 5 × 5 depthwise-separable—convolution 

 7 × 7 depthwise-separable—convolution 

 

 

Using all these operational blocks, the RNN builds the 

NASNet architecture. The architecture is trained with two 

different image sizes to produce the two different types of 

NASNet architectures, the NASNetLarge and the 

NASNetMobile. The NASNetmobile is a lot more reliable 

than the NASNetLarge because of the difference in the 

parameters - 53,26,716 parameters to the 8,89,49,818 

parameters of NASNetLarge [40]. Every NASNet architecture 

has a block as its smallest unit. A cell is a combination of the 

blocks and is formed by concatenating various operational 

blocks like those stated above and multiple cells form the 

NASNet architecture. 

The controller RNN optimizes the cells with blocks, and as 

such are not fixed because they are optimized for a selected 

dataset. Every single block is an operational module and the 

operations that can be performed by a block include the 

following: 

• Convolutions 

• Max-Pooling 

• Average-Pooling 

• Separable Convolutions 

• Identity Mapping, inter alia 

 

 

 
 

Fig. 6.  The role of the Controller RNN in NASNet architecture 
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Each block maps the present and the previous input (H0 

and H1) to a single output feature map as seen in fig. 8. 

NASNet uses the element-wise addition which is much more 

intuitive than vector wise operations. Two types of 

convolutional cells are used when using a feature map as an 

input and they are: 

 Normal Cells: These are convolutional cells that usually 

return feature maps of the same dimension. For example, 

if a cell allows an input of a block that has a feature map 

of size H × W with a stride of 1, the output calculated 

will ultimately be the same size as that of the feature 

map. 

 Reduction Cells: These are also convolutional cells that 

return feature maps, with the height and width of the 

feature map reduced by a factor of two (e.g. if the stride 

is 2, the size is reduced by 2) [42].  

 

 
 

Fig. 7.  Taxonomy of a NASNet Architecture 

 

 
 

Fig. 8.  Block formation in NASNet architecture 

The development of the network is based on three different 

factors:  

 Cell structure 

 Number of cells to be stacked (N)  

 Number of filters in the first layer (F) 

 

The values of N and F are fixed in the initial stages of the 

search. However, the values of N and F in the first layer are 

changed to alter the depth and width of the network. As soon 

as the search is completed, models are constructed of various 

sizes to fit the datasets. The cells are then connected in the 

most optimized structure to create the best NASNet 

architecture possible. The variations in convolutional nets are 

the differences in the normal and reduction cells which are 

searched by the controller RNN. The structures can be 

searched in the search space as seen in fig. 10. In the search 

space, each cell is connected to two input hidden states. A 

sample of hidden states can be seen in fig. 9. Hidden layers are 

then formed using pairwise combinations and then updated by 

concentration. Hidden layers can also undergo convolution 

and pooling operations. Using the results from the 

optimization and the best cells are then selected in the 

NASNet architecture. This makes the search faster and 

generalized features can be obtained. 

 

 
 

 
Fig. 9.  Hidden state formation inside a block 

    4)  Reinforcement Learning 

 

NASNet trains with reinforcement when an accuracy R is 

achieved on a dataset. The accuracy R is used as the reward 

signal, using reinforcement learning to train the RNN 

controller. To find the optimal architecture, the controller is 

asked to maximize its expected reward, represented by J(θc) as 

shown in equation (1). 

 

 
 

The reward signal R is non-differentiable. A gradient policy is 

used to iteratively update the expected reward θc. The 

reinforce rule is used as indicated in equation (2). 

 

 

(2) 

(1) 
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An empirical approximation of the above quantity is 

calculated in equation (3). 

 

 
 

where m is the number of varied architectures sampled by 

the controller in a singular batch and T is the number of 

hyperparameters that the controller would predict for the 

design of neural network architecture. Rk is the validation 

accuracy that the k-th neural network architecture receives 

after being training on a specific training dataset. The 

approximation in equation(3) is for the gradient. However, it 

has the downside of having high variance. To reduce the 

variance of the estimate, a baseline function described in (4) is 

used. 

 

 
 

Baseline b is the exponential moving average of the 

accuracies of the architecture in the preceding batches. 

 

 

 
 

Fig. 10.  NASNet Search Space Schematic Diagram 

 

C.  System Architecture 

The system architecture is shown in fig. 11. The training 

and inference stages contain different components. The 

training stage is the part where the NASNet model is trained 

using transfer learning. After it has been trained, the trained 

model is downloaded. This trained model is loaded into a 

flask-powered microservice. Flask is a python microservice 

that is very lightweight and has only one dependency–Python,  

and this makes it easy to start up. This microservice exposes 

an API that takes in an input image and makes a diagnosis on 

the image using the saved trained model. This microservice is 
deployed on one of Amazon Web Services (AWS) cloud-based 

services called the Elastic Compute Cloud (EC2) that offers 

state-of-the-art computing and storage facilities. EC2 provides 

virtual machines called instances that users can rent and scale 

at will [43]. 

 

 
 

Fig. 11.  Proposed System Architecture 

A client mobile app is developed using React Native. React 

Native is a JavaScript framework, developed by Facebook to 

build native mobile application using JavaScript. It facilitates, 

the writing of application codes using JavaScript, and it would 

be compiled to native code. It is based on ReactJS, a library 

also developed by Facebook [44]. Applications developed 

using React Native can be deployed on iOS and Android 

devices. The client mobile app is used to capture the image 

using either the phone camera or choosing an already captured 
image. The captured image is then sent in a request to the web 

service. The web-service receives the image, makes a 

diagnosis, returns a result with its classification and this is 

displayed on the mobile app interface. 

IV.  EXPERIMENTAL SETUP AND RESULTS 

In this section, the training model for the deep learning 

architecture and the proposed system is discussed in detail and 

the experimental results are also presented. The technical 
resources used for the research work are also presented in this 

section. The proposed approach is evaluated by conducting a 

series of experiments using the PlantVillage dataset mentioned 

earlier. Below are the details of the experiments. 

 

A. Dataset 

The NASNet model is trained on the PlantVillage dataset. The 

images used are the colour images, the grayscale images are 

not considered for this research project as other experiments 

[6] have shown that they do not improve the accuracy of the 

model.  

The dataset will be pre-processed in several forms. 
1. Image Resizing: The images are resized, and they 

are in a square-shaped input as it is the preference 

of a lot of Deep Learning architectures. 

2. Data Augmentation: Images are augmented to 

generate more training data. The size of a dataset 

has a huge impact on the model accuracy, which 

means more data, better results. Techniques such 

as rotate, flip, lighting change, and picture 

enlargement are applied to the images in the 

dataset as done by [45]. 

3. Image Filtering: These are techniques to modify or 

enhance an image. This research project uses a 
couple of techniques: An average filter that is a 

simple sliding window spatial filter that is used to 

reduce noise in images. It works by replacing the 

centre value in the window with the average of the 

pixel values. Gaussian filter is applied on the 

image by using a Gaussian function; median filter 

that is a sliding window spatial filter is applied 

such that the centre values in the window are 

(4) 

(3) 
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replaced with the median of all pixel values in the 

window. 
B. Model 

 The model used in this study is the NASNet model and it 

has two variants, NASNetMobile and NASNetLarge. 
NASNetmobile is used in this paper. This is because of its 

reliability when compared with the NASNetLarge and 

NASNetmobile has 5326716 parameters when compared to 

the 889,49,818 parameters in NASNetLarge [40]. 

 

C. Implementation 

The implementation is divided into two parts, the training 

of the model and the deployment of the client mobile 

application that does the diagnosis. The training/test dataset is 

an 80-20 split. The model is implemented in python using the 

deep learning library fast.ai [46] that allows for the use of 

GPU acceleration. Fast.ai provides high-level deep learning 
components that allow for quick prototyping to provide state-

of-the-art results in deep learning domains. The experiments 

are performed on the Google Colaboratory platform (Colab). 

Colab is a free Google service developed for artificial 

intelligence developers. The service runs on jupyter notebooks 

and it provides free access to GPU servers and Python 2/3 

development environment. To train the network using the 

fast.ai framework, the following steps as illustrated in 

Algorithm 1 are involved: 

 

 Clone the dataset from the GitHub repository. 

 Create a data bunch by choosing the following 
 Set the path for the input dataset 

 Set the ratio of training/validation sets 

 Label the inputs 

 Set the batch size to be used. 

 Set the kind of data augmentation to be used. 

 Select the number of CPUs to be used. 

 Import the pre-trained models and define them. 

 Create a learner object from the data object and the 

pre-trained model, define the metrics expected 

(e.g., accuracy, error etc.), together with any 

callback functions needed (e.g. CSVLogger to log 

the results of the training). 
 Set the number of epochs, then train 

 After training, metrics are returned with proper 

values. 
 

The mobile application is to be developed in React Native. 

After the completion of the development, an APK is generated 

to be tested on an android device and is also tested on an iOS 

device. The following technologies are used in the 

development of the mobile application: 

1. React Native – React Native is an open-source 

mobile application framework created by 

Facebook. It is used to develop applications for 

Android, iOS, Web, and UWP by enabling 

developers to use React. 

2. Flask - Flask is a micro web framework for Python. 

It is designed to make getting started quick and 

easy, with the ability to scale up to complex 

applications. In this study, it is used to power the 

microservice that serves the mobile application. 

Flask is used for rendering an API that the mobile 

app consumes. It then connects with the DL model 

to gain the prediction.  

3. Cloud Server – This is the server where the Flask 

application is going to reside, Since it is web-

accessible, it has cross-platform support (i.e. iOS, 

Android, UWP), code reusability, and 

maintenance. It reduces the computational load of 

the DL model off the phone and into a scalable 

cloud service. 

 

ALGORITHM 1: TRAINING ALGORITHM 

 

Algorithm for training 

Input: 

Dataset from GitHub Repository 

Process: 

1. Create data bunch  

 Batch size 

 Training Data : Validation Data 

 Dataset path 

 Data Augmentation Technique 

 Number of CPUs 

2. Import model to be used 

3. Create Learner Object 

4. Define Metrics to be expected 

5. Set number of epochs 

6. Train 

Output: 

Trained model with accuracy results 

 
 

D. Model Training 

Transfer learning is used to train an already pre-trained 
NASNet model that was trained on the ImageNet dataset. 

Below are the different hyperparameters used and the 

experimented values. 

 Number of epochs: An epoch is a full run of the 

training dataset through the model currently being 

trained.  This is to learn the appropriate number of 

epochs that allows the network to converge 

properly. 

Baseline: Five  

 Dropout rate: Various dropout rates are used all the 

way from 0.0 to 0.9, with 0.1 increments.  

Baseline: 0.5  
 Validation/Training Data Ratio: 1:9 to 9:1. 

Baseline: 2:8 

 Batch Size: Various batch sizes are tested from an 

initial 8 to 64. A training dataset can be divided 

into one or more batches. This is important if you 

cannot fit your whole data into the memory of the 

machine that is processing the model. It is the 

number of samples that will be passed into the 

model at once.    

Baseline: 32 
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 Input Image Size: This is the size of the input 

images, Sizes from 128 x 128 up to 256 x 256 will 

be tested. 

Baseline: 256 x 256. 

 
E. Mobile Application Deployment 

After the model has been trained successfully, it is 

downloaded to an already developed python flask 

microservice that is deployed on an AWS EC2 instance with 

Docker as described in fig. 12. The flask microservice renders 

an API endpoint that takes in a request that contains the leave 

image. The leave image is saved and gets a diagnosis from the 

trained NASNet model and the feedback of the request is sent 

back. The feedback of the request is received by the mobile 

app and then displayed on the user-interface of the app. 

 

 

Fig. 12: Diagnosis system design 

Steps involved in the diagnosis: 

 Mobile app sends a request with the image of the 

leaf image to the server. 

 The Droplet contains the microservice. The 

webserver on the microservice gets the request, 

with the leave image. 

 The web-server sends the leave image to the deep 
learning model for prediction. 

 The resulting prediction that decides the state of the 

plant leaf, as either diseased or healthy, is sent 

back to the web server, which then sends the 

prediction to the mobile app. 
 

F. Results 

The NASNet model to be trained is trained on a variety 
of afore-mentioned parameters. Additionally, the mobile 
application developed is tested on 20 randomly selected 
images of varying sizes for its response time. Below are the 
results of the experiments. 
 

TABLE 2: BASE PARAMETERS 

 

Hyperparameter Value 

Epochs 5 

Dropout Rate 0.5 

Batch Size 32 

Input Image Size 256x256 

Validation/Training Data Ratio 2:8 

Learning Rate 0.01 

Filtering  None 

TABLE 3: RESULT FROM BASE PARAMETERS 

 

Training Loss  Validation Loss Accuracy 

0.151575 0.099513 0.965749 

 

TABLE 4: PERFORMANCE COMPARISON OF FILTERING ON 

ACCURACY 

 
Filter Size Training Loss  Validation Loss Accuracy 

No Filter 0.170315 0.113067 0.963079 

Average Filter 

3x3 0.153105 0.104462 0.964736 

5x5 0.174656 0.133590 0.958107 

10x10 0.253591 0.164824 0.943744 

Gaussian Filter 

3x3 0.164019 0.102222 0.964000 

5x5 0.160866 0.114305 0.960409 

7x7 0.184944 0.117713 0.961974 

Median Filter 

3x3 0.148121 0.100840 0.966854 

5x5 0.182138 0.126222 0.956910 

7X7 0.201356  0.131876 0.956818
  

 

Experiment 1: Initial setup and baseline hyperparameters 

The model was trained on an initial baseline set of 

hyperparameters that are derived from similar research by 

Tiwari and Richmond [14] on techniques and methodologies 

on identifying crop diseases.  This is going to be used as a 

benchmark for the other test results to see the effect of the 

changes of the hyperparameters on the performance accuracy 

rate.  

 

Table 3 shows the results of the experiment. The initial 

learning rate is set to 1e-2, with the model trained for 5 

epochs, at a dropout rate of 0.5, a batch size of 32, with input 

image size of 256x256 pixels, with the validation/training data 

ratio of 2:8. With the initial model training, an accuracy value 

of 96.57%, training loss of 0.151575 and validation loss of 

0.099513 are achieved. 

 

Experiment 2: Initial setup and baseline hyperparameters. 

Experiments are carried out to investigate the effect of 

these filters on accuracy. Although the baseline test does not 

use any filter, the filter-based experiments used the averaging, 

Gaussian, and median filters with varying windows. 

Table 4 shows the results of the experiment, with the 

accuracy values of 96.47% achieved for the average filter (3x3 

window), 96.40% for the Gaussian filter (3x3 window) and 

96.68% for the median filter (3x3 window) as against a value 

of 96.30% with no filter. Fig. 13 shows a graphical 

representation of the results obtained. 
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Fig. 13. Graphical representation of filter experiment results 

 

Experiment 3: Ratio of validation data to training data 

results. 

The effect that the split of the validation, the training data ratio 

has on the accuracy is also examined. The baseline parameter 

ensures the splitting in a 2:8 ratio. Such is progressively 

adjusted up until it reaches a 9:1 ratio while holding other 

baseline set of hyperparameters constant. 

 
 

TABLE 5: PERFORMANCE COMPARISON OF PERFORMANCE OF 

DIFFERENT RATIO TRAINING/VALIDATION DATA RATIO FOR THE 

DATASET USED. 

 
Training Training Loss  Validation Loss Accuracy 

0.2 0.157282 0.101149 0.966486 

0.3 0.170966 0.123526 0.959057 

0.4 0.191113 0.1293114 0.957002 

0.5 0.196933 0.147369 0.950685 

0.6 0.229605 0.166938 0.944235 

0.7 0.262834 0.192039 0.937890 

0.8 0.297685 0.242702 0.921416 

0.9 0.436562 0.343948 0.890433 

 

The best accuracy rate and validation loss achieved is on 

the baseline parameter of a 2:8 ratio; this achieved a 96.64% 

accuracy value. This accuracy value progressively reduces as 

the splitting ratio is continuously adjusted in the experiment. 

The last ratio of 9:1 achieved the least accuracy value of 

89.04% in the experimental accuracy performance set. Table 5 

shows the performance and fig. 14 shows a graphical 

representation of the experimental values. 

 

 

 
Fig.14. Graphical Representation of performance of different ratio 

training/validation data ratio for the dataset used. 

 

However, the first two dropout rate, 0.1 and 0.2 produce 

models that are overfitted with their validation loss greater 

than their training loss. The closest accuracy rate that is not 

overfitted is a dropout rate of 0.5. Such is consistent with the 

baseline value suggested and leading to maximum 

regularization. 

Table 6 shows a detailed representation of the results of the 

experiment. Fig. 15 shows a graphical representation of the 

experiments. 

 

TABLE 6: PERFORMANCE COMPARISON OF DROPOUT RATE ON 

ACCURACY 

 

Dropout rate Training 

Loss  

Validation 

Loss 

Accuracy 

0.1 0.079877 0.081221 0.973943 

0.2 0.089208 0.092597 0.970997 

0.3 0.161278 0.113834 0.960960 

0.4 0.183559 0.128273 0.956404 

0.5 0.151575 0.099513 0.965749 

0.6 0.187764  0.105838 0.963355  

0.7 0.225926 0.122344 0.957555 

0.8 0.316459 0.147102 0.951662 

0.9 0.479185  0.209871 0.932419 
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Fig. 15. Graphical Representation of the effect of accuracy 

against dropout rate 

Experiment 5: Image size experiment. 

The experiment performed varied the size of the leaf 

images in the dataset used for the model training and 

monitored the effect of the variation in the image sizes on the 

model performance. Although the baseline value of 256x256 

image size is used in the experiment, the experiment also 

investigated the sizes 64x64, 128x128, and 256x256 while 

holding other baseline sets of hyperparameters constant.  
 

 

TABLE 7: PERFORMANCE COMPARISON OF IMAGE SIZE ON 

ACCURACY 

 
Image Size Training 

Loss  

Validation 

Loss 

Accuracy 

64 0.808506 6.208295 0.802320 

128 0.322468 0.229584 0.924777 

256 0.151575 0.099513 0.965749 

 

Although the next logical image size is 512x512, the training 

environment is unable to handle training images of this size as 

it is continually timed out. After the model training, the 

accuracy values of the model increased as the image size 

increased and the highest accuracy value of 96.57% achieved 

is on the 256x256 image sizes, while the lowest accuracy 

value of 80.23% is achieved on image sizes of 64x64 with the 

trained model very underfitted. Table 7 shows the values of 

the accuracy measures on the various image sizes. Fig. 16 

shows a graph of the accuracy values against their respective 

image sizes. 

 

Experiment 6: Batch size Experiment. 

The batch size is the number of dataset samples passed into 

the model, the baseline value being 32. The experimental 

batch size values investigated ranged from 8 to 64 when 

holding other baseline sets of hyperparameters constant. 
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Fig. 16. Graph showing effect of image size on accuracy. 

Experimental studies show that the batch size of 32 

achieved the highest accuracy value of 96.57%, while the 

lowest accuracy value of 95.30% is achieved via a batch size 

of 8. Table 8 details the performance accuracy values obtained 

in the experimental studies. Fig. 17 shows the graphical 

representation of the different accuracy values obtained, 

against their respective batch sizes. 

 

TABLE 8: PERFORMANCE COMPARISON OF BATCH SIZE ON 

ACCURACY 

 
Batch Size Training 

Loss  

Validation 

Loss 

Accuracy 

8 0.251792 0.182867 0.953043 

16 0.171711 0.120710 0.964184 

32 0.151575 0.099513 0.965749 

64 0.154251 0.110910 0.962619 

 

Experiment 7: Epoch Experiment. 

The epoch is used to describe the number of times a dataset 

passes through the training algorithm. The baseline value of 

the epoch used is 5. The experiment performed starts with an 

initial value of 1 epoch, then 5 epoch, and then increases by 5 

epochs up until it reaches 35 epochs while holding other 

baseline sets of hyperparameters constant. The training 

environment is unable to handle the next value of 40 epochs, 

constantly timing out. Experimental studies showed that the 

greater the epoch value, the greater the accuracy value and the 

lower the validation loss. The highest accuracy value of 

99.09% is achieved at 35 epochs, achieving as close to an 

optimal fit as possible.  

The least achieved accuracy is at 1 epoch, and the accuracy 

value is 91.65%, with the validation loss sufficiently high. The 

difference in the validation loss and the training loss shows the 

model to be seriously underfitted at this point. Table 9 details 

the values obtained after each experimental run. Fig. 18 

presents a graphical representation of the epoch values against 

the accuracy. 
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Fig. 17. Graphical representation of accuracy against batch 

size. 
 

TABLE 9: PERFORMANCE COMPARISON OF THE EFFECT OF 

VARIABLE EPOCHS ON ACCURACY 

 
Epochs Training 

Loss  

Validation 

Loss 

Accuracy 

1 0.395950 0.279173 0.916582 

5 0.151575 0.099513 0.965749 

10 0.093075 0.062832 0.978271 

15 0.067690 0.044993 0.985913 

20 0.553122 0.039122 0.98712 

25 0.036893 0.033198 0.988767 

30 0.033079 0.026128 0.990793 

35 0.026869 0.024630 0.990977 

 

Experiment 8: Optimal Hyperparameters with Filters  

Experimental studies are also conducted to investigate the 

impact of applying the best-performing window sizes of the 

afore-mentioned filters (Gaussian, median and average filters) 
when combined with the best-performing parameter values of 

the proposed deep learning model (see Table 10). The results 
obtained are compared with the best accuracy value 
obtained when no filter was used (see Table 11). 

Experimental findings showed that the application of the 

filters has a slight effect on the accuracy of the trained model, 

with all models trained using filtered images having higher 

accuracy values when compared to the models trained on 

unfiltered images. Accuracy values achieved are 99.24% for 

unfiltered images, 99.28% for average filtered images, 99.31% 

for Gaussian filtered images, and 99.28% for median filtered 

images. The proposed deep learning model applied on 

Gaussian filtered images achieved the highest accuracy value 

of 99.31%. Fig. 19 shows a graphical representation of the 

comparison of the best results obtained from the models 

trained using filtered images with the models trained on 

unfiltered images using the best hyperparameters. 
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Fig. 18. Graphical representation of different epochs on the 

accuracy of a model 

 

TABLE 10: BEST PERFORMING VALUE OF EXPERIMENTED 

PARAMETERS 

 
Parameter Value 

Validation/Training Ratio 2:8 

Dropout rate experiment 0.5 

Image Size 256x256 

Batch Size 32 

Epoch 35 
 

 
 

 

TABLE 11: COMPARISON OF THE RESULTS OBTAINED FROM THE 

MODELS TRAINED USING FILTERED IMAGES WITH BEST 

PERFORMING WINDOW SIZES AND UNFILTERED IMAGES USING 

BEST HYPERPARAMETERS 

 

Filter  

(Window 

Size = 3x3) 

Training 

Loss  

Validation 

Loss 

Accuracy 

No Filter 0.027846 0.022291 0.992450 

Average 

Filter 

0.038150 0.020694 0.992818 

Gaussian 

Filter 

0.035963 0.019991 0.993095 

Median 

Filter 

0.036853 0.022398 0.992818 

 

 

Experiment 9: Mobile Application & Web Service 

Response Time 

The trained NASNetMobile model was then uploaded to a 

Python-powered Flask web Service deployed to a cloud 

platform. The web service was developed to accept an image 

in its request parameters. The image was saved on the cloud 

server. The service then classified the received image using 

the trained model. This returned a disease-diagnosis report via 

the web service as a JSON string. The web service was tested 

for its response time; and 20 images of varying sizes are 

tested, as shown in Table 12. Experimental studies showed 

that the bigger the image size, the longer the response time 
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required to return the plant-disease diagnosis report. A mobile 

application was also developed for the plant disease diagnostic 

system and this was performed via React Native. Fig. 20 and 

fig. 21 show the screenshots from the mobile application. 

The response time of the proposed mobile-based plant disease 

diagnosis report using web-service is also examined. Table 12 

shows the response time in ms. 
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Fig. 19. Graphical representation of the results obtained from 

the models trained using filtered images with best performing 

window sizes and unfiltered images using best 

hyperparameters. 

 
 

Fig. 20. Mobile Application Screenshot. 

 

 

Fig. 21: Mobile Application Screenshot. 

 
TABLE 12: WEB SERVICE RESPONSE TIME IN MS 

 
Image Size (kb) Response Time(ms) 

11   358 

12   429 

14   291 

30   300 

35  307 

37   361 

45   420 

49  302 

103  386 

120 366 

126  373 

192   505 

212   375 

279  467 

338   369 

452   412 

1314   630 

1408   656 

3997   1496 

11   358 
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TABLE 13: PERFORMANCE COMPARISON OF THE MODEL USED IN THIS 

RESEARCH AGAINST SOME OTHER METHODS IN LITERATURE 

 

Model (Author) Accuracy 

AlexNet - [16] 98.66% 

AlexNet - [48] 97.49% 

VGG16 - [48] 97.29% 

PlantDiseaseNet - [47] 93.67% 

Inception V3 – black leaf spot - [49] 98% 

Inception V3 – red mite damage - [49] 96% 

Inception V3 – red mite damage - [49] 95% 

Inception V3 – cassava brown streak - [49] 98% 

Inception V3 – cassava mosaic - [49] 96% 

Proposed NASNetMobile Deep-learning 

model  (unfiltered images) 

99.25% 

Proposed NASNetMobile Deep-learning 

model (average-filtered images) 

99.28% 

Proposed NASNetMobile Deep-learning 

model (median-filtered images) 

99.28% 

Proposed NASNetMobile Deep-learning 

model(Gaussian-filtered images) 

99.31% 

 

 

G. Performance comparison with models in literature  

The results of the model investigated in this study to diagnose 

plant diseases using images of leaves of those plants are 

compared with results obtained in previous studies. Table 13 

compares the performance of the proposed NASNet model 

with other methods in the literature. The accuracy values 

99.24%, 99.28%, 99.31%, and 99.28% achieved from the 

proposed NASNet deep-learning model applied to unfiltered 

images, average-filtered images, Gaussian-filtered images, and 

median-filtered images, respectively, are higher than the 

accuracy values of 93.67%, 98.66%, 98%, and 97.49%, 

obtained in [16, 47-49]. 

 

V.  CONCLUSION 

This research paper has described the use of a state-of-the-art 

NASNet deep learning architecture using efficient parameters 

on very domain-specific dataset that is capable of effectively 

diagnosing plant diseases with a built mobile application. The 

application used a NASNet-Mobile model using transfer 

learning and the trained model was deployed to a flask 

microservice on an amazon EC2 instance, and communicates 

through the microservice to diagnose diseases using the plant 

leave images captured through the mobile application. The 

proposed model achieved promising results of 99.24%, 

99.28%, 99.31%, and 99.28%. Although the response time on 

the API micro-service that serves the diagnosis seems very 

impressive, it becomes slower when the image-size is bigger. 

Also, the developed mobile application for remote plant 

disease diagnosis seems promising because of the capability of 

fast remote accessibility to plant disease diagnosis it can 

provide for farmers. 
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