



Abstract-- Plant diseases remain a threat to global food supply, as

it causes unimaginable loss of food and revenue. Intelligent

mobile plant disease diagnostic system has however become

valuable due to its usefulness for the early diagnosis and

detection of plant diseases using leave images even when there

are no availability of competent and adequate experts in such

locations. The objective of this paper is to develop an intelligent

mobile plant disease diagnostic system that runs on a

smartphone. The diagnostic system is based on NASNet-Mobile,

a lightweight convolutional neural network (CNN) architecture

using the images of the plant leaves for plant disease diagnosis. A

mobile application is developed for both android and iOS

smartphones to capture the plant leaf images. The system runs on

a web service that gets diagnosis from the CNN model. The plant

leave images captured using the developed mobile application are

sent through the web service and the recognition of the plant

disease is achieved using NASNet-Mobile CNN model. The

proposed NASNet-Mobile CNN model plant disease diagnostic

system achieved an accuracy rate of 99.31%.

Index Terms-- Agriculture, Deep Learning, Image Processing,

Machine Learning, Plant Disease Identification

I. INTRODUCTION

LANT diseases are a huge constraint to the production of

agricultural crops [1]. They decrease plant production, and

as such pose a threat to the global food supply and the

livelihood of the farmers cultivating the crops [1]. Every

agricultural crop is vulnerable to diseases and these diseases

can be caused by either bacterial, fungal, or viral pathogens

[1]. Study has indicated that about 25% of world crop

production is lost due to diseases year after year [2]. In places

like Panama, the economic impact of loss from diseases has

resulted in whole plantations being abandoned [3]. These

losses are significant and they lead to financial and economic

losses on the part of the farmers. Similarly, it could lead to

famine that can subsequently lead to loss of life. Literature

showed that potato blight in Ireland (1845-1846) and the

Manuscript received March 22, 2021; revised September 9, 2021

A. O. Adedoja is a postgraduate student at the Department of Computer

Systems Engineering, Tshwane University of Technology, Pretoria, South

Africa. (e-mail: damdey@yahoo.com).

P. A. Owolawi is the Head of Department of Computer Systems

Engineering, Tshwane University of Technology, Pretoria, South Africa.

(e-mail: owolawipa@tut.ac.za).

T. Mapayi is a lecturer at the Department of Computer Systems

Engineering, Tshwane University of Technology, Pretoria, South Africa.

(e-mail: mapayit@tut.ac.za).

Chunling Tu is a lecturer at the Department of Computer Systems

Engineering, Tshwane University of Technology, Pretoria, South Africa.

(e-mail: duc@tut.ac.za).

Bengal famine epidemic (1943) are a few of the devastating

socio-economic repercussions of plant diseases [3].

Plant diseases manifest in physical changes in the parts of

the plant like roots, leaves, stems, etc. Traditionally, diagnosis

is made through observation of changes in certain parts of the

plants (i.e. color of the leaf), and this allows expert observers

to assess the type of plant disease and its severity. Visual

assessments have been successfully applied over the years [4].

However, diagnosis made via optical observation of physical

characteristics of the plant has a considerably high degree of

complexity [5]. This high degree of complexity means that

experienced agronomists and plant pathologists might

misdiagnose the plant diseases [5]. The accurate and early

diagnosis of the disease is important to the disease

management efforts as they are the preliminary steps that are

required before an efficient disease management plan is

formulated. If a diagnosis is wrong or if it is made late, this

can result in a poorly coordinated disease management plan

that will inevitably lead to loss of agricultural crops. An

effective system for disease diagnosis is important, as this

would help anybody regardless of experience from the novice

farmer to the experienced agronomist when diagnosing

infected plants from the optical observation of the leaves [6].

Also, the ease of accessibility of an efficient diagnostic system

to farmers in the form of a mobile application will be of great

advantage as this would be particularly useful in regions of the

world with infrastructural and financial challenges that limit

their access to specialized equipment like microscopes and

DNA sequencing-based methods that are used for early

diagnosis.

Machine learning systems have experienced tremendous

growth in the last couple of years due to the increased power

of computation systems such as Graphical Processing Units

(GPU) systems that have allowed for the growth and

development of new methodologies and models. One of those

is deep learning systems [7], which are artificial neural

network (ANN) architectures that have a significant number of

layers for processing as against traditional neural network

methodologies that do not possess many processing layers [5].

Deep learning, a subset of machine learning, has recently

attracted a lot of attention due to its ability to analyze patterns

(unsupervised) and make classifications (supervised) better

than other models [8]. Deep learning models have been used

successfully in multiple domains like image recognition [9],

data mining [10], and other applications that require high

degree of processing. Deep learning models based on

Convolutional neural networks (CNNs) have also been utilized

Intelligent Mobile Plant Disease Diagnostic

System Using NASNet-Mobile Deep Learning
Adedamola O. Adedoja, Pius A. Owolawi, Temitope Mapayi, Member, IAENG, and Chunling Tu

P

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

in the domain of agriculture for use cases like counting of

fruits [11], detection of fruits [12], the recognition of plants

[13], and particularly in use for diagnosis of diseases [5, 6, 14-

17]. CNNs make up some of the most powerful techniques to

model complex processes and for pattern recognition in

applications that use huge amount of data like image pattern

recognition. This is because CNNs possess an automatic

features extraction capability that allows them to extract the

images from the input images without any feature engineering

of any kind, and thereby avoiding complex preprocessing on

images [18]. According to Lee, et al. [19], applications using

machine learning in developed countries is greater than 60%

and is already being used for novel purposes like its use for

diabetes diagnosis [20] to its uses in mobile voice recognition

and dialog systems like Apple’s Siri, the Google Assistant,

Amazon’s Alexa and Microsoft Cortana [21]. Its usage must

be therefore be encouraged for plant disease diagnosis domain

as many farmers around the world do not have access to the

sophisticated technologies needed for the fast and efficient

diagnosis required for early plant disease detection. Also, with

the penetration of mobile phones in recent years globally,

farmers in the developing nations can have access to

cellphones that can be leveraged in the near future for use as a

diagnostic tool for farmers [22].

The remainder of this paper is organized as follows. In

Section II, the literature review that briefly describes past

research work done in the domain is presented. Section III

details the materials and methods, with the datasets and the

model used in this paper. In Section IV, the experimental

setup is presented, and the experimental results are discussed,

while the conclusion is drawn in Section V.

II. LITERATURE REVIEW

Plant diseases can be confirmed using disease detection

techniques and there are numerous ways in which plant

diseases can be detected and diagnosed. These techniques can

be broken down into two, the direct and indirect methods. The

direct methods consist of the methods that make a scientific

diagnosis using serological and molecular methods. The

indirect methods consist of biomarker-based and plant
properties/stress-based disease detection [23]. Various parts of

a plant can manifest the physical characteristics that are

evidence of vegetable pathologies. Although a lot of research

work has been done into diagnosing plants using parts of the

plants like the roots [24], kernels [25], fruits [26] [27], stems,

and leaves, this research work concentrates on leaves.

One of the earliest successful deep learning architectures

plant disease classification was the AlexNet, and it was

developed by Krizhevsky, et al. [28]. The authors trained a

large CNN using datasets from the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) competitions, the

ILSVRC-2010, and ILSVRC-2012 subsets, and they contained
over 1.2 million images. The authors used a neural network

that consisted of five different convolutional layers, some with

max-pooling layer and three layers that are all fully connected

with a 1000-way softmax. The neural network used had 60

million parameters, 650,000 neurons. The size of the database

used made overfitting a possibility. Hence the authors used the

‘dropout’ regularization method to prevent overfitting. The

authors were able to get top-1 and top5 error rates of 37.5%

and 17.0%, which was a lot better than others at that time. The

research study showed how successful deep learning could be

when applied to images. The research work presented is

similar to the one conducted by Mohanty, et al. [6] on plant
disease diagnosis. The authors compared the performance of

two deep learning models, GoogLeNet and AlexNet in

detecting plant diseases, the researchers used a public dataset

that contained 54,306 healthy and diseases images of plant

leaves to identify 26 diseases and 14 different crop species to

achieve an accuracy of up to 99.35% on a test set. However,

the images used to train the plant diseases were captured in

controlled conditions and not in actual real conditions in the

field. Cap, et al. [29] also developed a system for on-site plant

leaf disease detection using deep learning, the authors focused

on the leaf localization method using wide-angle images taken

on-site as against traditional narrow ranged images that
contained one or limited number of targets in the image. The

authors believed that deep learning diagnosis done on narrow

range images are not practical for real life scenarios where the

angle of capture might be wide and contain multiple number

of targets. The authors were able to detect ‘fully leaf regions’

from wide range images and make a diagnosis using a CNN

model trained on a dataset of 60,000 images gotten from the

Saitama Agricultural Technology Research Center, Japan. The

authors were able to achieve a performance of 78.0%. Khan, et

al. [30], in a study for real-time plant health assessment, used

transfer learning to accurately detect leaf diseases. The authors

used a dataset that included images from fruit trees (apple,
grape, peach, and strawberry) and vegetable plants (potato and

tomato) and used the Amazon Web Services (AWS) machine

learning services for training and deployment. To train the

model, the authors used the AWS Sagemaker, which is a

cloud-based environment for training and testing. The

proposed model is called the DeepLens Classification and

Detection Model (DCDM) and is based on a Deep

Convolutional Neural Network (DCNN). After training, the

model is then deployed on an Internet of Things (IoT) device

called the AWS DeepLens which is a DL based camera

equipped with 4 Mega-Pixel sensors used for ML related

project implementation. The authors evaluated the
performance of the DCDM architecture and compared it

against other CNN architectures including DenseNet,

DarkNet, ResNet-50, AlexNet, VGG-16, VGG-19,

SqueezeNet. The DCDM architecture with an average

accuracy of 98.78% on test images achieved an improved

performance over the other architectures and was also better in

terms of its computational processing time.
There has been some efforts to harness the power of mobile

computing alongside deep learning for the use of plant disease

recognition. Wang, et al. [31] decided to tackle the challenge

of early disease diagnosis problem in plants using mobile

applications. The authors underlying diagnosis technology was

an image processing algorithm based on candidate hotspot

detection used alongside statistical inference method. This

technology was used by a mobile application that captured

images and had the image diagnosed online and returned a

result. The approach used by the authors however required a

considerable amount of feature engineering. Valdoria, et al.

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

[32] developed an android application that detected plant

diseases on terrestrial plants in the Philippines and achieved an

accuracy of 80% on the developed app. Pan, et al. [33] in

research to develop a smart mobile diagnosis system used

densely connected convolutional networks to develop an

intelligent diagnosis system for citrus plant diseases that used

mobile services computing. The authors built an image dataset

that contained citrus diseases of six different varieties and

trained a densely connected convolutional networks

(DenseNet). The developed system was deployed as an applet

on the WeChat platform where the users can upload images

and get a response with diagnosis of the uploaded image. The

results had the accuracy exceeding 88%. Elhassouny and

Smarandache [34] proposed the use of a smart mobile

application model that utilises deep CNN to recognize tomato

leaf diseases. The model was trained on 7176 images of

tomato leaves to recognize the 10 most common types of

tomato leaf diseases. The deep CNN implemented in the

study, called MobileNets, is optimized for mobile devices that

reduces the amount of computation in the first layers.

TABLE I

Quantitative Data of Dataset Images

Mrisho, et al. [35] presented a deep learning model called

Nuru. Nuru was developed by PlantVillage as a simple and

inexpensive way for in-field diagnosis of the viral cassava

diseases–CMD and CBSD without the use of an internet

connection. Nuru is especially useful in rural places around

the world with low internet penetration. In the study, the

authors evaluated the diagnostic capability of Nuru against

agricultural extension officers and farmers in the diagnosis of

cassava diseases. Nuru was able to diagnose symptoms of

cassava at an accuracy of 65%, higher than those of

agricultural extension officers (40–58%) and the farmers (18–

31%). This app shows the potential of the use of deep learning

in plant disease diagnosis using mobile applications and the

comparison of effectiveness of the developed model against

farmers and agricultural extension officers.

III. MATERIALS AND METHODS

In this research project we aim to develop a mobile
application that uses deep learning to diagnose plant
diseases.

A. Datasets

The PlantVillage dataset is a dataset that contains 54,309

images of both healthy and diseased plants. The dataset

contains images of size 256x256 of 14 crops and 38 different

healthy and diseased plants. The images in the dataset were

taken at experimental research stations with association with

Land Grant Universities in the USA (e.g. Florida State, Penn

State amongst others) [36]. The crop species in the dataset are

Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach, Bell

Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, and

Tomato. The dataset contains three varieties of the images

namely: colour, grayscale and segmented.

Fig. 1. Sample Images from the PlantVillage Dataset

This research work uses the colour images in the dataset, as

previous research works have demonstrated that the

segmented and grayscale versions do not improve the

performance of the trained model.

Fig. 1 shows sample images of the database and table 1 gives

an overview of the dataset. The entire database is split into

training and validation sets, by randomly splitting the 54,309

images. The split used is 80/20 with 80% forming the training

set, and 20% form the validation set. The 80/20 split is used

mostly in neural network applications, other splits (like the

70/30, 75/25) do not have sufficient impact on the

performance of the developed model [37]. This study utilizes

43, 447 for training the NASNet-mobile model and 10862 are

used to validate the performance of the model for the plant

leave images.

Plant Images

(Number)

Apple 3172

Blueberry 1502

Cherry 1906

Corn 3852

Grape 4063

Orange 5507

Peach 2657

Bell Pepper 2475

Potato 2152

Raspberry 371

Soybean 5090

Squash 1835

Strawberry 1565

Tomato 18162

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

Fig. 2. Difference between traditional and convoluted neural network

B. Deep learning-based classification

Machine learning use-cases require the need for creating a

classifier, and then applied the classifier to the extracted

features from their experiment dataset. This is easily achieved

in normal use-cases, but for complex tasks like disease

recognition, the feature engineering required consumes

immense time and effort. The automatic extraction of features

is what makes deep learning models stand out. Fig. 2 shows

the differences between the traditional machine learning

approach and deep learning approach. Deep learning approach
is built on artificial neural networks (ANN). Neural
networks constitute layers of multiple neurons; connections
are made between neurons in adjacent layers. The neurons
must learn to convert a mapped input already pre-
processed and pre-extracted featured into its corresponding
output. Although a traditional deep learning architecture can

extract features automatically, there was a need for CNN to

reduce the number of potential parameters present in the

neural network, and also train the models efficiently in less

time. CNNs are a class of neural networks that allow for
low variations in inputs and need low preprocessing before
executing [38]. Fig. 3 shows the difference between a
common neural network and a convoluted neural network.

A convolution layer in the neural network allows for the
possibility to process images regardless of size or
complexity with fewer parameters. This is done because the
number of weights that the network needs for training is
determined by the number and the size of the convolution
kernels, but not the number of features or weights or image
size.

Fig. 3. Fully Connected Neural Network & Convoluted Neural Network.

CNNs are made up of three different parts, convolution,

pooling, and fully connected layers and a detailed description

of this is shown fig. 4. Feature extraction is carried out in the

convolution and the pooling layers with the fully connected

layer for classification.

Fig. 4. CNN Model in detail

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

 1) NASNet

NASNet is a model that was developed by the Google ML

group in 2017 while working on novel ways to build

ConvNets, and It is based on the Neural Architecture Search

(NAS) idea conceptualized by the group [40].

 2) NAS

The Neural architecture search (NAS) method developed

by [41] is a method used to find the best architectures based

on gradients. Zoph and Le [41] observed that a neural

network’s connectivity and structure can be specified by a

string of variable length. This makes it possible to generate the

string using a recurrent network that acts as “The controller”,

with string as a representation of “Child Network”.

The child network is then trained on the real data with

accuracy on the validation set of the data produced. Using the

accuracy as a reward signal, the policy gradient is computed to

update the controller as seen in fig. 5. As such over the next

iterations, the controller learns and gives higher probabilities

to architectures of higher accuracy thereby returning strings

(child networks) with higher accuracies. Using NAS, Zoph

and Le [41] were able to design a novel ConvNet model that

performed better than most human-designed architecture. The

resulting model tested was able to achieve a test error rate of

3.65, which is 0.09 percent better and 1.05x faster than the

previous model that was designed using a similar architectural

scheme.

Fig. 5. Representation of the Neural Architecture Search

 3) Composition of NASNet

NASNet is a CNN architecture constructed using the

scalable NAS method afore-mentioned and the approach of

the Google ML group was based on reinforcement learning.

There is a parent AI, a Recurrent Neural Network (RNN) “The

Controller” that reviews the efficiency of the child AI “Child

Network” in a CNN and adjusts the architecture of the “Child

Network”. These adjustments are made on the number of

layers, the regularization methods, weights and more, are used

to improve the efficiency of the “Child Network" as seen in

fig. 6. The operational blocks available to the controller RNN

to build the child network is listed below:

 Identity

 1 × 3 then 3 × 1 convolution

 1 × 7 then 7 × 1 convolution

 3 × 3 dilated convolution

 3 × 3 average pooling

 3 × 3 max pooling

 5 × 5 max pooling

 7 × 7 max pooling

 1 × 1 convolution

 3 × 3 convolution

 3 × 3 depthwise-separable—convolution

 5 × 5 depthwise-separable—convolution

 7 × 7 depthwise-separable—convolution

Using all these operational blocks, the RNN builds the

NASNet architecture. The architecture is trained with two

different image sizes to produce the two different types of

NASNet architectures, the NASNetLarge and the

NASNetMobile. The NASNetmobile is a lot more reliable

than the NASNetLarge because of the difference in the

parameters - 53,26,716 parameters to the 8,89,49,818

parameters of NASNetLarge [40]. Every NASNet architecture

has a block as its smallest unit. A cell is a combination of the

blocks and is formed by concatenating various operational

blocks like those stated above and multiple cells form the

NASNet architecture.

The controller RNN optimizes the cells with blocks, and as

such are not fixed because they are optimized for a selected

dataset. Every single block is an operational module and the

operations that can be performed by a block include the

following:

• Convolutions

• Max-Pooling

• Average-Pooling

• Separable Convolutions

• Identity Mapping, inter alia

Fig. 6. The role of the Controller RNN in NASNet architecture

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

Each block maps the present and the previous input (H0

and H1) to a single output feature map as seen in fig. 8.

NASNet uses the element-wise addition which is much more

intuitive than vector wise operations. Two types of

convolutional cells are used when using a feature map as an

input and they are:

 Normal Cells: These are convolutional cells that usually

return feature maps of the same dimension. For example,

if a cell allows an input of a block that has a feature map

of size H × W with a stride of 1, the output calculated

will ultimately be the same size as that of the feature

map.

 Reduction Cells: These are also convolutional cells that

return feature maps, with the height and width of the

feature map reduced by a factor of two (e.g. if the stride

is 2, the size is reduced by 2) [42].

Fig. 7. Taxonomy of a NASNet Architecture

Fig. 8. Block formation in NASNet architecture

The development of the network is based on three different

factors:

 Cell structure

 Number of cells to be stacked (N)

 Number of filters in the first layer (F)

The values of N and F are fixed in the initial stages of the

search. However, the values of N and F in the first layer are

changed to alter the depth and width of the network. As soon

as the search is completed, models are constructed of various

sizes to fit the datasets. The cells are then connected in the

most optimized structure to create the best NASNet

architecture possible. The variations in convolutional nets are

the differences in the normal and reduction cells which are

searched by the controller RNN. The structures can be

searched in the search space as seen in fig. 10. In the search

space, each cell is connected to two input hidden states. A

sample of hidden states can be seen in fig. 9. Hidden layers are

then formed using pairwise combinations and then updated by

concentration. Hidden layers can also undergo convolution

and pooling operations. Using the results from the

optimization and the best cells are then selected in the

NASNet architecture. This makes the search faster and

generalized features can be obtained.

Fig. 9. Hidden state formation inside a block

 4) Reinforcement Learning

NASNet trains with reinforcement when an accuracy R is

achieved on a dataset. The accuracy R is used as the reward

signal, using reinforcement learning to train the RNN

controller. To find the optimal architecture, the controller is

asked to maximize its expected reward, represented by J(θc) as

shown in equation (1).

The reward signal R is non-differentiable. A gradient policy is

used to iteratively update the expected reward θc. The

reinforce rule is used as indicated in equation (2).

(2)

(1)

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

An empirical approximation of the above quantity is

calculated in equation (3).

where m is the number of varied architectures sampled by

the controller in a singular batch and T is the number of

hyperparameters that the controller would predict for the

design of neural network architecture. Rk is the validation

accuracy that the k-th neural network architecture receives

after being training on a specific training dataset. The

approximation in equation(3) is for the gradient. However, it

has the downside of having high variance. To reduce the

variance of the estimate, a baseline function described in (4) is

used.

Baseline b is the exponential moving average of the

accuracies of the architecture in the preceding batches.

Fig. 10. NASNet Search Space Schematic Diagram

C. System Architecture

The system architecture is shown in fig. 11. The training

and inference stages contain different components. The

training stage is the part where the NASNet model is trained

using transfer learning. After it has been trained, the trained

model is downloaded. This trained model is loaded into a

flask-powered microservice. Flask is a python microservice

that is very lightweight and has only one dependency–Python,

and this makes it easy to start up. This microservice exposes

an API that takes in an input image and makes a diagnosis on

the image using the saved trained model. This microservice is
deployed on one of Amazon Web Services (AWS) cloud-based

services called the Elastic Compute Cloud (EC2) that offers

state-of-the-art computing and storage facilities. EC2 provides

virtual machines called instances that users can rent and scale

at will [43].

Fig. 11. Proposed System Architecture

A client mobile app is developed using React Native. React

Native is a JavaScript framework, developed by Facebook to

build native mobile application using JavaScript. It facilitates,

the writing of application codes using JavaScript, and it would

be compiled to native code. It is based on ReactJS, a library

also developed by Facebook [44]. Applications developed

using React Native can be deployed on iOS and Android

devices. The client mobile app is used to capture the image

using either the phone camera or choosing an already captured
image. The captured image is then sent in a request to the web

service. The web-service receives the image, makes a

diagnosis, returns a result with its classification and this is

displayed on the mobile app interface.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, the training model for the deep learning

architecture and the proposed system is discussed in detail and

the experimental results are also presented. The technical
resources used for the research work are also presented in this

section. The proposed approach is evaluated by conducting a

series of experiments using the PlantVillage dataset mentioned

earlier. Below are the details of the experiments.

A. Dataset

The NASNet model is trained on the PlantVillage dataset. The

images used are the colour images, the grayscale images are

not considered for this research project as other experiments

[6] have shown that they do not improve the accuracy of the

model.

The dataset will be pre-processed in several forms.
1. Image Resizing: The images are resized, and they

are in a square-shaped input as it is the preference

of a lot of Deep Learning architectures.

2. Data Augmentation: Images are augmented to

generate more training data. The size of a dataset

has a huge impact on the model accuracy, which

means more data, better results. Techniques such

as rotate, flip, lighting change, and picture

enlargement are applied to the images in the

dataset as done by [45].

3. Image Filtering: These are techniques to modify or

enhance an image. This research project uses a
couple of techniques: An average filter that is a

simple sliding window spatial filter that is used to

reduce noise in images. It works by replacing the

centre value in the window with the average of the

pixel values. Gaussian filter is applied on the

image by using a Gaussian function; median filter

that is a sliding window spatial filter is applied

such that the centre values in the window are

(4)

(3)

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

replaced with the median of all pixel values in the

window.
B. Model

 The model used in this study is the NASNet model and it

has two variants, NASNetMobile and NASNetLarge.
NASNetmobile is used in this paper. This is because of its

reliability when compared with the NASNetLarge and

NASNetmobile has 5326716 parameters when compared to

the 889,49,818 parameters in NASNetLarge [40].

C. Implementation

The implementation is divided into two parts, the training

of the model and the deployment of the client mobile

application that does the diagnosis. The training/test dataset is

an 80-20 split. The model is implemented in python using the

deep learning library fast.ai [46] that allows for the use of

GPU acceleration. Fast.ai provides high-level deep learning
components that allow for quick prototyping to provide state-

of-the-art results in deep learning domains. The experiments

are performed on the Google Colaboratory platform (Colab).

Colab is a free Google service developed for artificial

intelligence developers. The service runs on jupyter notebooks

and it provides free access to GPU servers and Python 2/3

development environment. To train the network using the

fast.ai framework, the following steps as illustrated in

Algorithm 1 are involved:

 Clone the dataset from the GitHub repository.

 Create a data bunch by choosing the following
 Set the path for the input dataset

 Set the ratio of training/validation sets

 Label the inputs

 Set the batch size to be used.

 Set the kind of data augmentation to be used.

 Select the number of CPUs to be used.

 Import the pre-trained models and define them.

 Create a learner object from the data object and the

pre-trained model, define the metrics expected

(e.g., accuracy, error etc.), together with any

callback functions needed (e.g. CSVLogger to log

the results of the training).
 Set the number of epochs, then train

 After training, metrics are returned with proper

values.

The mobile application is to be developed in React Native.

After the completion of the development, an APK is generated

to be tested on an android device and is also tested on an iOS

device. The following technologies are used in the

development of the mobile application:

1. React Native – React Native is an open-source

mobile application framework created by

Facebook. It is used to develop applications for

Android, iOS, Web, and UWP by enabling

developers to use React.

2. Flask - Flask is a micro web framework for Python.

It is designed to make getting started quick and

easy, with the ability to scale up to complex

applications. In this study, it is used to power the

microservice that serves the mobile application.

Flask is used for rendering an API that the mobile

app consumes. It then connects with the DL model

to gain the prediction.

3. Cloud Server – This is the server where the Flask

application is going to reside, Since it is web-

accessible, it has cross-platform support (i.e. iOS,

Android, UWP), code reusability, and

maintenance. It reduces the computational load of

the DL model off the phone and into a scalable

cloud service.

ALGORITHM 1: TRAINING ALGORITHM

Algorithm for training

Input:

Dataset from GitHub Repository

Process:

1. Create data bunch

 Batch size

 Training Data : Validation Data

 Dataset path

 Data Augmentation Technique

 Number of CPUs

2. Import model to be used

3. Create Learner Object

4. Define Metrics to be expected

5. Set number of epochs

6. Train

Output:

Trained model with accuracy results

D. Model Training

Transfer learning is used to train an already pre-trained
NASNet model that was trained on the ImageNet dataset.

Below are the different hyperparameters used and the

experimented values.

 Number of epochs: An epoch is a full run of the

training dataset through the model currently being

trained. This is to learn the appropriate number of

epochs that allows the network to converge

properly.

Baseline: Five

 Dropout rate: Various dropout rates are used all the

way from 0.0 to 0.9, with 0.1 increments.

Baseline: 0.5
 Validation/Training Data Ratio: 1:9 to 9:1.

Baseline: 2:8

 Batch Size: Various batch sizes are tested from an

initial 8 to 64. A training dataset can be divided

into one or more batches. This is important if you

cannot fit your whole data into the memory of the

machine that is processing the model. It is the

number of samples that will be passed into the

model at once.

Baseline: 32

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

 Input Image Size: This is the size of the input

images, Sizes from 128 x 128 up to 256 x 256 will

be tested.

Baseline: 256 x 256.

E. Mobile Application Deployment

After the model has been trained successfully, it is

downloaded to an already developed python flask

microservice that is deployed on an AWS EC2 instance with

Docker as described in fig. 12. The flask microservice renders

an API endpoint that takes in a request that contains the leave

image. The leave image is saved and gets a diagnosis from the

trained NASNet model and the feedback of the request is sent

back. The feedback of the request is received by the mobile

app and then displayed on the user-interface of the app.

Fig. 12: Diagnosis system design

Steps involved in the diagnosis:

 Mobile app sends a request with the image of the

leaf image to the server.

 The Droplet contains the microservice. The

webserver on the microservice gets the request,

with the leave image.

 The web-server sends the leave image to the deep
learning model for prediction.

 The resulting prediction that decides the state of the

plant leaf, as either diseased or healthy, is sent

back to the web server, which then sends the

prediction to the mobile app.

F. Results

The NASNet model to be trained is trained on a variety
of afore-mentioned parameters. Additionally, the mobile
application developed is tested on 20 randomly selected
images of varying sizes for its response time. Below are the
results of the experiments.

TABLE 2: BASE PARAMETERS

Hyperparameter Value

Epochs 5

Dropout Rate 0.5

Batch Size 32

Input Image Size 256x256

Validation/Training Data Ratio 2:8

Learning Rate 0.01

Filtering None

TABLE 3: RESULT FROM BASE PARAMETERS

Training Loss Validation Loss Accuracy

0.151575 0.099513 0.965749

TABLE 4: PERFORMANCE COMPARISON OF FILTERING ON

ACCURACY

Filter Size Training Loss Validation Loss Accuracy

No Filter 0.170315 0.113067 0.963079

Average Filter

3x3 0.153105 0.104462 0.964736

5x5 0.174656 0.133590 0.958107

10x10 0.253591 0.164824 0.943744

Gaussian Filter

3x3 0.164019 0.102222 0.964000

5x5 0.160866 0.114305 0.960409

7x7 0.184944 0.117713 0.961974

Median Filter

3x3 0.148121 0.100840 0.966854

5x5 0.182138 0.126222 0.956910

7X7 0.201356 0.131876 0.956818

Experiment 1: Initial setup and baseline hyperparameters

The model was trained on an initial baseline set of

hyperparameters that are derived from similar research by

Tiwari and Richmond [14] on techniques and methodologies

on identifying crop diseases. This is going to be used as a

benchmark for the other test results to see the effect of the

changes of the hyperparameters on the performance accuracy

rate.

Table 3 shows the results of the experiment. The initial

learning rate is set to 1e-2, with the model trained for 5

epochs, at a dropout rate of 0.5, a batch size of 32, with input

image size of 256x256 pixels, with the validation/training data

ratio of 2:8. With the initial model training, an accuracy value

of 96.57%, training loss of 0.151575 and validation loss of

0.099513 are achieved.

Experiment 2: Initial setup and baseline hyperparameters.

Experiments are carried out to investigate the effect of

these filters on accuracy. Although the baseline test does not

use any filter, the filter-based experiments used the averaging,

Gaussian, and median filters with varying windows.

Table 4 shows the results of the experiment, with the

accuracy values of 96.47% achieved for the average filter (3x3

window), 96.40% for the Gaussian filter (3x3 window) and

96.68% for the median filter (3x3 window) as against a value

of 96.30% with no filter. Fig. 13 shows a graphical

representation of the results obtained.

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

93

94

95

96

97

Gaussian

Filter

Average

Filter

Median

Filter

3x3

5x5

7x7

10x10

Fig. 13. Graphical representation of filter experiment results

Experiment 3: Ratio of validation data to training data

results.

The effect that the split of the validation, the training data ratio

has on the accuracy is also examined. The baseline parameter

ensures the splitting in a 2:8 ratio. Such is progressively

adjusted up until it reaches a 9:1 ratio while holding other

baseline set of hyperparameters constant.

TABLE 5: PERFORMANCE COMPARISON OF PERFORMANCE OF

DIFFERENT RATIO TRAINING/VALIDATION DATA RATIO FOR THE

DATASET USED.

Training Training Loss Validation Loss Accuracy

0.2 0.157282 0.101149 0.966486

0.3 0.170966 0.123526 0.959057

0.4 0.191113 0.1293114 0.957002

0.5 0.196933 0.147369 0.950685

0.6 0.229605 0.166938 0.944235

0.7 0.262834 0.192039 0.937890

0.8 0.297685 0.242702 0.921416

0.9 0.436562 0.343948 0.890433

The best accuracy rate and validation loss achieved is on

the baseline parameter of a 2:8 ratio; this achieved a 96.64%

accuracy value. This accuracy value progressively reduces as

the splitting ratio is continuously adjusted in the experiment.

The last ratio of 9:1 achieved the least accuracy value of

89.04% in the experimental accuracy performance set. Table 5

shows the performance and fig. 14 shows a graphical

representation of the experimental values.

Fig.14. Graphical Representation of performance of different ratio

training/validation data ratio for the dataset used.

However, the first two dropout rate, 0.1 and 0.2 produce

models that are overfitted with their validation loss greater

than their training loss. The closest accuracy rate that is not

overfitted is a dropout rate of 0.5. Such is consistent with the

baseline value suggested and leading to maximum

regularization.

Table 6 shows a detailed representation of the results of the

experiment. Fig. 15 shows a graphical representation of the

experiments.

TABLE 6: PERFORMANCE COMPARISON OF DROPOUT RATE ON

ACCURACY

Dropout rate Training

Loss

Validation

Loss

Accuracy

0.1 0.079877 0.081221 0.973943

0.2 0.089208 0.092597 0.970997

0.3 0.161278 0.113834 0.960960

0.4 0.183559 0.128273 0.956404

0.5 0.151575 0.099513 0.965749

0.6 0.187764 0.105838 0.963355

0.7 0.225926 0.122344 0.957555

0.8 0.316459 0.147102 0.951662

0.9 0.479185 0.209871 0.932419

84

86

88

90

92

94

96

98

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

u
ra

cy

Validation Data/Training Data

Accuracy

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

Fig. 15. Graphical Representation of the effect of accuracy

against dropout rate

Experiment 5: Image size experiment.

The experiment performed varied the size of the leaf

images in the dataset used for the model training and

monitored the effect of the variation in the image sizes on the

model performance. Although the baseline value of 256x256

image size is used in the experiment, the experiment also

investigated the sizes 64x64, 128x128, and 256x256 while

holding other baseline sets of hyperparameters constant.

TABLE 7: PERFORMANCE COMPARISON OF IMAGE SIZE ON

ACCURACY

Image Size Training

Loss

Validation

Loss

Accuracy

64 0.808506 6.208295 0.802320

128 0.322468 0.229584 0.924777

256 0.151575 0.099513 0.965749

Although the next logical image size is 512x512, the training

environment is unable to handle training images of this size as

it is continually timed out. After the model training, the

accuracy values of the model increased as the image size

increased and the highest accuracy value of 96.57% achieved

is on the 256x256 image sizes, while the lowest accuracy

value of 80.23% is achieved on image sizes of 64x64 with the

trained model very underfitted. Table 7 shows the values of

the accuracy measures on the various image sizes. Fig. 16

shows a graph of the accuracy values against their respective

image sizes.

Experiment 6: Batch size Experiment.

The batch size is the number of dataset samples passed into

the model, the baseline value being 32. The experimental

batch size values investigated ranged from 8 to 64 when

holding other baseline sets of hyperparameters constant.

0

20

40

60

80

100

120

64 128 256

A
cc

u
ra

cy

Image Size

Accuracy

Fig. 16. Graph showing effect of image size on accuracy.

Experimental studies show that the batch size of 32

achieved the highest accuracy value of 96.57%, while the

lowest accuracy value of 95.30% is achieved via a batch size

of 8. Table 8 details the performance accuracy values obtained

in the experimental studies. Fig. 17 shows the graphical

representation of the different accuracy values obtained,

against their respective batch sizes.

TABLE 8: PERFORMANCE COMPARISON OF BATCH SIZE ON

ACCURACY

Batch Size Training

Loss

Validation

Loss

Accuracy

8 0.251792 0.182867 0.953043

16 0.171711 0.120710 0.964184

32 0.151575 0.099513 0.965749

64 0.154251 0.110910 0.962619

Experiment 7: Epoch Experiment.

The epoch is used to describe the number of times a dataset

passes through the training algorithm. The baseline value of

the epoch used is 5. The experiment performed starts with an

initial value of 1 epoch, then 5 epoch, and then increases by 5

epochs up until it reaches 35 epochs while holding other

baseline sets of hyperparameters constant. The training

environment is unable to handle the next value of 40 epochs,

constantly timing out. Experimental studies showed that the

greater the epoch value, the greater the accuracy value and the

lower the validation loss. The highest accuracy value of

99.09% is achieved at 35 epochs, achieving as close to an

optimal fit as possible.

The least achieved accuracy is at 1 epoch, and the accuracy

value is 91.65%, with the validation loss sufficiently high. The

difference in the validation loss and the training loss shows the

model to be seriously underfitted at this point. Table 9 details

the values obtained after each experimental run. Fig. 18

presents a graphical representation of the epoch values against

the accuracy.

94

94,5

95

95,5

96

96,5

97

97,5

98

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
c
c
u

ra
c
y

Dropout rate

Accuracy

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

94,5

95

95,5

96

96,5

97

8 16 32 64

A
cc

u
ra

cy

Batch Size

Accuracy

Fig. 17. Graphical representation of accuracy against batch

size.

TABLE 9: PERFORMANCE COMPARISON OF THE EFFECT OF

VARIABLE EPOCHS ON ACCURACY

Epochs Training

Loss

Validation

Loss

Accuracy

1 0.395950 0.279173 0.916582

5 0.151575 0.099513 0.965749

10 0.093075 0.062832 0.978271

15 0.067690 0.044993 0.985913

20 0.553122 0.039122 0.98712

25 0.036893 0.033198 0.988767

30 0.033079 0.026128 0.990793

35 0.026869 0.024630 0.990977

Experiment 8: Optimal Hyperparameters with Filters

Experimental studies are also conducted to investigate the

impact of applying the best-performing window sizes of the

afore-mentioned filters (Gaussian, median and average filters)
when combined with the best-performing parameter values of

the proposed deep learning model (see Table 10). The results
obtained are compared with the best accuracy value
obtained when no filter was used (see Table 11).

Experimental findings showed that the application of the

filters has a slight effect on the accuracy of the trained model,

with all models trained using filtered images having higher

accuracy values when compared to the models trained on

unfiltered images. Accuracy values achieved are 99.24% for

unfiltered images, 99.28% for average filtered images, 99.31%

for Gaussian filtered images, and 99.28% for median filtered

images. The proposed deep learning model applied on

Gaussian filtered images achieved the highest accuracy value

of 99.31%. Fig. 19 shows a graphical representation of the

comparison of the best results obtained from the models

trained using filtered images with the models trained on

unfiltered images using the best hyperparameters.

86

88

90

92

94

96

98

100

1 5 10 15 20 25 30 35

A
cc

u
ra

cy

Epochs

Accuracy

Fig. 18. Graphical representation of different epochs on the

accuracy of a model

TABLE 10: BEST PERFORMING VALUE OF EXPERIMENTED

PARAMETERS

Parameter Value

Validation/Training Ratio 2:8

Dropout rate experiment 0.5

Image Size 256x256

Batch Size 32

Epoch 35

TABLE 11: COMPARISON OF THE RESULTS OBTAINED FROM THE

MODELS TRAINED USING FILTERED IMAGES WITH BEST

PERFORMING WINDOW SIZES AND UNFILTERED IMAGES USING

BEST HYPERPARAMETERS

Filter

(Window

Size = 3x3)

Training

Loss

Validation

Loss

Accuracy

No Filter 0.027846 0.022291 0.992450

Average

Filter

0.038150 0.020694 0.992818

Gaussian

Filter

0.035963 0.019991 0.993095

Median

Filter

0.036853 0.022398 0.992818

Experiment 9: Mobile Application & Web Service

Response Time

The trained NASNetMobile model was then uploaded to a

Python-powered Flask web Service deployed to a cloud

platform. The web service was developed to accept an image

in its request parameters. The image was saved on the cloud

server. The service then classified the received image using

the trained model. This returned a disease-diagnosis report via

the web service as a JSON string. The web service was tested

for its response time; and 20 images of varying sizes are

tested, as shown in Table 12. Experimental studies showed

that the bigger the image size, the longer the response time

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

required to return the plant-disease diagnosis report. A mobile

application was also developed for the plant disease diagnostic

system and this was performed via React Native. Fig. 20 and

fig. 21 show the screenshots from the mobile application.

The response time of the proposed mobile-based plant disease

diagnosis report using web-service is also examined. Table 12

shows the response time in ms.

99.21

99.22

99.23

99.24

99.25

99.26

99.27

99.28

99.29

99.3

99.31

No Filter Average

Filter

Gaussian

Filter

Median

Filter

A
c
c
u

r
a
c
y

Filters

Accuracy

Fig. 19. Graphical representation of the results obtained from

the models trained using filtered images with best performing

window sizes and unfiltered images using best

hyperparameters.

Fig. 20. Mobile Application Screenshot.

Fig. 21: Mobile Application Screenshot.

TABLE 12: WEB SERVICE RESPONSE TIME IN MS

Image Size (kb) Response Time(ms)

11 358

12 429

14 291

30 300

35 307

37 361

45 420

49 302

103 386

120 366

126 373

192 505

212 375

279 467

338 369

452 412

1314 630

1408 656

3997 1496

11 358

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

TABLE 13: PERFORMANCE COMPARISON OF THE MODEL USED IN THIS

RESEARCH AGAINST SOME OTHER METHODS IN LITERATURE

Model (Author) Accuracy

AlexNet - [16] 98.66%

AlexNet - [48] 97.49%

VGG16 - [48] 97.29%

PlantDiseaseNet - [47] 93.67%

Inception V3 – black leaf spot - [49] 98%

Inception V3 – red mite damage - [49] 96%

Inception V3 – red mite damage - [49] 95%

Inception V3 – cassava brown streak - [49] 98%

Inception V3 – cassava mosaic - [49] 96%

Proposed NASNetMobile Deep-learning

model (unfiltered images)

99.25%

Proposed NASNetMobile Deep-learning

model (average-filtered images)

99.28%

Proposed NASNetMobile Deep-learning

model (median-filtered images)

99.28%

Proposed NASNetMobile Deep-learning

model(Gaussian-filtered images)

99.31%

G. Performance comparison with models in literature

The results of the model investigated in this study to diagnose

plant diseases using images of leaves of those plants are

compared with results obtained in previous studies. Table 13

compares the performance of the proposed NASNet model

with other methods in the literature. The accuracy values

99.24%, 99.28%, 99.31%, and 99.28% achieved from the

proposed NASNet deep-learning model applied to unfiltered

images, average-filtered images, Gaussian-filtered images, and

median-filtered images, respectively, are higher than the

accuracy values of 93.67%, 98.66%, 98%, and 97.49%,

obtained in [16, 47-49].

V. CONCLUSION

This research paper has described the use of a state-of-the-art

NASNet deep learning architecture using efficient parameters

on very domain-specific dataset that is capable of effectively

diagnosing plant diseases with a built mobile application. The

application used a NASNet-Mobile model using transfer

learning and the trained model was deployed to a flask

microservice on an amazon EC2 instance, and communicates

through the microservice to diagnose diseases using the plant

leave images captured through the mobile application. The

proposed model achieved promising results of 99.24%,

99.28%, 99.31%, and 99.28%. Although the response time on

the API micro-service that serves the diagnosis seems very

impressive, it becomes slower when the image-size is bigger.

Also, the developed mobile application for remote plant

disease diagnosis seems promising because of the capability of

fast remote accessibility to plant disease diagnosis it can

provide for farmers.

REFERENCES

[1] P. A. J. A. P. P. O’Brien, "Biological control of plant diseases,"

Australasian Plant Pathology, vol. 46, no. 4, pp. 293-304, 2017.

[2] B. Lugtenberg, "Introduction to plant-microbe interactions," in

Principles of Plant-Microbe Interactions: Springer, 2015, pp. 1-2.

[3] S. Chakrabortya, A. Tiedemannb, and P. J. E. P. Tengc, "Climate

change: potential impact on plant diseases," vol. 108, no. 317, p.

326, 2000.

[4] C. Bock, P. Parker, A. Cook, and T. J. P. D. Gottwald, "Visual

rating and the use of image analysis for assessing different

symptoms of citrus canker on grapefruit leaves," Plant Disease

,vol. 92, no. 4, pp. 530-541, 2008.

[5] K. P. Ferentinos, "Deep learning models for plant disease detection

and diagnosis," Computers Electronics in Agriculture, vol. 145, pp.

311-318, 2018.

[6] S. P. Mohanty, D. P. Hughes, and M. Salathé, "Using deep

learning for image-based plant disease detection," Frontiers in

plant science, vol. 7, p. 1419, 2016.

[7] Y. LeCun, Y. Bengio, and G. J. n. Hinton, "Deep learning," nature,

vol. 521, no. 7553, p. 436, 2015.

[8] Y. Tan, W. Yan, S. Huang, D. Du, and L. Xia, "Thermal Infrared

Human Recognition Based on Multi-scale Monogenic Signal

Representation and Deep Learning," IAENG International Journal

of Computer Science, vol. 47, no. 3, pp540-549, 2020.

[9] Y. LeCun and Y. Bengio, "Convolutional networks for images,

speech, and time series," The handbook of brain theory and neural

networks, vol. 3361, no. 10, p. 1995, 1995.

[10] G. Nguyen, S. Dlugolinsky, M. Bobák, V. Tran, A. L. García, I.

Heredia, P. Malík and L. Hluchý, "Machine Learning and Deep

Learning frameworks and libraries for large-scale data mining: a

survey," Artificial Intelligence Review, pp. 1-48, 2019.

[11] M. Rahnemoonfar and C. J. S. Sheppard, "Deep count: fruit

counting based on deep simulated learning," Sensors, vol. 17, no.

4, p. 905, 2017.

[12] I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. J. S. McCool,

"Deepfruits: A fruit detection system using deep neural networks,"

Sensors, vol. 16, no. 8, p. 1222, 2016.

[13] M. Gao, L. Lin, and R. O. Sinnott, "A mobile application for plant

recognition through deep learning," in 2017 IEEE 13th

International Conference on e-Science (e-Science), 2017, pp. 29-

38: IEEE.

[14] N. S. Tiwari and J. J. B. Richmond, "The development of

methodology and techniques for crop disease identification,"

bioRxiv, p. 702621, 2019.

[15] E. C. Too, L. Yujian, S. Njuki, L. J. C. Yingchun, and E. i.

Agriculture, "A comparative study of fine-tuning deep learning

models for plant disease identification," Computers and

Electronics in Agriculture, 2018.

[16] M. Brahimi, K. Boukhalfa, and A. Moussaoui, "Deep learning for

tomato diseases: classification and symptoms visualization,"

Applied Artificial Intelligence, vol. 31, no. 4, pp. 299-315, 2017.

[17] S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and D.

Stefanovic, "Deep neural networks based recognition of plant

diseases by leaf image classification," Computational intelligence

neuroscience, vol. 2016, 2016.

[18] P. Jiang, Y. Chen, B. Liu, D. He, and C. J. I. A. Liang, "Real-time

detection of apple leaf diseases using deep learning approach based

on improved convolutional neural networks," IEEE Access, vol. 7,

pp. 59069-59080, 2019.

[19] P. Lee, D. Stewart, and C. J. D. T. T. L. Calugar-Pop,

"Technology, media and telecommunications predictions," 2017.

[20] O. Karan, C. Bayraktar, H. Gümüşkaya, and B. J. E. S. w. A.

Karlık, "Diagnosing diabetes using neural networks on small

mobile devices," vol. 39, no. 1, pp. 54-60, 2012.

[21] A. Luckow, M. Cook, N. Ashcraft, E. Weill, E. Djerekarov, and B.

Vorster, "Deep learning in the automotive industry: Applications

and tools," in 2016 IEEE International Conference on Big Data

(Big Data), 2016, pp. 3759-3768: IEEE.

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

[22] J. Amara, B. Bouaziz, and A. Algergawy, "A Deep Learning-based

Approach for Banana Leaf Diseases Classification," in BTW

(Workshops), 2017, pp. 79-88.

[23] S. Sankaran, A. Mishra, R. Ehsani, C. J. C. Davis, and E. i.

Agriculture, "A review of advanced techniques for detecting plant

diseases," Computers and electronics in agriculture, vol. 72, no. 1,

pp. 1-13, 2010.

[24] S. Smith and S. J. F. P. B. Dickson, "Quantification of active

vesicular-arbuscular mycorrhizal infection using image analysis

and other techniques," Functional Plant Biology, vol. 18, no. 6, pp.

637-648, 1991.

[25] I. S. Ahmad, J. F. Reid, M. R. Paulsen, and J. B. Sinclair, "Color

classifier for symptomatic soybean seeds using image processing,"

Plant disease, vol. 83, no. 4, pp. 320-327, 1999.

[26] N. Aleixos, J. Blasco, F. Navarron, E. J. C. Molto, and e. i.

agriculture, "Multispectral inspection of citrus in real-time using

machine vision and digital signal processors," Computers and

electronics in agriculture, vol. 33, no. 2, pp. 121-137, 2002.

[27] F. López-García, G. Andreu-García, J. Blasco, N. Aleixos, J.-M. J.

C. Valiente, and E. i. Agriculture, "Automatic detection of skin

defects in citrus fruits using a multivariate image analysis

approach," Computers and Electronics in Agriculture, vol. 71, no.

2, pp. 189-197, 2010.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet

classification with deep convolutional neural networks," in

Advances in neural information processing systems, 2012, pp.

1097-1105.

[29] H. Q. Cap, K. Suwa, E. Fujita, S. Kagiwada, H. Uga, and H.

Iyatomi, "A deep learning approach for on-site plant leaf

detection," in 2018 IEEE 14th International Colloquium on Signal

Processing & Its Applications (CSPA), 2018, pp. 118-122: IEEE.

[30] A. Khan, U. Nawaz, A. Ulhaq, and R. W. Robinson, "Real-time

plant health assessment via implementing cloud-based scalable

transfer learning on AWS DeepLens," Plos one, vol. 15, no. 12, p.

e0243243, 2020.

[31] G. Wang, Y. Sun, J. J. C. i. Wang, and neuroscience, "Automatic

image-based plant disease severity estimation using deep

learning," Computational intelligence and neuroscience, vol. 2017,

2017.

[32] J. C. Valdoria, A. R. Caballeo, B. I. D. Fernandez, and J. M. M.

Condino, "iDahon: An Android Based Terrestrial Plant Disease

Detection Mobile Application Through Digital Image Processing

Using Deep Learning Neural Network Algorithm," in 2019 4th

International Conference on Information Technology (InCIT),

2019, pp. 94-98: IEEE.

[33] W. Pan, J. Qin, X. Xiang, Y. Wu, Y. Tan, and L. J. I. A. Xiang, "A

smart mobile diagnosis system for citrus diseases based on densely

connected convolutional networks," IEEE Access, vol. 7, pp.

87534-87542, 2019.

[34] A. Elhassouny and F. Smarandache, "Smart mobile application to

recognize tomato leaf diseases using Convolutional Neural

Networks," in 2019 International Conference of Computer Science

and Renewable Energies (ICCSRE), 2019, pp. 1-4: IEEE.

[35] L. M. Mrisho, N. A. Mbilinyi, M. Ndalahwa, A. M. Ramcharan, A.

K. Kehs, P. C. McCloskey, H. Murithi, D. P. Hughes and J. P.

Legg, "Accuracy of a Smartphone-Based Object Detection Model,

PlantVillage Nuru, in Identifying the Foliar Symptoms of the Viral

Diseases of Cassava–CMD and CBSD," Frontiers in plant science,

vol. 11, p. 1964, 2020.

[36] D. Hughes and M. Salathé, "An open access repository of images

on plant health to enable the development of mobile disease

diagnostics," arXiv preprint arXiv:1511.08060, 2015.

[37] T. L. Fine, Feedforward neural network methodology. Springer

Science & Business Media, 2006.

[38] J. Amara, B. Bouaziz, and A. J. D. f. B. Algergawy, Technologie

und Web -Workshopband, "A deep learning-based approach for

banana leaf diseases classification," Datenbanksysteme für

Business, Technologie und Web (BTW 2017)-Workshopband 2017.

[39] K. O'Shea and R. J. a. p. a. Nash, "An introduction to

convolutional neural networks," arXiv preprint arXiv:1511.08458 ,

2015.

[40] K. Radhika, K. Devika, T. Aswathi, P. Sreevidya, V. Sowmya, and

K. Soman, "Performance Analysis of NASNet on Unconstrained

Ear Recognition," in Nature Inspired Computing for Data Science:

Springer, 2020, pp. 57-82.

[41] B. Zoph and Q. V. J. a. p. a. Le, "Neural architecture search with

reinforcement learning," arXiv preprint arXiv:1611.01578, 2016.

[42] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning

transferable architectures for scalable image recognition," in

Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018, pp. 8697-8710.

[43] S. Garfinkel, "An evaluation of Amazon's grid computing services:

EC2, S3, and SQS," 2007.

[44] V. Novick, React Native-Building Mobile Apps with JavaScript.

Packt Publishing Ltd, 2017.

[45] E. Zawadzka-Gosk, K. Wołk, and W. Czarnowski, "Deep learning

in state-of-the-art image classification exceeding 99% accuracy,"

in World Conference on Information Systems and Technologies,

2019, pp. 946-957: Springer.

[46] J. Howard and S. J. I. Gugger, "Fastai: A Layered API for Deep

Learning," Information, vol. 11, no. 2, p. 108, 2020.

[47] M. Arsenovic, M. Karanovic, S. Sladojevic, A. Anderla, and D.

Stefanovic, "Solving current limitations of deep learning based

approaches for plant disease detection," Symmetry, vol. 11, no. 7,

p. 939, 2019.

[48] A. K. Rangarajan, R. Purushothaman, and A. Ramesh, "Tomato

crop disease classification using pre-trained deep learning

algorithm," Procedia computer science, vol. 133, pp. 1040-1047,

2018.

[49] A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, J. Legg,

and D. P. Hughes, "Deep Learning for Image-Based Cassava

Disease Detection," (in English), Frontiers in plant science,

Original Research vol. 8, no. 1852, 2017-October-27 2017.

BIOGRAPHIES

Adedamola O Adedoja received his BSc. (Hons),

Computer Science from the Bowen University,

Iwo, Nigeria in 2010 and BTech in Information

Technology in 2015 from Tshwane University of

Technology, Pretoria, South Africa. He is currently

studying towards a master’s degree with the

Tshwane University of Technology, Pretoria, South

Africa. His research interests are focused on big

data analytics, image processing, computer vision,

pattern recognition, machine learning and deep

learning.

Pius A. Owolawi (PhD) received his undergraduate

degree in 2001 from the Federal University of

Technology, Akure, Nigeria and also bagged his

MSc and PhD in Electrical Engineering from

University of KwaZulu-Natal, South Africa in 2006

and 2010 respectively. He is currently the Head of

Department of Computer Systems Engineering,

Tshwane University of Technology, South Africa.

His research interests include, RF, Green

communication, radio-wave propagation

(Microwave/ Millimeter wave systems), Satellite and free space optical

communications, IOT, Embedded systems, Machine learning and data

analytics. Prof. Owolawi was a recipient of Joint holder of best paper award

for a paper presented at the 2nd international conference on applied and

theoretical information systems research, in Taipei, Taiwan, 2012 and a

recipient of the Vice Chancellor’s teaching Excellence Award, 2015.

Temitope Mapayi received his BSc. (Hons),

Computer Science from the University of Ado Ekiti

in 2005, MSc in Computer Science in 2009 from

the Nigeria’s Premier University, University of

Ibadan, and obtained PhD degree in Computer

Science from the University of KwaZulu-Natal,

Durban, South Africa in 2015. He works with the

Department of Computer Systems Engineering,

Tshwane University of Technology, Pretoria, South

Africa. His research interests are focused on big data analytics, image

processing, computer vision, pattern recognition, machine learning and deep

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

learning. Dr Mapayi is a professional member of IAENG. He has authored

and co-authored several scientific international journal and conference

articles. He has also served as technical committee member of international

conferences and reviewer to reputable international journals.

Chunling Tu received the Bachelor degree of

computer science from Tianjin University of

Technology and Education, China in 2002; MTech

and MSc degrees in Electrical Engineering from

Tshwane University of Technology (South Africa)

and ESIEE Paris University (France) in 2010;

DTech and PhD degrees of Electrical Engineering

from the Tshwane University of Technology and

University Paris East, France in 2015. She currently

lectures at the Tshwane University of Technology. Her research interests

include image processing, AI, industrial control, machine learning, deep

learning and pattern recognition.

IAENG International Journal of Computer Science, 49:1, IJCS_49_1_23

Volume 49, Issue 1: March 2022

__

	I. Introduction
	II. literature review
	III. materials and methods
	A. Datasets
	B. Deep learning-based classification
	1) NASNet
	2) NAS
	3) Composition of NASNet
	4) Reinforcement Learning

	C. System Architecture

	IV. Experimental Setup and Results
	A. Dataset
	B. Model
	C. Implementation
	D. Model Training
	E. Mobile Application Deployment
	F. Results

	V. Conclusion
	References
	Biographies

