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Abstract—In this work, an under-actuated two degrees of
freedom planar robot called pendubot is controlled by using
a real-time embedded discrete linear quadratic regulator. The
proposed approach is validated over a real prototype using
a C2000 F28379d Delfino dual-core processor. Two scenarios
are evaluated: the double inverted pendulum in a top position
and the inverted pendulum in a middle position. The double
inverted pendulum proposed control approach is compared
with a state-of-the-art state feedback control strategy. The
mean-square-error and integral-time-absolute-error are used to
evaluate the controller’s performance. As a result, the discrete
linear-quadratic embedded real-time controller outperformed
the state-of-the-art controllers.

Index Terms—Embedded control, optimal control, real-time,
pendubot.

I. INTRODUCTION

THE development of dedicated real-time
microcontrollers for control tasks has improved

the design of autonomous systems [1], [2]. Several works
have used the structure of embedded controllers to control
power electronics as well as mechatronic systems [3], [4],
[5]. In [6], a synchronous Buck converter real-time fractional
controller is evaluated using an embedded structure over
a C2000 Texas Instruments microcontroller. In addition,
in [7] a HIL simulation by considering a magnetic levitation
system with an Arduino microcontroller is also considered
for time-varying reference tracking. In [8] an embedded
centralized and decentralized controllers of a microgrid
are assessed over a Hardware-In-the-Loop (HIL) structure
also using a real-time design, and a similar approach is
presented in [9] for a modified PID configuration over a
HIL validation structure.

In this work, real-time embedded control is analyzed over
a pendubot. The pendubot is a highly complex under-actuated
system that allows the validation of real-time linear and
nonlinear control techniques [10]. The pendubot is a two-link
under-actuated planar robot with a single actuator at the
first joint [11], which is a typical example of MIMO
under-actuated robots. This system allows experimental
validation of several control techniques in real-time due to
the nature of its construction and its inherent dynamics [12],
[13]. In fact, due to its construction, the pendubot system
also allows several equilibrium points, which increases the
possibility to evaluate real-time embedded controllers [14].
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Several techniques are evaluated over the pendubot due
to its nonlinear nature. For example, in [15] a set o
hybrid control techniques are applied and evaluated over the
pendubot, where the partial and optimal feedback strategies
are considered. In [16], a fuzzy control method is applied
over the pendubot, where the state feedback control is
extended to dual fuzzy PD control. Another hybrid optimal
approach is presented in [17], where the discrete mechanics
and optimal control achieve the feedforward control by
optimizing the trajectories for energy consumption and
transition time.

In this work, a discrete optimal control is proposed
in terms of the linear quadratic regulator. The optimal
control is evaluated over a double inverted pendulum
system by using a C2000-based Texas Instruments Digital
Signal Controller. The proposed approach is compared with
state-of-the-art state feedback methods and a full state
feedback controller. The proposed approach is also evaluated
by considering mean-squared-error (MSE) and integral-time
absolute-error (ITAE) criteria. This paper is organized as
follows: In section II is presented the theoretical framework.
In section IV are presented the experimental setup, results,
and discussions, and finally, in section V are presented the
final remarks and future works.

II. THE PENDUBOT

Figure 1 shows the mechatronics control kit produced by
Quanser configured as the pendubot. This device could be
described as a nonlinear under-actuated planar robot [18],
with a DC motor controlling two arms connected by a
non-controlled articulation, with the angle feedback provided
by two digital encoders. The control task is to maintain the
balance of the second arm on the unstable equilibrium point
on the top of the articulation, which leads to two different
feedback configurations.

Fig. 1. Side perspective schematic of the pendubot

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_07

Volume 49, Issue 2: June 2022

 
______________________________________________________________________________________ 



The mathematical model of the pendubot is inferred from
the dynamics of its simplified free-body diagram, as shown
in Fig. 2. The pendubot can be considered as double inverted
pendulum with two operational points: the pendulum in a top
position (both arms in the up position), and the pendulum in
a middle-position (the first arm up-side-down, and the second
arm in the up position).
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Fig. 2. Simplified free-body diagram of the pendubot.

The dynamics of the pendubot can be obtained by applying
the Lagrangian dynamics of (1), as proposed in [19].

τ = D(q)q̈ + C(q, q̇)q̇ + g(q) (1)

where τ is the vector of torque applied to the links, and q
is the vector of joint angle positions such that the mass or
inertia matrix D is given by expression (2), as described in
[20].

D(q) =

[
d11 d12
d21 d22

]
(2)

being

d11 = m1l
2
c1 +m2(l

2
1 + l2c2 + 2l1lc2cosq2) + I1 + I2

d12 = d21 = m2(l
2
c2 + l1lc2 cos q2) + I2

d22 = m2l
2
c2 + I2

and the Coriolis and centrifugal force matrix C lead by (3)

C(q, q̇) =

[
hq̇2 hq̇2 + hq̇1
−hq̇1 0

]
(3)

where
h = −m2l1lc2 sin q2

and the gravity matrix g (4):

g(q) =

[
φ1
φ2

]
(4)

and

φ =(m2lc1 +m2l1)g cos q1 +m2lc2g cos(q1 + q2)

φ =m2glc2 cos(q1 + q2)

A description of the model constants are listed below:
• m1, the total mass of link one.
• l1, the length of link one.
• lc1, the distance to the center of mass of link 1.
• I1, the moment of inertia of link one about its centroid.
• m2, the total mass of link two.
• Lc2, the distance to the center of mass of link 2.

• I2, the moment of inertia of link two about its centroid,
• g, the gravity acceleration.
The nonlinear dynamic model is obtained by applying the

inversion property of the mass matrix D described in [19],
leading expression (5), as follows:[

q̈1
q̈2

]
= D(q)−1τ −D(q)−1C(q, q̇)q̇ −D(q)−1g(q) (5)

where the system states are defined by:

x1 = q1, x2 = q̇, x3 = q2, x4 = q̇2
ẋ1 = x2
ẋ2 = q̈2
ẋ3 = x4
ẋ3 = q̈2

and
x =

[
q1 q̇1 q2 q̇2

]T
Note that the set of equations (5) describes two

second-order nonlinear differential equations. The model
must be linearized around the operation equilibrium points
to apply the optimal control theory. The particular case
of the inverted pendulum leads to the conclusion that the
equilibrium values from the model states and control signal
are equal to zero [19].

By using the approximation of the Taylor series, given
in expression (6), the linearized system is described as the
following set of equations:

fa(x, u) = fa(xr, ur)+
∂f

∂x

∣∣∣
xr,ur

(x−xr)+
∂f

∂u

∣∣∣
xr,ur

(u−ur)
(6)

where the partial derivative of the state vector x is computed
by using:

∂f

∂x
=


0 1 0 0
∂f2
∂x1

0 ∂f2
∂x3

0

0 0 0 1
∂f4
∂x1

0 ∂f4
∂x3

0


and the open-loop input is determined by:

∂f

∂u
=


0
∂f2
∂u
0
∂f4
∂u


The linearized model of the pendubot is lead by

expression (II):

d

dt


q1
q̇1
q2
q̇2

 =


0 1 0 0

(θ2θ4−θ3θ5)g
θ1θ2−θ23

0 −θ3θ5g
θ1θ2−θ23

0

0 0 0 1
θ5g(θθ1+θ3)−θ4g(θ2+θ3)

θ1θ2−θ23
0 θ5g(θ1+θ3)

θ1θ2−θ23
0



q1
q̇1
q2
q̇2



+


0
θ2

θ1θ2−θ23
0
−θ2

θ1θ2−θ23

 τ1 = AY +Bτ1 (7)

An identification process that allows the estimation of the
system constants is used, as shown in [21]. As a result,
two different models are obtained according to the angular
position of the first link: Top position and middle position.
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1) Top position: The unstable equilibrium point of the
second link is reached with the first link is located at a 90◦

angle with respect to the coordinate plane. The pendubot in
the top-position scenario is shown in Fig. 3.

Fig. 3. The pendubot system in the Top-position.

A linear estimated representation of the system in
space-state is therefore obtained by following the
general form given by (8). This procedure leads to
the expression (10), as described in [20].

ẋ = Ax(t) +Bu(t) (8)

being

A =


0 1 0 0
153 0 −43.87 0
0 0 0 1

−174.4 0 126.71 0

 (9)

B =


0

25.738
0

−39.37

 (10)

It is necessary to clarify that the lack of a swing up strategy
forces to start the model with initial condition (xi) in a top
position. This initial position must satisfy: xi =

[
π
2 , 0, 0, 0

]T
.

2) Middle position: The unstable equilibrium point of
the second link is reached with the first link has −90◦

with respect to the coordinate plane. The pendubot in the
middle-position scenario is shown in Fig. 3.

Equation (11) is obtained through a linear estimation of
the model constants, as presented in [20], as follows:

A =


0 1 0 0

−153 0 43.87 0
0 0 0 1

131.6 0 38.96 0

B =


0

25.738
0

−12.107

 (11)

The initial conditions xi for the middle position
operational point are given by xi = −

[
π
2 , π, 0, 0

]T
.

Fig. 4. The pendubot system in the middle-position.

III. OPTIMAL CONTROL

A. Linear Quadratic Regulator (LQR)

The LQR is a well-known method that provides optimally
controlled feedback gains to enable closed-loop stability
and high-performance design. This allow the solution of
the matrix Difference Riccati Equation (DRE) of (12), as
proposed in [22].

Ṗ(k) = A′(k)P(k + 1) [I + E(k)P(k + 1)]
−1 A(k) + Q(k)

(12)
with final condition P(k = kf ) = F(kf ), where
E(k) = B(k)R−1(k)B′(k).
The optimal state is solved for x∗(k) from (13), as follows:

x∗(k + 1) = [A(k)− B(k)L(k)] x∗(k) (13)

with initial condition x(k0) = x0, where

L(k) = R−1(k)B′(k)A−T (k) [P(k)− Q(k)] . (14)

and the optimal control u∗(k) is obtained from
u∗(k) = −L(k)x∗(k) where, L(k) is the Kalman gain (14).

The optimal performance index from (15) is obtained as

J∗ =
1

2
x∗

′
(k)P(k)x∗(k) (15)

.

B. Constraint matrix parameters

The values in the matrix (16) and (17) are built-in by the
plant manufacturer. The constraint parameters Q and R are
used to get the LQR behavior controller during the running
time. The constraint parameters are defined as follows:

Q =


0.05 0 0 0
0 850 0 0
0 0 10000 0
0 0 0 0

 (16)

IAENG International Journal of Computer Science, 49:2, IJCS_49_2_07

Volume 49, Issue 2: June 2022

 
______________________________________________________________________________________ 



and

R = 100 (17)

According to the LQR method, the state feedback vector is
given by K = (R+BTPB)−1BTPA, where P = PT >=
0 is the unique solution of the Control Algebraic Ricatti
Equation (CARE). The optimal state-feedback uk = −Kxk
ensures the asymptotic stability of the closed-loop system.
The feedback vector K is computed by the built-in Matlab
function lqrd(A,B,Q,R, Ts) [23].

The Matlab function “lqrd” can be used to derive optimal
control gains for a discrete controller. Using a sampling
period of 5ms, the optimal gains are defined in (18) and (19).

1) Top-position:

K =
[
−127.6356 −21.2588 −125.2540 −15.9731

]
(18)

2) Middle-position:

K =
[
98.8684 9.9684 116.5689 14.8456

]
(19)

IV. RESULTS

A. Experimental Setup

In order to evaluate the proposed approach in a real-time
implementation, a MATLAB/Simulink environment is used.
It is worth noting that by using Code Composer Studio
the controllers are compiled and uploaded to the to the
Texas Instruments F28379d Launchpad depicted in Fig. 5.
Serial communication with the processor allows a real-time
performance evaluation. A relevant feature of this setup is the
supervision stage that allows online handling of the control
parameters, simplifying the study of the system dynamics
under different control constants. This configuration also
eases the offset setting at the operation points.

Fig. 5. Texas Instruments F28379d Launchpad connected to the encoders
and motor driver.

A connection diagram that shows the experimental setup
is depicted in Fig. 6.

simulink
PC

Encoder 2

Pendubot

Ti Launchpad F28379d

Fig. 6. Experimental setup

B. Classical full-state feedback control

In order to validate the proposed optimal control
algorithms, two full-state feedback controllers are designed
experimentally, each related to the respective operating mode.
The controllers are tuned experimentally with the support
of the information provided by Quanser about the constant
values of the mechatronic Kit. The selected discrete poles of
the model are shown in (20).

P =
[
0.9324 0.9282 0.9231 0.9185

]
(20)

The built-in eigenvalues relocation toolbox of MATLAB
is used to quantify the controllers gains.

1) Top-position:

K =
[
−182.9053 −28.1978 −158.7556 −19.8816

]
(21)

2) Middle-position:

K =
[
119.2740 11.5218 158.5817 19.8608

]
(22)

C. Results

The evaluation of the prototype system is performed
by considering the embedded real-time controller over a
Texas Instruments C2000 Delfino F28379d Launchpad. The
analysis is performed under the two discussed scenarios: first
scenario -pendulum in the middle position, second scenario
-pendulum in top position.

Figure 7 shows a comparison analysis between the LQR
and Full-state-feedback controllers for the Link 1 in the
Top-Position.
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Fig. 7. Performance analysis of the Link 1 in Top-Position for LQR and
Full-state-feedback controllers

A detailed analysis of Fig. 7 is presented in Fig. 8.

Fig. 8. Detailed performance analysis of the Link 1 in Top-Position for
LQR and Full-state-feedback controllers

Figure 9 shows a comparison between the LQR and
Full-state-feedback controllers for the Link 2 in the
Top-Position.

Fig. 9. Performance analysis of the Link 2 in Top-Position for LQR and
Full-state-feedback controllers

A detailed analysis of Fig. 9 is presented in Fig. 10.

Fig. 10. Detailed performance analysis of the Link 2 in Top-Position for
LQR and Full-state-feedback controllers

Figure 11 shows a comparison between the LQR and
Full-state-feedback controllers for the Link 1 in the
Middle-Position.
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Fig. 11. Performance analysis of the Link 1 in Middle-Position for LQR
and Full-state-feedback controllers

A detailed analysis of Fig. 11 is presented in Fig. 12.

Fig. 12. Detailed performance analysis of the Link 1 in Middle-Position
for LQR and Full-state-feedback controllers

Figure 13 shows a comparison between the LQR and
Full-state-feedback controllers for the Link 2 in the
Middle-Position.

Fig. 13. Performance analysis of the Link 2 in Middle-Position for LQR
and Full-state-feedback controllers

A detailed analysis of Fig. 13 is presented in Fig. 14.

Fig. 14. Detailed performance analysis of the Link 2 in Middle-Position
for LQR and Full-state-feedback controllers

The embedded controller is developed in Matlab-Simulink
by using a block-diagram structure. This embedded controller
has several stages as follows: a signal conditioning stage
where the encoder signal is converted to the angle position. A
second stage, where the embedded controller is implemented,
by including the optimal control approach by linear quadratic
methods. And a final stage, where control signal is scaled to
the duty cycle range of the PWM.

Figure 15 shows the block-diagram of the embedded
controller for the pendubot in a top-position scenario.

Figure 16 shows the block-diagram of the embedded
controller for the pendubot in a middle-position scenario.

D. Error comparisons
This section presents a comparative analysis of the

performance between the Full-state-feedback (FSF) and
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Fig. 15. Block diagram of the embedded controller for a pendubot in a top-position scenario

the Linear-Quadratic Regulator (LQR) controller. The
comparison analysis is performed by considering execution
time in order to know the joint angle reference tracking for
each link of the pendubot. Two error measures are used: the
MSE and the ITAE.

The values of MSE for the top-position scenario are shown
in Table I.

TABLE I
MSE OF THE TOP-POSITION SCENARIO

Link 1 Link 2

FSF LQR FSF LQR

1.0933 ∗ 106 5.5205 ∗ 105 2.4828 ∗ 106 9.6117 ∗ 105

Table II shows the values of ITAE for the top-position
scenario.

TABLE II
ITAE OF THE TOP-POSITION SCENARIO

Link 1 Link 2

FSF LQR FSF LQR

320.8676 231.4405 476.3491 231.4405

The values of MSE for the middle-position scenario are
shown in Table III.

TABLE III
MSE OF THE MIDDLE-POSITION SCENARIO

Link 1 Link 2

FSF LQR FSF LQR

2.3422 ∗ 106 2.1426 ∗ 106 2.6174 ∗ 106 2.0390 ∗ 106

Table IV shows the values of ITAE for the middle-position
scenario.

TABLE IV
ITAE OF THE MIDDLE-POSITION

Link 1 Link 2

FSF LQR FSF LQR

1.4105 ∗ 103 1.3154 ∗ 103 1.4449 ∗ 103 1.3638 ∗ 103

V. CONCLUSIONS

This work presents an embedded real-time optimal control
in discrete time, and it is validated over a double inverted
pendulum system. The obtained results show that the gain
provided by LQR has significant robustness to applied
disturbances since the system effectively returns to the
equilibrium point. On the other hand, the full-state-feedback
controller is usually more susceptible to disturbances and
therefore an additional control strategy is required to reach
the equilibrium point. It is worth mentioning that the
real-time evaluation of the proposed controller by using a
C2000 F28379d system, can be extended to the evaluation
of several controllers in real-time. Therefore, as future work,
several controllers will be evaluated over the prototype by
using the aforementioned experimental setup.
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