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Abstract—Generalized space shift keying (GSSK) transmits
signals through antenna indices, which can overcome the
problems of inter-channel interference (ICI), inter-antenna
synchronization (IAS) and multiple radio frequency (RF) chains
in traditional MIMO technology, and provide a new method
for the application of next-generation large-scale MIMO tech-
nology. However, maximum likelihood (ML) detection has
high complexity, which greatly increases the detection time. A
new detection algorithm, termed as PS-ML algorithm, which
combines the idea of probability sorting (PS) and ML detection,
is proposed in this paper. Simulation results show that the
proposed detector makes a good tradeoff between the BER
performance and the complexity.

Index Terms—Generalized space shift keying (GSSK), s-
patial modulation (SM), probability sorting, maximum likeli-
hood(ML), multiple input multiple output (MIMO).

I. INTRODUCTION

SPATIAL modulation (SM) is a promising multiple input
multiple output (MIMO) scheme, which encodes infor-

mation in the combination of antenna indices and the conven-
tional phase and amplitude [1]-[4]. Only one transmit antenna
is activated in each time slot, which effectively avoids inter-
channel interference (ICI). The SM systems simultaneously
utilize the signal constellation and the space constellation
to convey information. Compared to MIMO systems, SM
systems have a lower spectral efficiency. In order to further
increase spectral efficiency, the generalized SM (GSM) was
proposed to activate multiple transmit antennas [5]-[6]. In
SM and GSM systems, the detector needed to jointly detect
the activated antenna indices and the transmitted symbols at
the receiver. Thus, the common drawback of SM and GSM
is the higher detection complexity. As a simplified variant of
SM, space shift keying (SSK) only utilizes antenna indices
to carry information [7]-[9], which can greatly decrease the
complexity. Compared with SM and SSK, SSK has a less-
complicated detection process at the receiver. By allowing
multiple transmitting antennas to be activated, the gener-
alized SSK (GSSK) modulation improves the transmission
rate[10]-[12].

For GSSK, the optimal maximum likelihood (ML) detector
[10] searches all possible transmit antenna combinations
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(TACs), the complexity grows exponentially in the num-
ber of TACs. Especially, the computational complexity is
prohibitive in large-scale MIMO systems. Recently, various
low-complexity optimal or sub-optimal detectors for GSSK
systems have been proposed. In [13], Liu et al. proposed a
novel detection algorithm for massive GSSK systems, which
is based on the penalty function and likelihood ascent search.
In [14], Chang et al. proposed greedy column search (GCS),
convex superset relaxation (CSR), and semidefinite relax-
ation (SDR) detectors, but the detectors show poor bit error
ratio (BER) performance. When the transmitted signal has
the sparse characteristic, the compressive sensing (CS) can be
used to the detection of GSSK [15]-[19], and GSM [20]-[22].
The normalized CS (NCS) algorithm proposed in [15], has
a lower computational complexity than that of ML detector.
Since the NCS detector is based on the orthogonal matching
pursuit (OMP) algorithm [23], which is an iterative algorithm
and suffers from the error propagation. To further improve
the performance of NCS detector, two OMP-based detectors
were developed in [16]. In the two detectors, two matrices are
designed to satisfy that the equivalent channel gain matrix is
approximately orthogonal. The performance can be further
improved, but the error propagation phenomenon still exists.
In [18], Peng et al. proposed a sparse K-best (SK) detector
based on the conventional K-best detector applied in MIMO
systems by exploiting the sparse property of GSSK signal.
In [17], Kallummil et al. proposed a detector based CS and
ML. The detector involved a superset selection using CS
algorithm which is followed by the ML search. The CS-
based detectors aforementioned can reduce the performance
gap with ML detector.

A novel detector based on probability sorting and ML
strategies, termed as PS-ML detector, is developed in this
paper. The main contributions of this paper are summarized
as follows:

• First of all, a probability sorting strategy is used to
estimate the TACs. The TACs is estimated in descending
order of probability value.

• Secondly, the preset threshold value is used to decrease
the computational complexity. If the Euclidean distance
of the estimated signal is within the threshold value,
then the estimated signal is considered as the result. The
preset threshold value can balance the tradeoff between
the complexity and the BER performance.

• Thirdly, the effect of the preset threshold value on the
proposed algorithm is demonstrated by simulations.

• Finally, we compare the complexity and the BER per-
formance of the proposed detector with NCS detector
and ML detector.

The rest of this paper is organized as follows. Section II
gives the system model of GSSK systems. The detectors for
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GSSK are given in Section III. The proposed detector is pre-
sented in Section IV. The BER performance and complexity
of different detectors are analyzed in Section V. Section VI
concludes the paper.

Notation: Upper and lower case boldface letters denote
matrices and column vectors, respectively. (·)T , (·)H , and
(·)−1 represent transpose, Hermitian transpose, and inversion
operations, respectively. ∥·∥p denotes the ℓp norm of a vector,
⌊·⌋ denotes the floor operation, |·| stands for the absolute
value of a complex number or the cardinality of a given set,
ϕ stands for the empty set. ℜ(·) and ℑ(·) represent the real
and imaginary parts of a variable, respectively.

(
n
k

)
denotes

the binomial coefficient, which is given by
(
n
k

)
= n!

k!(n−k)! .
If n < k,

(
n
k

)
is defined to be zero. The relative complement

of A in B is denoted by B\A. CN
(
µ, σ2

)
denotes the

complex normal distribution of a random variable with a
mean µ and variance σ2. Rm×n and Cm×n represent the set
of real-valued, complex-valued matrices with m rows and n
columns, respectively.

II. SYSTEM MODEL

Consider a multi-antenna system with NT transmit anten-
nas and NR receive antennas. In GSSK systems, NP out
of NT transmit antennas are activated for data transmission,
therefore N ′

C =
(
NT

NP

)
legitimate transmit antenna combina-

tions are available. However, the number of possible TACs
in the spatial constellation diagram is generally a power of

2. Hence, in GSSK systems, we select NC = 2

⌊
log2

(
NT
NP

)⌋
TACs out of N ′

C combinations for antenna selection, where
⌊·⌋ denotes the floor operation. The incoming binary source
is divided into blocks of NC bits. The NC bits block is used
to select a TAC Ai, i ∈ (1, · · ·, NC).

Assuming with quasi-static flat Rayleigh fading channels,
the received signal vector y ∈ CNR×1 can be formulated as

y = H · x+ n, (1)

where x ∈ RNT×1 represents the transmitted signal vector.
Since NP antennas are activated at each time slot, there
are NP ‘1’s in x leaving the rest of elements in x ‘0’s.
H ∈ CNR×NT denotes the channel gain matrix, whose
entries follow identically independent distributed (i.i.d.) cir-
cular symmetric complex Gaussian distribution CN (0, 1).
n ∈ CNR×1 is the additive white Gaussian noise (AWGN)
vector, whose entries from CN

(
0, σ2

)
. The transmitted sig-

nal vector x is drawn equally probably from the constellation
set X =

{
[x1, x2, · · · , xNT

]|
∑NT

j=1 xj = NP , xj ∈ {0, 1}
}

with |X | = NC . The transmitted signal vector x can be
expressed as

x =

· · ·, 0, 1︸︷︷︸
j1

, 0, · · ·, 0, 1︸︷︷︸
j2

, 0, · · ·0, 1︸︷︷︸
jNP

, 0, · · ·

T

,

(2)
where (j1, · · ·, jNP

) denotes the activated TA indices.
Especially, the received signal vector given by Eq. (1) can

also be formulated as

y =
∑ jNP

t=j1
ht + n, (3)

where ht is the t-th column of channel gain matrix H.

III. GSSK DETECTORS

In this section, a brief overview of the detectors for GSSK
systems is given.

A. ML Detector

The ML detector has the optimal performance BER by
exhaustively searching through all TACs as

x̂ML = argmin
x∈X
∥y −H · x∥22 . (4)

In fact, the receiver aims to detect the activated transmit
antenna indices. The simplified ML detector can be expressed
as

Ĵ = arg min
j∈Ai,i∈{1,··· ,NC}

∥∥∥y −∑ jNP
t=j1

ht

∥∥∥2
2
. (5)

B. NCS Detector

In [15], an OMP-based NCS detector was proposed. The
Eq. (1) is rewritten in real-valued form as

ȳ =

[
ℜ(y)
ℑ(y)

]
︸ ︷︷ ︸

ȳ

=

[
ℜ(H)
ℑ(H)

]
︸ ︷︷ ︸

H̄

·x+

[
ℜ(n)
ℑ(n)

]
︸ ︷︷ ︸

n̄

= H̄ · x+ n̄,

(6)
where ℜ(·) and ℑ(·) denote the real and imaginary compo-
nents of a complex-valued number, respectively. After real-
valued transformation, ȳ ∈ R2NR×1, H̄ ∈ R2NR×NT , and
n̄ ∈ R2NR×1. After normalizing each column of H, the
signal can be recovered by the NCS algorithm, which is
shown in Table I.

TABLE I
PSEUDO CODE OF NCS DETECTOR

Input: y, H, NP , r0 = y, Λ = ϕ.
Output: Ĵ .
1: for j = 1 to NT do
2: h̃j =

hj

∥hj∥2
;

3: end for

4: ȳ =

[
ℜ(y)
ℑ(y)

]
︸ ︷︷ ︸

ȳ

=

[
ℜ(H̃)

ℑ(H̃)

]
︸ ︷︷ ︸

H̄

·x+

[
ℜ(n)
ℑ(n)

]
︸ ︷︷ ︸

n̄

= H̄ · x+ n̄.

5: for t = 1 to NP do
6: λ = max

(∣∣H̄T rt−1

∣∣);
7: Λt = Λt−1 ∪ λt;

8: xt = argmin
x

∥∥ȳ − H̄Λtx
∥∥2
2
=

(
H̄T

Λt
H̄Λt

)−1
H̄T

Λt
ȳ;

9: rt = ȳ − H̄Λtxt;
10: end for
11: Ĵ = Λ.

IV. THE PROPOSED DETECTOR

At the receiver, the demodulator firstly identifies the
activated antenna indices based on the received signal and
channel gain matrix, and then obtains the transmitted sym-
bols based on the GSSK mapping rule.

The NCS detector developed in [15], which is based on
the OMP detector, has a significant lower computational
complexity than that of the ML detector. However, since
the OMP-based detector suffers from error propagation, the
BER performance of NCS detector is much worse than ML
detector.
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In this section, we propose a new low complexity detector,
termed as probability sorting ML (PS-ML) detector. The
proposed PS-ML detector works as follows.

First of all, the real-valued system model is shown in Eq.
(6). In the proposed algorithm, an ordering strategy is firstly
adopted to sort all transmit antennas. That is, we calculate
the inner product of each column of real-valued channel
gain matrix H̄ and the received signal ȳ to obtain the new
sequence as

p = [p1, p2, · · · , pk, · · · , pNT ] = arg sort(
∣∣H̄T ȳ

∣∣), (7)

where sort(·) denotes the descending order function; p1
and pNT

denote the indices of the maximum and minimum
elements of

∣∣H̄T ȳ
∣∣ , respectively.

Next, we obtain the new TACs search order by searching
the TACS in ascending order of p. The new search order Θ
can be obtained by

Θ← Θ ∪ (row index\Θ), (8)

row index = search(pk,A), (9)

where function search(·) returns the row indices including
pk from the set A.

The preset threshold Vth = βNRσ
2 is employed to judge

whether the TAC is reliable or not. We determine whether
or not the Euclidean distance (ED) of the estimated transmit
antenna indices is inside the threshold Vth. If the ED satisfies∥∥∥ȳ −∑

Np

j=1h̄A(Θ(i),j)

∥∥∥2
2
< Vth, (10)

then the output A(Θ(i), :) is considered as the final detection
result. If no output satisfied the above, the final result is taken
as

Ĵ = argmin
Θ

∥∥∥ȳ −∑
Np

j=1h̄A(Θ(i),j)

∥∥∥2
2
. (11)

The detection processes of the proposed PS-ML detector
are summarized in Table II.

TABLE II
PSEUDO CODE OF PS-ML DETECTOR

Input: y, H, NP , Θ = ϕ, A, and the size of set A is NC .
Output: Ĵ .
1: Reshape the system model by ȳ = H̄ · x+ n̄;
2: p =

[
p1, p2, · · · , pk, · · · , pNT

]
= arg sort(

∣∣H̄T ȳ
∣∣);

3: for k = 1 to NT do
4: row index = search(pk,A), where function search(·)

returns the row indices including pk from the set A;
5: Θ← Θ ∪ (row index\Θ);
6: end for
7: for i = 1 to NC do

8: δ (i) =
∥∥∥ȳ −∑NP

j=1 h̄A(Θ(i),j)

∥∥∥2
2

;
9: if δ(i) < Vth then
10: Ĵ = A (Θ(i), :) ; return;
11: end if
12: end for
13: idx = argmin(δ);
14: Ĵ = A (Θ(idx), :).

V. SIMULATION RESULTS

In order to verify the effectiveness of the proposed PS-ML
detector, a series of simulation experiments have been done
on platform with i5-10210U processor and 16G memory. In
this section, the comparison of the BER performance and
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Fig. 1. BER performance comparison of above-mentioned detectors for
GSSK systems with NT = 10, NR = 4 and NP = 2.
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Fig. 2. BER performance comparison of above-mentioned detectors for
GSSK systems with NT = 10, NR = 4 and NP = 3.

complexity among ML detector, NCS detector and the pro-
posed PS-ML detector are presented. The BER performance
and complexity are simulated under the assumption of ideal
channel state information at receiver.

A. BER Performance Comparison

We assume that the channel is a quasi-static flat Rayleigh
fading channel, additive white Gaussian noise obeys the
distribution with the mean value of 0 and variance of 1.
With the increase of the number of active antennas, the
spectral efficiency and hardware cost of the GSSK systems
will increase significantly. Therefore, we consider a GSSK
system with Np ≪ NT . Since it is difficult to employ a large
number of antennas at the receiver side of the downlink, and
hence we assume NR < NT .

The BER performance curves of all above-mentioned
detectors under two different GSSK systems are simulated.
The parameters are set as follows: 1) NT = 10, NR = 4,
NP = 2; and 2) NT = 10, NR = 4, NP = 3. The simulation
results are shown in Figs. 1 and 2.

It can be seen from Figs. 1 and 2 that the BER performance
of PS-ML detector under different thresholds is obviously
better than that of NCS detector. The main reason is as
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follows: the higher the transmit antenna ranking in Eq. (7),
the more likely it is the optimal solution. The preset threshold
reduces the average search times. Meanwhile, we notice that
the larger the threshold is, the worse the BER performance of
the proposed PS-ML algorithm is. When the preset threshold
decreases to a certain value, the BER performance of the
proposed PS-ML algorithm will be equivalent to that of ML
algorithm.

B. Complexity analysis

ML Detector:

The conventional ML detection algorithm is equivalent to
searching all the TACs. It can be expressed as

Ĵ = arg min
j∈Ai,i∈{1,··· ,NC}

∥∥∥y −∑ jNP
t=j1

ht

∥∥∥2
2
. (12)

According to Eq. (12),
∑ jNP

t=j1
ht requires 2NRNP real-

valued flops, y − (·) requires 2NR real-valued flops, ∥·∥22
requires 4NR − 1 real-valued flops. In each search, the

operation
∥∥∥y −∑ jNP

t=j1
ht

∥∥∥2
2

requires 2NRNP + 6NR − 1

real-valued flops. The operation is repeated NC times, thus
the complexity of the conventional ML detector is about
(2NRNP +6NR − 1)NC , where NC represents the number
of TACs.

NCS Detector:

In NCS detector (shown in Table I), lines 2, 6,
8, and 9 require 6NR − 1, 4NTNR, 4t3 + (8NR +
7)t2 + (2NR − 1)t, 4NRt real-valued flops, respective-
ly. Where t ∈ {1, · · · , NP }. The operation in line 2
is computed NT times and those in lines 6, 8, and 9
are computed NP times. Therefore, the complexity of
NCS detector is about NT (6NR − 1) + 4NTNRNP +∑NP

t=1 4t
3 + (8NR + 7) t2 + (6NR − 1) t.

The Proposed PS-ML Detector:

In PS-ML detector (shown in Table II), the complexity is
dominated by lines 2 and 8. Lines 2 and 8 require 4NTNR,
2NRNP + 6NR − 1 real-valued flops, respectively. The
operation in line 2 is calculated only one time, however
those in line 8 is calculated k times, where 1 ≤ k ≤ NC .
k varies in each running of the algorithm. The average
complexity can only be obtained through simulation. The
average complexity of PS-ML detector is about 4NTNR +
(2NRNP + 6NR − 1) k̄, where k̄ denotes the average times
of operations performed in lines 7-12.

Figs. 3 and 4 illustrate the average complexity of the
above-mentioned detectors for GSSK systems with NT = 10,
NR = 4, NP = 2 and NT = 10, NR = 4, NP = 3,
respectively. One can observe from Figs. 3 and 4 that the pro-
posed PS-ML detectors with Vth = NRσ

2, Vth =
√
3NRσ

2,
Vth = 2NRσ

2 are capable of achieving about 20%, 60%,
64% reduction in complexity over ML detector, respectively.
The higher the threshold is, the lower the complexity of the
algorithm is. The complexity of PS-ML detector varies with
the threshold. When the threshold is small, the complexity of
PS-ML detector is larger than OMP detector. If the threshold
is large, the complexity of PS-ML detector is lower than
OMP detector.
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Fig. 3. Complexity comparison of above-mentioned detectors for GSSK
systems with NT = 10, NR = 4 and NP = 2.
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Fig. 4. Complexity comparison of above-mentioned detectors for GSSK
systems with NT = 10, NR = 4 and NP = 3.

In conclusion, the probability sorting strategy and the
preset threshold have an effect on the BER performance and
complexity of PS-ML algorithm. The smaller the threshold
is, the higher the complexity is. The proposed PS-ML
detector can obtain a flexible trade-off between the BER
performance and the complexity.

VI. CONCLUSION

GSSK technology provides a new method and idea for
the research and application of next generation large-scale
MIMO communication, which is of great significance. In
this paper, the PS-ML detector, which combines the idea of
probability sorting and ML detection, is proposed for GSSK
systems. Simulation results show that the probability sorting
strategy and the preset threshold make a tradeoff between
the BER performance and the complexity.
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