TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

Dependency Detection and Repair in Web
Application Tests

Ali M. Alakeel

Abstract—Various techniques have been created for
manipulating test suites in order to improve the cost-
effectiveness of regression testing; these include re-
gression test selection, test prioritization, test exe-
cution automation, test factoring, and test carving
techniques. Dependencies between tests can render
these techniques problematic, by causing tests to
break (i.e., execute inappropriately or fail to execute
at all). For this reason, researchers have begun to seek
approaches for detecting or eliminating test depen-
dencies. To date, this work has focused primarily on
detecting test dependency while leaving the tedious
and labor-intensive work to repair the damage caused
by these dependencies to be performed manually by
the developer. This paper presents WebTestRepair,
the first automated algorithm for test dependency
detection and repair in web application test suites.
WebTestRepair performs a combined string and data-
flow analysis which focus on identifying manifest
test dependencies that cause test failures and then
automatically repair the damage caused by these
dependencies. As a result of this repair process a
previously broken test suite is now able to execute
without test failures. An empirical study to evaluate
WebTestRepair on five open-source web applications
shows that WebTestRepair was able to identify and
repair manifest test dependencies in 95% of the sce-
narios in which they occurred and that it was also
over 81% effective than a technique that randomly
re-orders tests in an attempt to repair test breakages.

Index Terms—test dependencies, web applications
testing, automated Algorithms, software engineering.

I. INTRODUCTION

OFTWARE engineers create test suites in order to

locate faults in software systems. Later, test suites
are used in regression testing to determine whether sub-
sequent versions of those systems behave appropriately.
At regression testing time, engineers may seek to increase
the cost-effectiveness of testing by applying some sort of
test manipulation technique to their test suites, such as
test prioritization (TCP) techniques (e.g., [11], [19], [20],
[25], [36]) or regression test selection (RTS) techniques
(e-g., [, (18], 28], [30], [31)).

Zhang et al. [41] show that dependencies between tests
can hinder the applicability and effectiveness of test
manipulation techniques. This includes not just TCP and
RTS techniques, but also test execution techniques [22],
[27], test factoring techniques [33], [39], and test carving
techniques [10].

Manuscript received August 18, 2021; revised March 15, 2022.

A. Alakeel is a professor of Computer Science Depart-
ment, University of Tabuk, Tabuk 71491, Saudi Arabia (e-mail:
alakeel@ut.edu.sa).

In this work, we focus on test dependencies that may
arise following the application of a TCP technique, in
which the tests in a test suite are re-ordered for an
execution on a subsequent version of a program. When a
test is dependent on another test, changing the order in
which these tests execute can cause one of them to fail to
execute as intended. In such situations, we say that this
test “breaks”, and that a “test breakage” has occurred.
Such scenarios have motivated research on detecting and
coping with test dependency [7], [8], [12], |21], [24], [41].

Zhang et al. [41] present a formal definition of the test
dependency problem. Here, we present that definition
more briefly and in a context appropriate to dependencies
that affect regression testing. Let T = {t1,t2,...tn}
be an original test suite, where each t¢; is a test case.
Suppose that when tests in T are executed in their
original order (the order just listed) all tests execute as
intended. Suppose that a TCP technique is applied to
T, and this changes the execution order of some tests.
Suppose this action causes some test t, € T to fail to
execute as intended, and this failure is due to the fact
that t,, depended on the actions performed by some other
test t,, € T that was formerly positioned before ¢, and
is now positioned after it. In this case we say that t, is
dependent on t,,, and we may represent it notionally as
(tw — ty).

The process of manually identifying test dependencies
can be challenging. In fact, Zhang et al. [41] have shown
that the “Dependent Test Detection Problem” is NP-
complete. Given a test suite T, this problem involves
determining whether a test ¢; € T is dependent in T.
Thus, previous research has focused on seeking heuristics
to provide a cost-effective approximation to detect test
dependency.

Previous work reported in DTDectector [41], Elec-
tricTest [7], provides test dependency detection approx-
imation techniques for Java projects. These techniques
attempt to identify dependencies in general, by analyzing
an application’s code and monitoring read/write opera-
tions made to the application’s shared global variables.
The goal of these techniques is to identify all test de-
pendencies that may exist in a test suite. PRADET [12]
introduced a refinement technique to be applied to the
dependency list produced by DTDectector and Elec-
tricTest in order to extract manifest test dependencies
that may cause test failures.

In [§], TEDD is presented as a tool for test dependency
detection in E2E web application tests. TEDD performs
string and natural language processing (NLP) analysis to
monitor read-after-write operations and eventually build
a test dependency graph (TDG) with all test dependen-
cies. As in PRADET (12|, TEDD refines the TDG in

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

order to only report manifest test dependencies to the
developer. All of DTDectector, ElectricTest, PRADET,
and TEDD do not provide any test dependency repair
and leaves this tedious and time-consuming process to
be performed manually by the developer. In contrast, our
work provides an automated and integrated environment
for test dependencies detection and repair in web appli-
cation test suites.

During our investigation of test dependency in web ap-
plication test suites, we face more changeless other than
the read-after-write situations investigated in [7], [8], [12],
[41]. For example, during their work with shared global
variables in Java projects, [7], [12], [41] did not have to
deal with situations where a shared global variable has
been deleted and ceases to exists; they only watch value
changes of a shared global variable. In contrast, our work
deals with many situations on which a web-page element
may deleted, modified or created during the course of
executing a test suite. Additionally, in Java projects,
application code, test code, and dependency detection
tools are encapsulated as a single Java project, while
web applications we investigate in this work are written
in PHP and a mixture of HTML, JavaScript, CSS, and
mySQL. For these reasons, the proposed methods in
DTDectector [41], ElectricTest |7] and PRADET [12] are
not applicable in our context.

Similarly, TEDD [8] only investigates test dependency
that may exist as a result of read-after-write operations
in a web application’s database, without handling those
situations on which a web page element may ceases
to exists. In this work, however, we explicitly handle
such situations on which a web-page element may be
deleted and ceases to exists and also other situations
on which a web-page element may be referenced before
it has been created. Additionally, TEDD considers that
"assert” statements to be the sole source of creating
test dependency ([§], p. 2), and therefore limit its test
dependency search on assertion statements only. In our
work, WebTestRepair considers all web test statements,
including assertions, during its search for test dependen-
cies, and, therefore covers a wider spectrum of web tests,
which makes it more practical than TEDD.

In this paper, we present WebTestRepair, the first dy-
namic and automated test dependency detection and re-
pair integrated environment for web applications. As will
be explained in great details in Section [T, WebTestRe-
pair focuses on providing an automated solution for a
broken test suite. To achieve this goal, WebTestRepair
first executes a test suite in order to identify broken
tests and then finds those test dependencies that caused
these breakages. In order to search for test dependencies
that cause tests failures in a test suite, i.e., manifest test
dependencies [12], WebTestRepair performs a combined
string and data-flow analysis. As compared to exiting
work reported in [7], [§], [12], [41], that only report
detected manifest test dependencies and stop there, a
major contribution of WebTestRepair is that it utilizes
the detected manifest test dependencies to automatically
provide the developer with a repaired test suite that
can be executed without test breakages that previously
caused by test dependencies.

Note that our approach does not attempt to solve
the NP-complete problem that is refereed to in [41] as
“Dependent Test Detection Problem,” because we are
interested in finding only those dependencies that cause
observable test case breakages in prioritized or re-ordered
test suites. Therefore, WebTestRepair does not perform
an exhaustive search, nor does it attempt to identify all
dependencies. Instead, it concentrates on the detection
and repair of those test dependencies that caused some
tests to fail. Following this strategy, WebTestRepair pro-
duces a quick and feasible repair for a specific set of test
case breakages that occur due to test case re-ordering.
Thus, it is bounded in terms of execution time.

WebTestRepair is implemented in Java as an inte-
grated automated environment that accepts test suites
(original and re-ordered) as input, and automatically
detects and repairs test case dependencies in these suites.
The current version of WebTestRepair operates on test
suites that are created by Selenium-IDE [35] and then
exported in the “Java/Unit 4/ WebDriver Backed” for-
mat. (Selenium IDE is an open-source tool that is widely
used in web application testing, and currently can export
test cases in 19 different formats.) The algorithm and
its implementation can easily be adapted, however, to
handle other formats.

To evaluate the performance of WebTestRepair, we
conducted an empirical study on five open-source web
applications, in which we applied WebTestRepair to a
large number of test suites that have been re-ordered in
ways that expose test dependencies. Our results show
that WebTestRepair was able to identify and repair test
dependencies in 95% of the scenarios in which they
occurred, allowing re-ordered test suites to run properly.
WebTestRepair was also over 81% effective than a tech-
nique that randomly re-orders test cases in an attempt
to repair test breakages.

This paper makes the following contributions:

e The first automated execution-based algorithm, to
the best of our knowledge, to detect and repair test
dependency related failures in web applications’ test
suites.

o An automated web application testing framework
that includes an implementation of our algorithm
in a form that accepts web application test cases
generated by Selenium IDE, detects and repairs
dependencies among those test cases, and provides
support for test case prioritization.

e An empirical study evaluating our algorithm on
several non-trivial web applications.

The remainder of this paper is organized as follows.
Section [[] provides background information. Section [[T]|
presents WebTestRepair and an example of its use.
Section [[V] presents our empirical study and results.
In Section [V] we discuss our results and their implica-
tions. Section [V describes related work and Section [VII]
presents conclusions and future work.

II. BACKGROUND

As noted in Section[l] this work focuses on tests created
using Selenium IDE [35]. Selenium IDE allows develop-
ers to record their interactions with a web application.

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

TABLE I: A Test Suite Specification for the Schoolmate App

Test | Functionality

tq Add a user account of type “Admin”, three accounts
of type “Teacher” and one account of
type “Student”.

to Fill in personal information for all user accounts.

t3 Create two terms and in each term create a semester.

ty Add a new user account of type “Parent” and
update school information.

ts Add two new classes.

tg Delete a term.

These recordings may then be re-played during testing
or regression testing to help expose faults. For example,
consider a test suite specified as shown in Table [}
for the web application “Schoolmate” [34]. Schoolmate
is an open-source school management web application
that allows users to perform school-related tasks such
as creating terms, classes, and semesters, registering in
classes, and generating students’ progress reports. It also
supports the addition of different types of users including
teachers, students, and parents.

Suppose a developer has created a Selenium IDE test
suite T = (t1, to, ts3, ta, t5, tg) corresponding to the test
specification in Table I. Suppose that when T is executed
in this order all tests pass. Assume the developer applies
a TCP technique to T, and this technique produces a
new test suite 7" = (ty, to, t3, t5, tg, t1). When T is
executed in this new order, tests to and t5 break (fail
to execute as intended) due to dependencies. Test to
breaks because it is trying to access user accounts that
have not yet been created, because the test that creates
them, ¢, now executes later. Similarly, test ¢5 breaks
because it is trying to add classes; this operation requires
a teacher name, which is entered by test ¢, and semester
information, which is entered by test ¢s.

Section [[TI-C] shows how WebTestRepair is able to
process test suite T', with broken tests, to eventually
produce a working ordering for T” as repaired T’ =
(ts, t1, ts, to, t5, t), such that when repaired T’ is
executed in this order all tests pass. Note that all the
tasks of test dependency detection, repair, and also the
application’s execution operations are totally automated
by WebTestRepair with no intervention by the developer.

III. TEST DEPENDENCY DETECTION AND REPAIR

Given a prioritized test suite, T', in which some tests
fail due to test dependencies, WebTestRepair performs
a combined string and data-flow analysis to search for
manifest test dependencies that cause these failures.
Once these manifest test dependencies have been iden-
tified, WebTestRepair automatically repair 1" by pro-
ducing a workable ordering for it such that when T is
executed in this order, all tests in T pass. Furthermore,
WebTestRepair performs a validation of its work by
automatically executing the repaired test suite on the
target web application (Section provides a full
description of WebTestRepair, and in Section [[II-C| we
present a running example of using WebTestRepair). By
providing an automated and integrated solution to the
multiple tasks of broken tests identification, the detection
of manifest test dependencies, and repair of broken test

suites, WebTestRepair relieves the developer of a tedious
and labor-intensive repair process and also provides her
with an extra assurance on the produced solution. There-
fore, WebTestRepair provides more automated services
as compared to existing techniques reported in [7], 8],
112], |41], which only produce a test dependency list
and leave other tasks to be performed manually by the
developer.

In this work, our main goal is to provide a solution
for a broken test suite. Therefore, WebTestRepair only
identifies test dependencies that are known to cause test
breakages (failures) in a re-ordered (e.g., prioritized) test
suite. More specifically, given a test ¢, which has failed
because of test dependency, WebTestRepair follows a
greedy strategy on which the search process is paused
as soon as the first test dependency is identified. Instead
of continuing the search for other test dependencies that
may exist in a test suite, WebTestRepair triggers the
repair process immediately to investigate if this found
dependency is the reason for ¢, breakage. In contrast,
prior work [7], [8], [12], [21], [24], [41], search for all test
dependencies in a test suite and then refine the resultant
list to extract manifest dependencies that cause test
failures. For example, both PRADET [12] and TEDD [§]
first create a test dependency graph (TDG) with all
test dependencies found in a test suite and then apply
a refinement process on TDG. Because the resultant
dependency list may be very large, these techniques
apply multiple filtration stages on TDG in order to only
maintain “manifest” test dependencies which cause test
failures, while excluding others that may not cause test
failures [12], [8]. Since WebTestRepair from the outset
only searches for manifest test dependencies, it saves the
extra time needed for a filtration stage and therefore, it
is more efficient than PRADET [12] and TEDD [3g].

A. Manifest Test Dependency Detection

In order to search for manifest test dependencies in
a broken test suite, WebTestRepair performs a com-
bined string and data-flow analysis as follows. Given a
test suite T' with a broken (failed) test t;, WebTestRe-
pair identifies the first command in ¢; that caused the
breakage. With this command in hand, WebTestRepair
performs a string analysis to search for clues to locate
shared web-page element’s components between t;, and
any other test ¢;€ T. Once these shared web-page ele-
ments are identified, WebTestRepair investigates what
actions(read/write/delete) have been performed by ¢;
on those shared elements and based on that, it decides
whether a manifest test dependency between ¢; and t,
exists or not.

To guide the search process, WebTestRepair identifies
a three fine-grained data-flow dependencies as follows.
read-after-write (RaW), referenced-after-delete (RaD),
and referenced-before-create (RbC). Using this classifica-
tion, WebTestRepair decides the existence of data-flow
dependencies between test t; and the broken test t;, as
follows. A (RaW) data-flow dependency exists between
t; and t, (t; — tp), if ¢, reads the value of a web-page
element that has been written by ¢;. Provided that a
web-page element exists previously, there exists a (RaD)

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

Algorithm 1 WebTestRepair Algorithm — Main Routine

1: procedure WEBTESTREPAIR (A, Ty, T, I): T
2: A: web application
3: T,: base test suite with all test cases passing
4: T, prioritized version of T, with dependencies
5: I: number of iterations
6: T,: repaired version of T,
7 traceT, < PreProcess(A,T,)
8: traceT,, < PreProcess(A,T,,)
9: finished <+ false
10: traceT < traceT,,
11: while (not finished & I > 1) do
12: T, < DepRepair(traceT,, TraceTy,)
13: if (T is empty) then
14: exit while loop
15: else
16: if (all test cases in T). pass) then
17: finished <« true;
18: report success
19: return T}
20: else
21: I+ T1-1
22: traceT < Execute(A,T,)
23: end if
24: end if
25: end while
26: if (not finished) then
27: report failure to find repaired suite
28: end if

29: end procedure

data-flow dependency between t; and ¢, (t; — tp), if
tp tries to reference (read, write, or delete) a web-page
element that has been deleted by t;. A (RbC) data-flow
dependency exists between ¢; and tp, (t; — t3), if ¢}, tries
to reference (read, write, or delete) a web-page element
which yet to be created by ¢;.

To explain the difference between RaD and RbC test
data-flow dependencies, consider the Schoolmate web ap-
plication’s test suite specification introduced previously
in[ll For example, if ¢5 tries to fill a personal details web-
form for a user account that has not been created by
t1, then there is a RbC data-flow dependency between
to and t1 (to — t1). On the other hand, if another test,
t., tries to reference (read/write/delete) a term that was
created before by t3 but was later deleted by tg, then
there exits a RaD data-flow dependency between tg and
t. (te — t).

In this work, WebTestRepair refreshes the applica-
tion’s database to an empty state before each test suite’s
execution. We consider this assumption in order to focus
on resolving test dependency on a clean set-up execu-
tion’s environment and to avoid state polluting tests
situation [14], on which data changes, during different
executions, might cause problematic test’s behaviors.
This assumption, however, may be relaxed, and an ap-
plication’s state could be initialized to any appropriate
value.

B. The WebTestRepair Algorithm

Algorithm [I] presents the main routine of the
WebTestRepair algorithm, Algorithm [2] presents the al-
gorithm’s primary processing routines, and Algorithm
presents supporting routines.

The main procedure WebTestRepair accepts four pa-
rameters as input and returns a list as an output. The
input parameters are: (1) a reference to a web application
A, (2) an original test suite T, in which no tests break,
(3) a prioritized version T, of T, that contains tests

Algorithm 2 WebTestRepair Algorithm - Primary Sub-
routines

1: procedure PREPROCESS (A, T): traceT
2: A: web application

3 T: a test suite for A

4 traceT: trace for T on A

5: preT <« Prepare(T)

6: T « Instrument(preT)

T traceT < Execute(A,T)

8 return traceT

9: end procedure

11: procedure DEPREPAIR (traceT,,traceTy,): Ty

12: traceT,: execution trace for original test suite

13: traceTy,: execution trace for broken test suite

14: Ty: a repaired version of the broken test suite

15: bTests < AllBroken(traceTy,)

16: allBdeplists < empty

17: for (each test case tp in bTests) do

18: oT'trace < GetTrace(tp, traceT,)

19: pS < ProblemS(ty,, oTrace)

20: index < Location(oT'race)

21: bDeplist + empty

22: bDeplist < AddFirst(ty)

23: for (each test case t; in traceT, backwards from index) do

24: if (Referenced(pS,t)) then

25: bDeplist < AddFirst(t;)

26: end if

27: end for

28: allBdeplists < Add(bDeplist)

29: end for

30: T, + RepairedList(all Bdeplists, traceT,,)

31: return T}

32: end procedure

33:

34: procedure REPAIREDLIST (allBdeplists,traceTy,): Ty

35: allBdeplists: list of dependency lists for broken test cases

36: traceTy,: execution trace for broken test suite

37: Ty: a test suite in which all test cases pass on A

38: Ty < empty

39: for (each test case t; in excT,, backwards from tail) do

40: if (Broken(t;) then

41: bDeplist + dependence list of t; from all Bdeplists

42: for (each test case tq in bDeplist backwards from tail)
do

43: if (tq is not in Ty) then

44: Ty < AddFirst(tq)

45: end if

46: end for

47: else

48: if (t; is not in Ty & t; is not in bDeplist) then

49: Ty < AddFirst(t;)

50: end if

51: end if

52: end for

53: return T

54: end procedure

that break due to dependencies, and (4) the mazimum
number of iterations, I, the developer is willing to al-
locate for WebTestRepair to perform the process of test
dependency detection and repair on the input test suites.
The output of WebTestRepair is a list, 7., that contains
a repaired version (a working ordering) of the input
test suite T,,. In addition to this output parameter,
WebTestRepair produces several output files that contain
detailed reports and statistics of its work. Information
in these files include: the number of broken tests in each
round, a list of test dependency that may caused a certain
test to fail, a detailed description of code’s snippet that
may caused test dependency, and the number of tests
inspected during the search for test dependencies. Statis-
tics files include: the time required for test dependency
detection, time required for test dependency repair, time
required to execute the application, and the number of
rounds required to produce a solution.

WebTestRepair starts its work in (Lines 7-8) by mak-
ing two consecutive calls to a prepossessing routine

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

Algorithm 3 WebTestRepair Algorithm — Auxiliary
Methods

: procedure PREPARE (T'): preT

Input: T, a test suite in Selenium IDE format in which test
cases are saved as text files

Output: preT’, a prepared test suite for which each test is
wrapped as a Java Unit4 class
: end procedure

N —

Input: T', a test suite
Output: T, an instrumented version of T

3
4
5: .
6: procedure INSTRUMENT (T'): T'
7.
8:
9: end procedure

10:

11: procedure EXECUTE (A, T): traceT

12: Input: A, a web application

13: T, a test suite for A

14: Output: trace, an execution trace for T on A along with
execution

15: results for all test cases in T'

16: end procedure

17:

18: procedure ALLBROKEN (traceTy,): bTests

19: Input: traceT),, the execution trace for the broken test suite

20: Output: bTests, a list of broken test cases in T,

21: end procedure

22:

23: procedure GETTRACE (tp, traceT,): oTtrace

24: Input: t,, a broken test case

25: traceT, the execution trace for the broken test suite

26: Output: oT'trace, the execution trace of ¢; on the original test
suite

27: end procedure

28:

29: procedure PROBLEMS (t,, 0T race): pS

30: Input: ¢, a broken test case

31: oT'race, the execution trace of ¢; on the original test suite

32: Output: pS, the statement in ¢, that caused ¢, to break

33: end procedure

34:

35: procedure REFERENCED (pS, t;):result

36: Input: pS, the statement in test case t; that caused t; to break

37: t;, a broken test case

38: Output: result, true if pT was read, written, or modified by

t;, false otherwise
39: end procedure

40:

41: procedure BROKEN (t;):result

42: Input: t;, a test case

43: Output: result, true if ¢; is broken, false otherwise

44: end procedure

called PreProcess. The purpose of these two calls is to
preprocess the original test suite T, and its prioritized
version T,,, respectively. PreProcess ultimately returns
an execution trace for T, and T,,. Next, in the while
loop of Lines 11-25, WebTestRepair calls DepRepair
(Line 12), which attempts to detect test dependencies
that caused some test in T}, to break. This while loop is
performed until either a repaired test suite is found or the
maximum number of iterations is reached. WebTestRe-
pair terminates as soon as a repaired test suite is found;
thus it is not required to complete all iterations.

In some difficult situations, however, WebTestRepair
may not succeeds during its mission to identify all
test dependencies causing tests failures in the currently
processed suite as indicated by Lines 13-14. Note that
WebTestRepair builds its solution incrementally and may
finish its work before reaching the maximum number
of iterations. However, depending on the difficulty of
the processed test suites, the number of iterations may
influence WebTestRepair effectiveness and efficiency, i.e.,
allowing WebTestRepair to run for more iterations may
increase the chance of producing a successful solution.
For example, in our experiment presented in Section [[V]
we allowed WebTestRepair to run for a maximum of five

iterations.

The PreProcess procedure(Algorithm is respon-
sible for setting up the processing environment for
WebTestRepair. This procedure accepts two parameters
as an input and returns a text file as an output. The
first parameter is the web application A and the second
one is a test suite T to be executed on A. The output
of PreProcess is an execution trace of 7. Additionally,
PreProcess produces other internal output files which
will be used by WebTestRepair during its operations.

When PreProcess is called with test suites T, and T,
and because tests in these suites are originally generated
by Selenium IDE as Java/Unit4/WebDriver Backed for-
mat, as stated in Section refsec:introduction, PreProcess
first transforms these files into a Java/Unit4 code format
suitable to run in the Java Eclipse execution environ-
ment. For example, Table [[] shows a Selenium generated
Java/Unit4/WebDriverBacked code for test (¢1) created
from the test specification previously shown in Table [}
For this purpose, PreProcess (in Line 5 of Algorithm
invokes the Prepare procedure (see Algorithm . During
its work, the Prepare procedure scans the input file to
remove white spaces and unwanted statements generated
by Selenium IDE, retaining only the codes testaments of
this test. Secondly, (in Line 6 of Algorithm PreProcess
makes a call to Instrument procedure (Algorithm (3
that will insert instrumentation’s statements necessary to
record the test’s execution trace and also inserts includes
run-time library’s imports and creates the Java/Unit4
Before and After methods.

Once all Java/Unit4 classes have been prepared for all
the input test suites, T, and T;,,, the PreProcess invokes
the Execute routine (Algorithm to executes all of these
Java/Unit4 classes and returns their execution trace to
the calling procedure, WebTestRepair. The information
reported in the execution trace files includes the execu-
tion’s ordering of tests within the current test suites, the
execution’s result of each test (“pass” or “fail”), and also
a list of executed commands for each test.

The Instrument procedure performs two tasks to help
the calling procedure, PreProcess, in building a Java/U-
nit4 test class file for each input test. The first one is
to instrument each code’s statement with the necessary
code to capture its execution trace, and the second task
is to parse each test’s command to construct an internal
representation that WebTestRepair utilizes during its
search for manifest test dependencies on later stages of
the algorithm.

Give a Selenium test 7" with a set of commands
C= {c1, ¢, ...cp}, for each command ¢, € C, we
create a data-structure emdRep(c,)= <type, locator,
element identifier, argument, argument value, hooksUp,
hooksDown>. This internal representation captures the
five main components of each command in addition
to two other components (hooksUp, hooksDown) that
provide additional information abut surrounding com-
mands of ¢, within the same test 7. Figure [I] displays
an internal representation for the Selenium command
in Line 12 of Table [[II} In this work, we only consider
the following five Selenium command types: (open, type,
click, select, and assert), while we ignore others such as

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

TABLE II: Java/Unit 4/WebDriver/Backed code exported
from Selenium-IDE for Test Case t1

o
5

ine Code

selenium.open(“/schoolmateTest/”);

selenium.type(“name=username”, “test”);
(ﬁ

selenium.type(“name=password”, “test”)

selenium.click(“css=input[type=‘submit’]");

selenium.waitForPageToLoad(“60000”);

selenium.click(“link=Users”);

selenium.waitForPageToLoad (“60000”);

selenium.click(“xpath=(//input[@value=‘Add’])[2]");
9 selenium.waitForPageToLoad(“60000”;)

10 selenium.type(“name=username”, “aley”);

11 selenium.type(“name=password”, “aley”);

12 selenium.type(“name=password2”, “aley”);

13 selenium.click(“css=input[type="button’]”);

14 selenium.waitForPageToLoad(“60000");

15 selenium.click(“xpath=(//input[@value=‘Add’])[2]");
16 selenium.waitForPageToLoad(“60000");

17 selenium.type(“name=username”, “hary”);

18 selenium.type(“name=password”, “hary”);

19 selenium.type(“name=password2”, “hary”);

20 selenium.select(“name=type”, “label=Student”);
21 selenium.click(“css=input|[type='button’]”);

22 selenium.waitForPageToLoad(“60000”);

23 selenium.click(“xpath=(//input[@value=‘Add’])[2]”);
24 selenium.waitForPageToLoad(“60000”);

25 selenium.type(“name=username”, “moody”);

26 selenium.type(“name=password”, “moody”);

27 selenium.type(“name=password2”, “moody”);

28 selenium.select(“name=type”, “label=Teacher”);

29 selenium.click(“css=input[type="button’]”);

30 selenium.waitForPageToLoad(“60000”);

31 selenium.click(“xpath=(//input[@value=‘Add’])[2]”):

32 selenium.waitForPageToLoad(“60000”);

33 selenium.type(“name=username”, “ul”);

34 selenium.type(“name=password”, “ul”);

35 selenium.type(“name=password2”, “ul”);

36 selenium.select(“name=type”, “label=Teacher”);
37 selenium.click(“css=input [type:zbutton;] ”);

38 selenium.waitForPageToLoad(“60000”);

39 selenium.click(“xpath=(//input[@value=*‘Add’])[2]”);
40 selenium.waitForPageToLoad(“60000”);

41 selenium.type(“name=username”, “u2”);

42 selenium.type(“name=password”, “u2”);

43 selenium.type(“name=password2”, “u2”);

44 selenium.select(“name=type”, “label=Teacher”);
45 selenium.click(“css=input[type=‘button’]”);

46 selenium.click(“link=Log Out”);

47 selenium.waitForPageToLoad(“60000”);

00~ O Uk W N

(WaitForPageToLoad and sotp) because they do not
provide any useful information to guide the search for
manifest test dependencies. A web page element locator
may take the values (zpath, css, id, name, and link).
The upper hooks, hooksUp, is a list of preceding "click”
commands, sorted backward up to the first command in
the test, while hooksDown is a list of succeeding "click”
commands, sorted forward down until the last command
in the test. The hook lists are utilized by the algorithm
to widen its search for manifest test dependencies to the
surrounding commands, when there is not enough infor-
mation provided by the command’s main components to
guide the search. Note that the values of emdRep(cy)
varies from one command to another depending on its
type. Also, all or only some of these components may
be utilized by the algorithm during the search of test
dependencies, depending on the difficulty of the problem
statement which caused the test breakage.

After the pre-processing stage is done, WebTestRepair,
in (Line 12), calls the DepRepair procedure (Algorithm
with traceT, and traceT,,, the execution traces for T,
and T,,, respectively. DepRepair performs a combined

string and data-flow analysis on these execution traces to
identify test dependencies that caused test breakages in
T,,. After identifying test dependencies, DepRepair uses
T, as an oracle and starts a repair process for T}, trying
to produce a working execution ordering for T,, such
that when executed in this order all tests pass. Note that
traceT, contains all pass execution trace, while traceT,,
includes broken tests execution’s trace.

Lines 11-32 of Algorithm [2| describe DepRepair’s ac-
tions more precisely. When DepRepair is called with
execution traces, traceT, and traceT),, DepRepair first
calls (Line 15) an auxiliary routine AllBroken to obtain
bTests, which is a list of broken (failed) tests found
in the execution trace traceT,,. Next, in the for loop
of Lines 17-29, DepRepair considers each broken test
in bTests. For each broken test t,, DepRepair calls
GetTrace (Algorithm [3) to obtain a pass execution trace
for ¢, from traceT, which will be utilized later to locate
the breakage’s location in .

In order to locate the breakage’s location in t;, De-
pRepair (Line 19) calls the ProblemS procedure (Algo-
rithm |3), which identifies the first code statement pS
that caused the breakage in test t;. We refer to this
pS as the “problem statement”. To locate pS in tp,
the ProblemS procedure, performs string-analysis on ¢,’s
execution trace (pass trace) obtained form traceT,, and
its other trace (fail trace) obtained from traceT,. Next,
in line 20 of Algorithm [2| DepRepair obtains an index
that lists the order of t;, when executed in traceT,. At this
stage, DepRepair triggers the test dependency detection
process in (Line 22) creating a dependency linked list
data structure, bDeplist, for t;, and places test t, as the
head element of this linked list.

To identify manifest test dependencies causing the
breakage of test t,, DepRepair considers each test ¢; that
was executed before t; from the original test suite execu-
tion trace, traceT,, as shown by the code in the for loop
of Lines 23-27. Specifically, for each ¢;, DepRepair calls
the Referenced procedure (Algorithm [3)) which performs
a combined string and data-flow analysis to search for
manifest test dependency between each test t; and t.

The Referenced procedure begins the process of man-
ifest test dependency detection by performing a string-
analysis searching each test t; for clues that may lead
to locating any links between the shared web element
that caused t;, breakage and any of these tests. At first,
the string-analysis search is based on pS main compo-
nents, i.e., the command’s type, the locator, element’s
identifier, the argument, and the argument value. When
this information is not enough to guide this search, the
algorithm widen its search through the upper hooks list
to inspect surrounding commands. Again, if this is not
successful, then search continues using the lower hooks
list. The hook lists provide the algorithm with more
information because each command in these list performs
a ’click” operation within the same test. Therefore,
the purpose of searching these lists is to identify other
command(s) within the broken test that might be related
to the problem statement pS, and therefore providing
the algorithm with more clues to fully understand the
operations performed by pS, when the search using

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

its main components fails. We employ this heuristic in
order to handle those challenging situations on which
the web application developer uses different locators to
identify the same web element and also does not follow a
meaningful naming mechanism for elements identifiers.

If the string analysis search in not successful to identify
any shared web elements between ¢, and any test ¢; that
was executed before it in the original test suite, the result
is reported and the algorithm continues to process the
remaining broken tests, if any. On the other hand, if the
string analysis search is successful then the result of this
stage reports a list of tests that have been identified to
have some links to that web element causing ¢; to break.
At point, Referenced begins a data-flow analysis process
to search for manifest test dependencies between each
test ¢; in this list and ¢;.

The data-flow dependency search is performed in order
to identify the type of actions performed by each test t;
on the web page element that has been identified to cause
ty breakage. During this search, the algorithm inspects
each command searching for the following actions: create,
select (read), write, delete, or to any other textual clues
that might lead to the identification of any of them. For
example, words like "add,” "new,” and ”insert” are clues
for a "create” action, words like "update” or "edit” are
clues for a "write” action, words like "remove”, ”"drop”
are clues for a ”delete” action, while a word like "select”
is a clue for a "read” action. Secondly, based on the
results of this search, Referenced identify the type of the
data-flow dependency (i.e., RaW, RaD, or RbC) between
t; and tp, using the data-flow dependency classification
defined in Section [[TI-A] This extra step in necessary
because a shared web page element between t; and ¢; may
create a data dependency between these tests, but does
not necessarily implies the existence of a manifest test
dependency [12]. Therefore, WebTestRepair main goal
is to identify manifest test dependencies while ignoring
data dependencies which don’t cause test breakages.
Once a data-flow dependency is found between t; and
the broken test t;, then this implies that a manifest test
dependency (t; — tp) has been identified.

To illustrate the use of the hook lists, consider the code
in Figure 2] which shows one of the php-Addressbook
application tests used in our experiment. In this example,
the select command in Line 4 has been identified, by the
algorithm, to be the cause for this test failure. When the
logarithm inspects this command internal components
looking for a textual clue to determine the web element
manipulated by this command, it will get stuck because
there is no textual clues in this command to guide the
string analysis search. Therefore, the algorithm inspects
the internal representation for this failed command and
utilizes the information provided in the hook lists in order
to search surrounding commands for any clues that may
lead to the indemnification of a textual representation
for this web element. Given the failed command in Line 4
and as explained earlier, the upper hooks list will includes
the code in Line 2 and the lower hooks list includes the
code in Line 9. Given this information, the algorithm
first inspects the upper hook list and eventually identifies
the string ”groups” in Line 2 as a textual clue for the

web element that is been manipulated by the failed
command in Line 4. At this point, the algorithm uses
this clue (i.e., "groups”) during its subsequent search for
test dependencies between this broken test and other
tests in the test suite under processing. Further, the
algorithm inspects the lower hooks list and utilizes the
string "update,” in Line 9, as a clue that leads the flow-
analysis search to determine the action that has been
performed, by the failed command in Line 2, on the
selected element (i.e., "groups”). For this example, note
that the algorithm has succeeded to identify a textual
clue for the manipulated web element because the failed
statement in Line 4 actually involves the selection of a
7groups” list.

After the Referenced procedure finishes its work, De-
pRepair (Line 28) is able to construct a set of test
dependency lists, allBdeplists, for all broken tests. At
this point (in (Line 30), DepRepair calls another pro-
cedure called RepairedList (Algorithm [2)) to trigger the
test dependency repair process. Eventfully, when the
RepairedList procedure work is completed, it returns
a repaired test dependency list to the main routine
WebTestRepair as indicated in (Line 31) of Algorithm 2}

The RepairedList is called by DepRepair with two
input parameters: allBdeplists and tracel,,, a list of
lists that contains the dependency lists, bDeplists, for
all broken tests case and the execution traces for these
broken tests, respectively. Lines 34-54 of Algorithm [2| de-
scribe RepairedList’s actions more precisely. In Line 38,
RepairedList initializes an empty list, T, which will
hold the repaired test suite. Next (Lines 39-52), Re-
pairedList considers each test case in traceT,, from the
last test case to the first as follows. For each test case
t;, RepairedList calls a supporting routine, Broken, to
determine whether ¢; was broken or not. If Broken(t;)
is true, RepairedList extracts bDeplist, the dependency
list for t;, from allBdeplists, and begins a new loop in
Line 42. RepairedList next (Lines 42-46) considers each
test case tq in bDeplist, beginning with the last test case
and proceeding backward to the first. In Lines 43-45,
RepairedList adds ¢4 to the head of T if it is not has
been added previously.

If Broken(t;) is false, RepairedList performs additional
checking in Lines 48-50 before it decides whether to
add t; to Ty or not. Because a particular test case
could appear in multiple dependency lists built by the
algorithm, RepairedList performs a check in Line 48 to
prevent a specific test case from being added in duplicate
into Ty. Finally, in Line 53, RepairedList returns the
repaired test suite, T¢, to DepRepair, which returns it
to WebTestRepair.

C. A Running FExample of WebTestRepair

Consider the two test suites that have been created
for the Schoolmate [34] web application, previously in-
troduced in Section These test suits are: T, = (¢1, t2,
ts, t4, ts, tg) and its prioritized version T, = (t4, to, ts,
t5, tg, t1). Recall, from Section that these tests are
created based on the specification of Table [, and that
both t5 and t; failed during the execution of T,, due to
test dependency.

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

To process these two test suites, WebTestRepair per-
forms the following fully automated steps:

1) Using a local host as a web-server environment,
WebTestRepair first executes T, on the Schoolmate
application in order to confirm that all tests pass
and to capture T, execution’s trace during this
process.

2) Execute the prioritized test suite, T},, on School-
mate in order to detect test breakages and also to
capture T, execution’s trace. In this example, to
and t5 are going to be identified as failed tests.

3) If step (2) returns test breakages (which is the case
in this example), then WebTestRepair performs
test dependency detection and repair to eventfully
produce a working ordering for tests in 7T;,, such
that when executed in this new order, all tests
pass. For this example, the new working ordering
produced by WebTestRepair for, T,,, is (t4, t1, t3,
ta, 15, tﬁ)

4) Execute the new ordering produced in step (3) to
confirm that a solution has been provided.

To perform the above mentioned steps,
WebTestRepair starts by executing the main routine
WebTestRepair(A4, Ty, Trn, I) with its expected four
input parameters as stated in Algorithm For our
example, the values for these parameters are: A =
Schoolmate, TO = (t17 tg, t3, 2547 t5, tﬁ), Tm = (t4, t27 tg,
ts, tg, t1), and I = 5. Notice here that we have allocated
a maximum of 5 rounds for WebTestRepair to work on
our example.

As explained earlier in Section [[II-B] when called with
these parameters, the WebTestRepair routine, calls the
PreProcess procedure in order create execution trace
for T, and T;,. When finished, PreProcess returns the
required traces for T, and T, as tracel, and traceT,,,
respectively. WebTestRepair now begins the first itera-
tion of the while loop’s execution and calls DepRepair
with traceT, and traceT,,; this begins the process of test
case dependency detection. Note that WebTestRepair
refreshes the Schoolmate database to an empty state
before each test suite’s execution.

When called, DepRepair extracts a list of broken tests,
bTests, from traceT,,. For our example, bTests = (tq,
t5). Next, DepRepair constructs dependency lists for
to and t5 as follows. First, DepRepair considers the
execution trace for to. Because to passed when executed
in the original test suite, all of its commands (Lines
1-30), shown in Table are executed. When ¢ is
executed in the prioritized suite, t5 breaks in Line 12, and
therefore its code in Lines 12-30 will not be included in its
prioritized execution’s trace. In this example, excluded
commands are italicized in Table [[II By comparing a
passing trace with a trace related to a breakage, DepRe-
pair determines the statement that caused t, to break
— the ProblemS routine identifies the code in Line 12
of Table pS= (selenium.select(“name=username”,
“label=u2”), as the problem statement. An internal
representation for this command (i.e., pS) is shown in
Figure [1}

With this problem statement (i.e. Line 12) in hand,
DepRepair starts its test dependency search to pinpoint

what caused t3’s breakage. During this process, DepRe-
pair needs to know t5 order when executed within the
all-pass suite, T,, as described in detail in described
in Section [[TI-B] For our example this value is 2, because
to was the second to execute in T,. DepRepaire also needs
to know those tests that were executed before ¢o in suite
T,. For our example, DepRepaire finds out that ¢t; was
the only test executed before to. At this point, using the
internal representation of the problem statement (pS) in
t2, DepRepaire performs a combined string and data-flow
analysis on t; to search for manifest test dependency be-
tween t; and ¢, as described previously in Section [[TI-B}

The string analysis search finds out that the same
web page element "username” that is manipulated by
the broken command pS of t5 is also manipulated by the
command in Line 41 of test ¢; as shown in Table[[I} Given
this information, the algorithm begins a data-flow analy-
sis search to inspect Line 41 command of test ¢; in order
to find out the type of action this command performs
on the shared element, i.e., "username”. This inspection
reveals that the command in Line 12 of test ¢; performs
a write operation on the shard web element "username”
and sets its value to “u2.” At this point and using the
classification described previously in Section [[II-A] De-
pRepair concludes that there is a referenced-before-create
(RbC) data-flow dependency between ¢ and to, (t1— t2).
This (RbC) data-flow dependency exists because to tries
to reference a user account with identifier "username”
and value “u2” before it has been created by t1, as shown
in Lines 36-45 of Table [l

At this point and after DepRepair confirms the exis-
tence of a manifest test dependency between t; and to
(t1— t2), it creates a dependency list for the broken test
t2 and inserts as follows. bDeplist = <t1— to>. Although
there was only a one test dependency for to in this ex-
ample, it is possible that multiple dependence may exist.
For this reason, DepRepair continues its search for other
dependencies that might exist between t5, and other tests
following the strategy explained in in Section [[II-B]

Similarly, DepRepair confirms the existence of an
(RbC) data-flow dependency to and ts5, to— t5, because
ts attempts to create a class for which a teacher’s ac-
count with a teacher named “Sara Cameron” has to be
created first by ¢5. At this point, DepRepair constructs
a dependency list for t5 as bDeplist = <to— t5>. Even-
tually, as described in Section [[II-B] DepRepair adds
this newly generated dependency list to allBdeplists,
which becomes allBdeplists= <t1— t9, to— t5>. At
this point, DepRepair invokes RepairedList to perform
another repair on the test suite produced by the first
iteration of the algorithm.

At this point, the RepairedList procedure is called
by DepRepair with allBdeplists= <ti— tg, to— t5>
and tracel),. Beginning with an empty 7T'r, RepairedList
considers each test case in the prioritized test suite in
backward order beginning from the last one. Thus, it
first considers t;, because t; is the last test case in the
prioritized test suite T),. Now, RepairedList determines
whether t; is a broken test case or not. If not (which
is the case for t1), t; is added to Ty only if it is absent
from one of the dependency lists for all broken test cases.

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

TABLE III: Executed Code for Failed Test Case to

Line Code
1 selenium.open(“/schoolmateTest/index.php”);
2 selenium.type(“name=username”, “test”);
3 selenium.type(“name=password”, “test”);
4 selenium.click(“css:input[type:tsubmit;]”);
5 selenium.waitForPageToLoad (“60000");
6 selenium.click(“link=Teachers”);
7 selenium.waitForPageToLoad(“600007);
8 selenium.click(“xpath=(//input[@value=‘Add’])[2]");
9 selenium.waitForPageToLoad(“600007);

10 selenium.type(“name=fname”, “Lisa”);

11 selenium.type(“name=Ilname”, “Harry”);

12 selenium.select(“name=username”, “label=u2”);

13 selenium.click(“css=input[type= ‘button ’] ”);

14 selenium.waitForPageToLoad(“60000”);

15 selenium.click(“cpath=(//input/@value=‘Add’])[2]”);
16 selenium.waitForPageToLoad(“60000”);

17 selenium.type(“name=fname”, “Sara”);

18 selenium.type(“name=Iname”, “Cameron”);

19 selenium.select(“name=username”, “label=ul”);

20 selenium.click(“css=input[type="button’]”);

21 selenium.waitForPageToLoad(“60000”);

22 selenium.click(“zpath=(//input{@value=*Add’])[2]”);
23 selenium.waitForPageToLoad(“60000”);

24 selenium.type(“name=fname”, “Moody”);

25 selenium.type(“name=Iname”, “Aley”);

26 selenium.select(“name=username”, “label=moody”);
28 selenium.waitForPageToLoad(“600007);

29 selenium.click(“link=Log Out”);

30 selenium.waitForPageToLoad(“600007);

Because t; is in the dependency list of ¢, it is not added
to Tf.

Next, tg is considered and because it was not broken,
it is added to the head of the fixed list, which becomes
Tt = <t¢>. When t5 is considered, because it is broken,
RepairedList obtains the dependency list bDeplist for t5
and examines it to determine which test cases should be
added to the fixed list, as follows. If a test case does not
already exist in T then it will be added to the head of T
in the same order it was created in the dependency list for
t5. Recall that the dependency list for ¢5 was previously
found to be bDeplist = <to— ts5>. Therefore both tg
and t5 are added to the head of Ty, which now becomes
Ty = <ta, t5, ts>. Next, t3 is considered and because
it was not broken, it is added to the head of the fixed
list, which becomes T} = <t3, ta, t5, ts>. When ¢5 is
considered, because it is broken, RepairedList retrieves
the dependency list for t5, bDeplist, and examines it to
determine which test cases should be added to the fixed
list. Recall that the bDeplist for t, was found previously
to be bDeplist = <t;— ty>. Thus, t; is added to the
head of Tt because ¢y already exists in that list, so now
Tf = <11, t3, to, t5, te>.

Finally, ¢4 is considered, and is added to the head of
Tt because it is not broken and has not been added
previously. The final repaired test suite is Ty = <t4, t1,
ts, to, ts, tg>. This test suite is returned to DepRepair,
which returns it to WebTestRepair as T..

At this point WebTestRepair performs a confirmation
run of 7T, and examines the result of this execution. If no
test cases break, WebTestRepair reports the results, the
success of the repair process, and quits regardless of the
number of iterations remaining. Otherwise, WebTestRe-

pair decrements the number of iterations by one and
proceeds with a second iteration in which T, = T,.
During this iteration, the partially repaired test suite, 7.,
will be the target for test case dependency detection and
repair by WebTestRepair, while the original test suite
continues to be T,. For our example, we will have T,,, =
(t4, tl, t3, tz, t5, t6) and To = (tl, tz, t3, t4, t5, tﬁ). The
final contents T,, is copied into 7T;. and returned to the
calling procedure, WebTestRepair.

Note that although we allocated a maximum of five
iterations in this example, WebTestRepair was able to
produce a repaired test suite 7, that runs without any
breakages, using only one iteration, therefore the algo-
rithm reports its result and quits.

D. Implementation

Our algorithm is implemented as a tool called
WebTestRepair. WebTestRepair is implemented in Java
as a standalone project using JavaSE-1.7 and the
Eclipse development environment. In its current state,
the tool accepts Selenium test cases in the Java/JU-
nit4/WebDriverBacked format, but it can easily be ex-
tended to handle other test case formats such as JUnit or
WebDriver. In our work, each test case is represented by
a one-method class. Thus, we can use a test class or test
method without losing the intended general meaning of
a given test case. WebTestRepair uses its own parser to
instrument test cases. During the instrumentation pro-
cess, an internal representation is created and logged for
each Java/JUnit4/WebDriverBacked statement in each
test case. We use MAMP [26] to run our subject web
applications locally on a local server.

E. Computational Complexity

As noted earlier, WebTestRepair does not attempt to
identify all test case dependencies within a given test
suite T', and therefore, is it computationally bounded. In-
specting the code of WebTestRepair’s main routine pre-
sented in Algorithm [T} it can be deduced that the worst
case computational complexity of WebTestRepairW is
O(n?), where n is the number of test cases within 7.
The following text provides details.

WebTestRepair (Lines 1-29 of Algorithm makes two
calls in Lines 7-8; these calls are linearly bounded by the
number of test cases n within a test suite 7. Because
the while loop (Lines 11-25) makes I calls to DepRepair
in Line 12, this loop is bounded by I*O(n?), where I
is the number of rounds the algorithm is allowed to run
and n is the number of test cases explored. Therefore,
WebTestRepair is bounded by I*O(n?).

DepRepair (Lines 11-32 of Algorithm [2)) contains two
for loops (Lines 17-29) that are bounded by O(n?), and
a call to the RepairedList routine in Line 30, which is also
bounded by O(n?), because RepairedList (Lines 34-54 of
Algorithm [2)) contains two for loops. This renders the
total complexity of DepRepair 2¥*O(n?), which is O(n?).

Finally, because the number of rounds I is expected
to be very small in practice (for example, the maximum
number of rounds I needed in our study was five) it is
bounded by the number of rounds the developer specifies.

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

type locator I ar ar hooksUp hooksDown
identifier value
“select” “name” “username” “label” “u2” {3} {6}

selenium.click("xpath=(//input[@value="Add'])[2]") /

selenium.click("link=Teachers")

selenium.click("css=input[type=\"submit\"]")
selenium.click("css=input[type=\"button\"]")
selenium.click("xpath=(//input[@value="Add'])[2]")
selenium.click("css=input[type=\"button\"]")
selenium.click("xpath=(//input[@value='Add"])[2]")
selenium.click("css=input[type=\"button\"]")
selenium.click("link=Log Out")

Fig. 1: An internal representation created for the command
in Line 12 of Table @

Line Code

1 selenium.open("/addressbookv7.0.0/index.php");

2 selenium.click("link=groups");

3 selenium.waitForPageToLoad("30000");

4 selenium.click("xpath=(//input[@name="selected[]'])[2]");

5 selenium.click("xpath=(//input{@name="edit'])[2]");

6 selenium.waitForPageTolLoad("30000");

7 selenium.type("name=group_header", "Welcome to Students group");
8 selenium.type("name=group_footer", "It was our pleasure serving you!");
9 selenium.click("name=update");

10 selenium.waitForPageTolLoad("30000");

Fig. 2: An example of searching surrounding code of a failed
command during test dependency detection.

Thus, I may be ignored and the computational complex-
ity for WebTestRepair is O(n?).

IV. EMPIRICAL STUDY

As previously stated in Section[[} in this work we focus
on detecting and repairing test case dependencies that
adversely affect test suites that have been re-ordered,
such as by TCP techniques. To evaluate the performance
of WebTestRepair in this context, we conducted an em-
pirical study addressing the following research questions:

RQ1: Effectiveness: Given a prioritized test suite, T', in
which test cases are broken due to test case dependencies,
how effective is WebTestRepair at repairing 77

RQ2: Efficiency: Given a prioritized test suite, T, in
which test cases are broken due to test case dependencies,
how much does it cost to apply WebTestRepair to T'7

A. Objects of Analysis

As objects of study we selected five open-source web
applications that have been used in previous web testing
research [2], [16], [17]. Table provides data on the
web applications that we selected, including their names,
versions, the number of (non-comment) lines of code
(LOC) they contain as counted with [1], the number of
test suites used in this study for each application, and
the mean number (non-comment) lines of code for each
test case.

PHP-ADDRESSBOOK [3] is a web-based address and
phone book, contact manager, and an organizer. It sup-
ports groups, addresses, e-Mails, phone numbers and
birthdays. MRBS [29] is a web application for multi-
site booking of meeting rooms. SCHOOLMATE [34]scs is a

TABLE IV: Objects of Analysis

App. App. App. # Test Test Case
Name Version LOC Suites LOC (Avg)
PHP-ADDRESSBOOK 7.0.0 14,610 20 55
MRBS 1.8.0 184,403 20 82
SCHOOLMATE 2.0.0 7,040 20 142
TiMECLOCK 1.04 19,560 20 90
YOURCONTACTS 2.2.2 32,944 20 63
Total 5 243,947 100 432

school management web application. TIMECLOCK [38] is
an employee management system that provides several
functionalities such as creating offices, groups within
offices, and user accounts, scheduling upcoming events,
and managing employee’s sign-in sheets. YOURCON-
TACTS [40] allows users to manage contacts with names,
emails and phone numbers. The applications are all
written in PHP, and use JavaScript, HTML, MySQL,
and CSS. To evaluate the performance of WebTestRepair
on these web applications, we needed test suites that
contain test case dependencies. We began by searching
for publicly available test suites, but could not find any.
Therefore, for each web application, we created a test
suite that contains a set of test cases with dependen-
cies using Selenium IDE [35]. (Guarnieri et al. [13], in
their study of a technique for test isolation for web
applications, reported a similar difficulty, and followed a
similar approach in their empirical study.) To do this, we
performed a functionality analysis for each application
to determine possible use-case scenarios. We used these
use-case scenarios to record test cases. We ensured that
these test cases all executed appropriately. The rightmost
column in Table [¥]lists the numbers of test cases in the
test suites created for each application.

B. Variables and Measures

1) Independent Variables: We consider one indepen-
dent variable: manifest test dependency and repair tech-
nique. We utilize our new technique, WebTestRepair, and
as a control we use a technique that randomly orders the
test cases in a broken test suite in search for a test suite
that does not break. The choice of a random approach as
a control is necessitated by the absence of other existing
execution-based techniques for detecting and repairing
tests dependencies in web applications that handle the
same test case structure we are using in this study, as
explained in Section [} A similar choice was made in the
study of DTDetector [41]—which does not target web
applications—for similar reasons.

2) Dependent Variables: The effectiveness of a repair
technique is simply a boolean measure: the technique
succeeds or not. For efficiency, we measure the wall clock
time required by the technique to detect and repair
breakages.

C. Study Process

Each application comes with a test suite containing
between 6-10 Java/Unit 4/ WebDriver Backed test cases.
For each of these suites, we created an ordering such
that all tests in each test suite pass without any test
dependencies related failures (breakages). We call these
suites, the original (unprioritized) test suites. For each of

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

these original test suites, we create 20 distinct randomly
prioritized test suites as follows. For each original test
suite, we first create a random ordering for this suite.
Next, we execute this prioritized test suite in that ran-
dom ordering to determine whether any tests break. If so,
and if the ordering differs from any previously selected
orderings, we selected the ordering as one that contains
potential test dependencies. We repeated this process
until we had obtained 20 distinct randomly prioritized
orderings for each of original test suites.

We applied WebTestRepair to each of the 20 randomly
prioritized test suites for each web application, paired
with the original test suite. As noted in Section [[II}
WebTestRepair may require multiple rounds to identify
and repair dependencies. Our preliminary usage of the
tool suggested, however, that five rounds were sufficient
to detect and repair all dependencies; thus, we set the
maximum number of rounds to five.

Where the random repair approach was concerned,
for each of the 20 randomly prioritized test suites, we
randomly selected a new ordering for the prioritized
test suite, and then determined whether that ordering
eliminated the breakage. Because the random technique
does not have an inherent iteration limit we allowed it to
run twice as long as the maximum time WebTestRepair
needed to repair broken test suites for a given web
application.

To answer RQ1, we counted the number of prioritized
test suites for which each approach is able to produce a
repaired test suite ordering such that, when executed in
this order, all tests pass without any failures related to
test dependency.. To answer RQ2, we measured the wall
clock time used by the approaches, including the time
required to perform detection and repair, and to execute
the test suites. We gathered all data on a PC with an
Intel Core i7-7500U @2.70 GHz CPU and 12 GB of RAM.

D. Results

Table [V] summarizes the performance WebTestRepair
as compared to the random approach. Column 1 lists
application names, Columns 2 and 3 list the numbers of
broken test suites that WebTestRepair was able to repair
and the percentages it repaired, respectively. Columns 4
and 5 list the numbers of broken test suites that the
random approach was able to repair and the percentages
it repaired, respectively. Column 6 shows the total time
(in minutes) WebTestRepair required to analyze, repair,
and execute broken tests for each application, including
application setup time, algorithm exploration and repair
time, and the time required to execute test cases on
the application. Column 7 shows the total times (in
minutes) that the random approach required to generate
and execute broken tests for each application, including
the time required to select different orderings and to
execute test suites.

1) RQI: Effectiveness: Columns 2-5 of Table [V]report
data on effectiveness. As the data shows, WebTestRepair
was able to detected and repaired 95 broken test suites
and therefore achieving an overall success rate of 95%.
The random repair approach was much less effective at
repairing test suites even when granted more than twice

the time WebTestRepair utilized; it produced repaired
test suites only 11% of the time and for some applica-
tions, it was unable to repair any test suites at all, e.g.,
for the MRBS and TimeClock applications. In this study,
WebTestRepair an 84% more effective in repairing broken
test suites than the random approach.

2) RQ2: Efficiency: Columns 6-7 of Table [V| report
data on efficiency. For WebTestRepair, Column 6 shows
(for each web application) the mean time (in minutes)
the approach required for the whole process to analyze,
repair, validate and execute test suites for that appli-
cation. For the random approach, Column 7 shows the
total this approach required to generate and execute
test suites. For example, while processing the MRBS
application, WebTestRepair only required 459 minutes to
achieve 95% success rate whereas the random approach
spent doubled that time and was not able to generate a
single test suite ordering in which all tests pass. In this
study, the random approach spent more than 36 hours to
only achieve 11% success rate, whereas WebTestRepair
spent 16 hours to achieve 95% success rate. Therefore,
WebTestRepair is much more efficient and effective than
the random approach.

V. DISCUSSION

To further investigate the performance of WebTestRe-
pair across different applications, we provide additional
data on WebTestRepair’s performance in Table [VI In
this table, Columns 2-6 show that WebTestRepair ana-
lyzed 800 tests, identified 227 broken tests, detected 551
manifest test dependencies form which 438 were resolved
by WebTestRepair, and only spent a total of 5.59 seconds
to analyze and resolve test dependencies in order repair
broken test suites. As Column 5 of Table [VI] shows, the
time spent by WebTestRepair on analyzing all broken
tests to detect and resolve manifest dependencies is a
very small fraction of the total time reported earlier by
Column 6 of Table [V] while the bulk of the time is
consumed on executing the web applications. Recall from
Section [[] that finding all of the dependencies in a test
suite is an NP-Complete problem. Instead, WebTestRe-
pair goal is to create a repaired test suite that runs with-
out any dependency-related breakages; after such a test
suite is found, WebTestRepair performs a confirmation
run to assure the developer that a dependency-free suite
has been produced and then terminates.

To further investigate the complexity of broken tests
and how they may differ for different applications, we
consider the number of broken tests encountered by
WebTestRepair and the number of manifest test de-
pendencies identified during this process. This data is
shown in Columns 2-3 of Table [VIl For example, con-
sider the data provided for TimeClock and YourCon-
tacts applications. By looking at the number of test
dependencies encountered by WebTestRepair during its
processing of the TimeClock application, WebTestRepair
resolved 178 manifest test dependencies in order to repair
84 broken tests, while WebTestRepair was required to
only resolve a 26 manifest test dependencies in order to
repair 26 broken tests for the YourContacts application.
This indicates that test suites created for the TimeClock

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

TABLE V: Study Results

Repair Effectiveness Repair Efficiency

Application Name ‘WebTestRepair Random WebTestRepair Random

#Suites Repaired | Repair % | # Suites Repaired | Repair % | Costs (minutes) | Costs (minutes)
PHP-ADDRESSBOOK 18 90% 2 10% 145 301
MRBS 19 95% 0 0% 459 920
SCHOOLMATE 20 100% 2 10% 219 446
TiMECLOCK 18 90% 0 0% 97 427
YOURCONTACTS 20 100% 7 35% 45 73
Total 95 95% 11 11% 965 2,167

TABLE VI: WebTestRepair Performance

Web App # Tests # Identified # Detected # Resolved Total Analysis
Name Broken Tests Manifest Dependencies Manifest Dependencies Cost (Seconds)
PHP- ADDRESSBOOK 200 26 117 59 1.16
MRBS 180 63 145 129 1.72
SCHOOLMATE 120 28 46 46 0.72
TiMECLOCK 160 84 217 178 1.64
YOURCONTACTS 140 26 26 26 0.39
Total 800 227 551 438 5.63

application are more complicated and dependent on each
other than those test suites created for the YourContacts
application.

Figure [3] displays the distribution of broken tests and
manifest test dependencies as they were identified by
WebTestRepair across the 20 test suites used per appli-
cation. In light of this data and the data reported in
Table |V] and Table note that the random approach
performed poorly on all applications used in this study,
whereas WebTestRepair was able to repair 95% of test
suites across all applications. In particular, the random
approach was only able to repair 35% of the test suites
for YourContacts which has 26 broken tests with 26 test
dependencies. For the MRBS application, however, with
63 broken tests and 145 test dependencies, and Time-
Clock with 84 failed tests and 217 test dependencies, the
random approach failed to repair any test suites.

As a further look, we considered the progress
WebTestRepair makes across iterations. When
WebTestRepair is invoked with a test suite that
contains broken test cases, the algorithm builds the
repaired test suite incrementally through iterations,
during which the partially repaired suite produced by
a previous round is forwarded to the next round for
repair, and so on, until a repaired test suite is produced
or WebTestRepair reaches the maximum prescribed
number of rounds. If the test suite being processed is
not fully repaired during an iteration, WebTestRepair
logs the resultant partially repaired test suite and passes
this suite to the next round where it is processed as if it
were a new one.

While considering a broken test suite, WebTestRepair
may encounter different numbers of broken test cases
during each iteration. The primary reasons this number
changes is related to how many test cases are truly
dependent on each other; repairing existing dependencies
may introduce new ones.

In this work we chose not to consider the number

of iterations performed by WebTestRepair as an inde-
pendent variable. Instead, we chose a fixed number of

iterations (five). We did this because preliminary runs
suggested that this number of iterations was sufficient
for the web applications considered, and this turned out
to be the case when we proceeded with the study. To
further understand the progress WebTestRepair makes
across iterations, we present data related to the iterations
WebTestRepair performed when processing the twenty
test suites for TimeClock in Table [VTIl

Column 1 of Table [VI]]lists test suites being processed.
Columns 2—-6 report the number of test case breakages
that WebTestRepair detected during each of the itera-
tions it conducted while processing each test suite. For
example, while processing test suite 1, WebTestRepair
detected six broken test cases, but the algorithm required
just one iteration to produce a repaired test suite. While
processing test suite 4, in contrast, WebTestRepair re-
quired five iterations. In the first iteration, WebTestRe-
pair identified six broken test cases and was able to repair
five of them, leaving one unrepaired. It thus performed
a second iteration in which it tried to repair the one
test case breakage that still remained. The effect of this
iteration, however, was to produce additional test case
breakages. In its third iteration, WebTestRepair detected
four broken test cases produced by the second round and
attempted to repair them, and this resulted in a test
suite containing one broken test case. WebTestRepair
continued to attempt to repair this test suite in its fourth
iteration, and this attempt produced a test suite with
five broken test suites that were forwarded to the fifth
iteration. During that final iteration, WebTestRepair
succeeded in repairing all test case breakages.

In practice, when considering different web applica-
tions and test suites, the number of iterations required
may differ, and developers may choose to utilize different
numbers of iterations based on both cost and effective-
ness factors. Appropriate numbers could be determined
over time as regression testing is performed on successive
releases.

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

php-AddressBook
20

15

10

Suitel B

o v
Suite2 M,
Suitell MM,
Suite12 M
Suite18 M.
Suite19 n "
Suite20 MM

Suitel6 M.

Suite14 B......
Suite17

Suite3 M,
Suite15

Suited 9
Suite5 B
Suite6 1
Suite7 B
Suite8 1
Suite9
Suite10

Suite13

M BrokenTests & manifested_Dependencies

MRBS

20
15

10

o w
Suitel Fym
Suite2 WEFRLcoon

Suite3

Suited WM

Suite5 WA
Suite6 R
Suite7 R
Suite8 MMumn
Suite9 MM
Suite15 WA
Suitele W
Suitel7 W
Suite18 M
Suite19 M
Suite20 M

Suitell MFm

Suite12
Suite13
Suite14

Suite10 M:

W BrokenTests ™ manifested_Dependencies
SchoolMate TimeClock
4 25
3.5)
3 q 3 ; k 20) E
25 E § i E:
§ : g 3 15 : z p E:
2 : § m g G E E 2 E E:
- f: . g F: 2 2 2 = = =
1.5 2 d & : O 3 10 I E: E E: E g,
= - 3 I B H A ¢ E E I
1 : i : z q E : » 2
o« FHERRRRERLEEEERELE [TTTHITE Eaﬁé
0 Z o ¥ =K EE AEEEBEBEERBESEBE
oM < W N 00 OO O =@ N MM & 1D O N 0 O O - o S N O ™0 0O = N M T D O 0 O O
v o Q Q @ [B e B T T e O e T T IO e O O) [[v 9 O [[L I T B B I I B I B B I |
£ £ £ £ £ £ 90 90 9 99 Q9 Q9 9 9 U9 £ £ 2 £ £ £ 2 £ U 999 9O U 9 9 O
3 3 3 3 3 3 £ £ £ £ £ £ £ £ £ £ £ S 3 5SS 3 333 E £ £ £ £ £ £ £ £ £ &
w wuv w o n n un 3 3 3 3 3 3 3 3 3 3 3 w wv v N B B n un 3 3 3 3 3 3 =3 3 3 3 3
Vv v VBN VB B n un unuun v VLB BN N N B unu noun
M BrokenTests = manifested_Dependencies M BrokenTests * manifested_Dependencies
YourContacts
2 2
|
1.5 g
. -l
:
1 3 [
=0 = =
H E
0.5 3
Ed
0
n o
s 8
£ £
v un

M BrokenTests

= manifested_Dependencies

Fig. 3: The distribution of broken tests and manifest test dependencies identified by WebTestRepir across all applications.

VI. RELATED WORK

Zhang et al. analyze test case dependence his-
tory data obtained from 96 test cases collected from
five software issue tracking systems and propose four
heuristic algorithms for detecting test case dependencies
within these test cases. Zhang et al. implement a test
case dependence detector as a tool called DTDetector.
The approach has three potential drawbacks. First, it
requires that history information about a test suite be
retrieved from developers, and this may be difficult or
impossible in practice. Second, the approach is not fully
automated and requires quite a bit of human interaction
[7]. A third problem relates to the intractability of the
problems addressed by the proposed algorithms, which
render DTDetector relatively expensive. WebTestRepair,
in contrast, does not perform exhaustive searches and is
bounded in terms of execution time; it concentrates on
producing repairs only to the test suite breakages caused
by test case dependencies.

Bell et al. present a tool called ElectricTest, which

utilizes built-in dynamic Java capabilities and resources
such as I0-Traces, garbage collection, profiling, and the
JVM Tooling Interface (JVMTI) to detect test case
dependencies created by read/write operations to shared
global resources such as memory, files, and the network.
In , PRADET is presented as an improvement to
ElectricTest |7] and DTDectector . PRADET focuses
on state polluting tests and therefore, it detects
data dependencies at this stage by capturing each read
after write (RAW) operations performed on static global
objects in Java projects. As an improvement over the
work of ElectricTest and DTDectector, PRADET per-
forms a refinement operation to report only manifest
test dependencies as opposed to the final list reported
by ElectricTest and DTDectector which includes all test
dependencies found in a test suite.

All of DTDectector [41], ElectricTest [7], and
PRADET , at first perform a very extensive search
for all test dependencies and do not provide any re-
pair process. WebTestRepair, in contrast, follows an

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

TABLE VII: Dependencies that Caused Test Case
Breakages in TimeClock

Number of Broken Test Cases

Suite # | R1 | R2 | R3 | R4 R5
1 6 - - - -
2 3 6 4 5 -
3 3 5 6 4 4
4 6 1 4 1 5
5 2 3 1 2 -
6 5 6 - - -
7 4 2 3 4 5
8 6 - - -
9 2 5 5 - -
10 7 - - - -
11 3 3 4 5 -
12 3 3 - - -
13 6 6 - - -
14 5 - - - -
15 5 5 6 4 5
16 6 2 - - -
17 5 2 3 4 5
18 7 2 3 4 5
19 3 6 - - -
20 4 6 4 5

optimistic greedy and incremental approach to detect
the smallest number of dependencies that need to be
repaired to produce a dependence-free test suite. This
renders our approach more suitable for developers who
are interested only in manipulating test suites without
identifying all test case dependencies. TCP, e.g., [11],
[19], [32], [36] techniques may safely be applied to the
test suites produced by WebTestRepair.

Kappler [21] attempts to speed up test case paral-
lelization in the presence of test case dependencies, and
reduce the overheard associated with the parallelization
technique of [7]. The main objective of [21] is to improve
the performance of parallelized test case execution using
techniques for coping with test case dependencies. Our
work, in contrast, focuses on improving the applicability
of test case manipulation techniques such as TCP in
the context of regression testing of web applications.
Furthermore, all of prior work presented in [7], [12], [21],
[41] provide dependence detection mechanisms but do
not perform dependence repair; however, WebTestRepair
provides both.

WebTestRepair faces more challenges that are not
faced by DTDectector [41], ElectricTest |[7], and
PRADET [12]. One of these issues involves the deletion
of objects. Both DTDectector and ElectricTest trace
read/write operations to objects and consider test B to
be dependent on test A only if B reads an object that
was written by A. WebTestRepair targets a different soft-
ware paradigm, and faces different challenges than tools
concerned with traditional programs that use variables,
I/O and network resources within the context of a test
case. Web application code may be composed of multiple
languages such as HTML, JavaScript, CSS, in addition
to sever-side code.

Lam et al. [24] extend the work of [41] to cope with

test case dependencies when they exist; however, this
work inherits the drawbacks of the approach reported in
[41], noted above. WebTestRepair focuses on automat-
ically improving test suites through the process of test
case dependence detection, repair, and then confirmed
execution.

The work of [6], [13], |[14] recognize the existence of
the test dependency problem and how the side-effects
created by such dependencies may negatively affect test-
ing results. To reduce these problems they propose tech-
niques for test case dependency prevention and test case
execution optimization. Bell [6] proposes a technique for
test case dependency identification and then uses this
knowledge to improve test case execution efficiency.

Gyori et al. [14] present a technique (PolDet) that
exposes shared memory locations that may have negative
side-effects when conducting test runs on Java programs.
Guarnieri et al. |13] propose a technique called Test
Execution Checkpointing (TEC), which includes a frame-
work for running tests in isolation. This work targets web
applications, but focuses solely on server side tests sent
as HTTP requests, whereas WebTestRepair handles tests
of both client-side and server-side code. The foregoing
techniques all avoid test dependency side-effects during
testing through prevention, by running test cases in
isolation, whereas WebTestRepair focuses on detection
and repair.

Alshahwan and Harman [4] present a technique for re-
pairing web applications session data. This work analyzes
web application session data in order to detect and repair
session paths that may be broken because of changes
made to a web application. Although this approach
applies the same philosophy of analysis and repair as
WebTestRepair, the approach focuses on the analysis of
web application session data in the form of URL requests
(server-side), whereas our approach analyzes and repairs
web applications test case code that may be created using
multiple languages such as HTML, JavaScript, CSS, in
addition to sever-side code.

Haidry and Miller [15] present a TCP technique that
functions in the presence of test case dependencies.
However, this work does not provide any technique for
detecting dependencies and assumes they are known in
advance. The test suites produced by WebTestRepair
could be utilized as input to the technique proposed
in [15]. The work in |[23] presents an algorithm that
regenerates locators by saving extra information from the
previous structure of the website. Although this approach
is promising, it could not be used for the purpose of test
dependencies detection and repair because the work of
WebTestRepair is mainly based on the dynamic changes
created by the test’s code during its execution and not
on an old website structure.

Sung et al. [37] use DOM tree |9] analysis of JavaScript
code to identify event handlers’ dependencies in web
applications. This work considers those events that are
triggered by test cases and shows that event dependen-
cies lead to test case dependencies; however, the work
considers only event handlers, whereas our work takes a
broader view of web applications and considers test case
dependencies that are related to the entire functionality

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

of the web application. Our work, in contrast, does not
require analysis of the application’s code; it works only
with test code, and thus can be more efficient.

Biagiola et al. [8] presents a tool called TEDD, for test
dependency detection in E2E web tests. TEDD follows
the same methodology reported in PRADET [12] to
produce a list of manifest test dependencies. However, as
an improvement, TEDD adds a test recovery step after
the refinement stage, used in PRADET, in order to re-
cover some dependencies that me be wrongfully dropped
during the refinement process. During its work, TEDD
starts with a test suite and a given original execution
ordering and performs data-flow analysis on the test code
to search for test data dependencies and therefore build a
test dependency graph (TDG) will all test dependencies.
As in PRADET, TEDD refines the resulting TDG by
keeping only manifest dependencies. As stated in [§],
some manifest test dependencies might be wrongfully
removed during the refinement stage, therefore, TEDD
performs an extra step during which lost dependencies
are recovered. WebTestRepair, in contrast, from the out-
set, focuses on the detection of manifest test dependence
that cause test failures.

Additionally, TEDD assumes the existence of mean-
ingful test names during the application of its natural
language processing (NLP) analysis for test dependency
detection. Therefore, the effectiveness and practicality of
TEDD is limited to web application tests with meaning-
ful names, and may become inapplicable in many real-life
web applications with tests that do not adhere to this
assumption.

Further, during its test code analysis, TEDD assumes
the existence of assertions in test’s code, ([§], p. 2),
and then limit its test dependency search to Selenium’s
“assert” statements. This assumption crates two draw-
backs potential drawbacks with TEDD. First, it enforces
developers to write assertions, and writing good asser-
tions is not an easy task and may add an extra burden.
Second, this assumption makes assertions to be the sole
source of test dependency, but this assumption is not
valid in practice, because any other statement in a web
app test may causes test dependency if this statement
manipulates a shared web-page element.

In our work, WebTestRepair considers all web test
statements, including assertions, during its search for
test dependencies, and, therefore covers a wider spec-
trum of web tests, which makes it more practical than
TEDD. Further, TEDD does not provide any test depen-
dency repair and only reports test dependencies, while
WebTestRepair provides both test dependency detection
and repair.

VII. CONCLUSION

We have presented a novel algorithm, WebTestRepair,
for automatically detecting and repairing manifest de-
pendencies in web application test suites, along with an
implementation of that algorithm. We evaluated both
the effectiveness and efficiency of WebTestRepair on five
non-trivial web applications. Across 800 tests of these
web applications, WebTestRepair was able to detect
manifest test dependencies and produce repaired test

suites that run without dependency-related failures with
a 95% success rate. In the future, we intend to extend
WebTestRepair to include automated DOM traversal
techniques in order to improve the process of web ele-
ments identification during the search for manifest test
dependencies. Finally, we intend to extend our tool to
handle different forms of Selenium test case exports, and
study its applicability on those.

REFERENCES

[1] Cloc 2019. Counts blank lines, comment lines, and phys-
ical lines of source code in many programming languages.
https://github.com/AlDanial/cloc, 2019.

2] TEDD 2019. Web test dependency detection using
nlp. https://github.com/matteobiagiola/FSE19-submission-
material-TEDD, 2019.

[3] Addressbook.
addressbook/.

[4] N. Alshawan and M. Harman. Automated session data repair
for web application regression testing. In Proceedings of the
International Conference on Software Testing, 2008.

[6] Maral Azizi. A tag-based recommender system for regres-
sion test case prioritization. In 2021 IEEE International
Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 146-157, 2021.

[6] J. Bell. Detecting, isolating and enforcing dependencies among
and within test cases. In Proceedings of the International
Symposium on Foundations of Software Engineering, 2014.

[7] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya. Efficient
dependency detection for safe Java test acceleration. In Pro-
ceedings of the International Symposium on the Foundations
of Software Engineering, pages 770-781, 2015.

[8] Matteo Biagiola, Andrea Stocco, Ali Mesbah, Filippo Ricca,
and Paolo Tonella. Web test dependency detection. In
Proceedings of the 2019 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 154—164, 2019.

[9] Document object model (dom). http://www.w3.org/.

[10] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil. Carving
differential unit test cases from system test cases. In Pro-
ceedings of the International Symposium on Foundations of
Software Engineering, pages 253—264, 2006.

[11] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing
test cases for regression testing. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis, pages
102-112, 2000.

[12] Alessio Gambi, Jonathan Bell, and Andreas Zeller. Practical
test dependency detection. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation
(ICST), pages 1-11. IEEE, 2018.

[13] M. Guarnieri, P. Tsankov, T. Buchs, M. T. Dashti, and
D. Basin. Test execution checkpointing for web applications.
In Proceedings of the International Symposium on Software
Testing and Analysis, 2017.

[14] A. Gyori, A. Shi, F. Hariri, and D. Marinov. Reliable testing:
Deteting state-polluting tests to prevent test dependencey.
In Proceedings of the International Symposium on Software
Testing and Analysis, 2015.

[15] S.-e-Z. Haidry and T. Miller. Using dependency structures for
prioritization of functional test suites. IEEE Transactions on
Software Engineering, 39(2):258-275, February 2013.

[16] Mouna Hammoudi, Gregg Rothermel, and Andrea Stocco.
Waterfall: An incremental approach for repairing record-replay
tests of web applications. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 751-762, 2016.

[17] Mouna Hammoudi, Gregg Rothermel, and Paolo Tonella. Why
do record/replay tests of web applications break? In 2016
IEEE International Conference on Software Testing, Verifi-
cation and Validation (ICST), pages 180-190. IEEE, 2016.

[18] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression test
selection for Java software. In Proceedings of the Conference
on Object-oriented Programming, Systems, Languages, and
Applications, pages 312—-326, 2001.

https://sourceforge.net/projects/php-

Volume 49, Issue 2: June 2022

TAENG International Journal of Computer Science, 49:2, [JCS 49 2 11

(19]

20]

(21]

(22]

23]

(24]

[25]
[26]
27]

(28]

[29]
(30]

(31]

32]

(33]

[34]
[35]
(36]

(37]

[38]
(39]

[40]
[41]

B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse. Adaptive
random test case prioritization. In Proceedings of the Interna-
tional Conference on Automated Software Engineering, pages
233-244, 2009.

Jeonghyun Joo, Seunghoon Yoo, and Myunghwan Park.
Poster: Test case prioritization using error propagation prob-
ability. In 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pages
398-401, 2020.

S. Kappler. Finding and breaking test dependencies to speed
up test execution. In Proceedings of the International Sym-
posium on Foundations of Software Engineering, pages 1136—
1138, 2016.

T. Kim, R. Chandra, and N. Zeldovich. Optimizing unit
test execution in large software programs using dependency
analysis. In Proceedings of the Asia-Pacific Workshop on
Systems, pages 19:1-19:6, 2013.

Hiroyuki Kirinuki, Haruto Tanno, and Katsuyuki Natsukawa.
Color: Correct locator recommender for broken test scripts
using various clues in web application. In 2019 IEEE 26th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 310-320, 2019.

W. Lam, S. Zhang, and M. D. Ernst. When tests collide:
Evaluating and coping with the impact of test dependence.
Technical Report UW-CSE-15-03-01, University of Washing-
ton Department of Computer Scieence and Engineering, Seat-
tle, WA, March 2015.

Xiao Ling, Rishabh Agrawal, and Tim Menzies. How different
is test case prioritization for open and closed source projects.
IEEFE Transactions on Software Engineering, pages 1-1, 2021.
Mamp. https://www.mamp.info/en/.

S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and
D. Marinov. Parallel test generation and execution with
Korat. In Proceedings of the Symposium on The Foundations
of Software Engineering, pages 135—144, 2007.

Shouvick Mondal and Rupesh Nasre. Summary of hansie:
Hybrid and consensus regression test prioritization. In 2021
14th IEEE Conference on Software Testing, Verification and
Validation (ICST), pages 278-280, 2021.

Mrbs. http://sourceforge.net/projects/php-addressbook/.

A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso.
Regression testing in the presence of non-code changes. In
Proceedings of the International Conference on Software Test-
ing, Verification and Validation, pages 21-30, 2011.

A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing
to large software systems. In Proceedings of the International
Sympostum on Foundations of Software Engineering, pages
241-251, 2004.

M. J. Rummel, G. M. Kapfhammer, and A. Thall. Towards
the prioritization of regression test suites with data flow in-
formation. In Proceedings of the ACM Symposium on Applied
Computing, pages 1499-1504, 2005.

D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic
test factoring for Java. In Proceedings of the International
Conference on Automated Software Engineering, pages 114—
123, 2005.

Schoolmate. https://sourceforge.net/projects/schoolmate/.
Selenium hq. http://seleniumhq.org/.

A. Srivastava and J. Thiagarajan. Effectively prioritizing tests
in development environment. In Proceedings of the ACM
Symposium on Applied Computing, pages 97-106, 2002.

C. Sung, M. Kusano, N. Sinha, and C. Wang. Static DOM
event dependency analysis for testing web applications. In
Proceedings of the International Symposium on Foundations
of Software Engineering, pages 447-459, 2016.

Timeclock. https://sourceforge.net/projects/timeclock/.

M. Wu, F. Long, X. Wang, Z. Xu, H. Lin, X. Liu, Z. Guo,
H. Guo, L. Zhou, and Z. Zhang. Language-based replay via
data flow cut. In Proceedings of the International Symposium
on Foundations of Software Engineering, pages 197-206, 2010.
Yourcontacts. https://github.com/jubiddition/yourcontacts.
S. Zhang, D. Jalali, J. Wuttke, K. Musglu, W. Lam, M. D.
Ernst, and D. Notkin. Empirically revisiting the test inde-
pendence assumption. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 385-396,
2014.

Ali M. Alakeel previously known as Ali M. Al-Yami, obtained
his PhD degree in computer science from Illinois Institute of Tech-
nology, Chicago, USA in Dec. 1996, his M.S. degree in computer
science from the University of Western Michigan, Kalamazoo, USA
in Dec. 1992 and his B.Sc. degree in computer science from King
Saud University, Riyadh, Saudi Arabia in Dec. 1987. He is currently
a professor of computer science at the University of Tabuk, Saudi
Arabia. His current research interests include automated software
testing, artificial intelligence, fuzzy logic and distributed comput-
ing.

Volume 49, Issue 2: June 2022

	Introduction
	Background
	Test Dependency Detection and Repair
	Manifest Test Dependency Detection
	The WebTestRepair Algorithm
	A Running Example of WebTestRepair
	Implementation
	Computational Complexity

	Empirical Study
	Objects of Analysis
	Variables and Measures
	Independent Variables
	Dependent Variables

	Study Process
	Results
	RQ1: Effectiveness
	RQ2: Efficiency

	Discussion
	Related Work
	Conclusion
	References
	Biographies
	Ali M. Alakeel

